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Décomposition de HC*(k[G]) d'apr'es D. Burghelea

Nous nous proposons d'exposer les résultats cohomologiques correspondants à l'aide de preuves algébriques. Ils reposent de manière essentielle sur la notion de groupoïde cyclique introduite dans le troisième paragraphe.

Je tiens à remercier G.Skandalis qui m'a aidé à préparer cet exposé.

1 Cohomologie de groupes 1.1 Complexe simplicial associé à un groupoïde Définition 1 Un groupoïde est une petite catégorie C dont tous les morphismes sont des isomorphismes.

A un groupoïde C, on associe son nerf simplicial C ( * ) . Les n-simplexes sont de la forme

A 0 α1 -→A 1 α2 -→ • • • αn -→A n
où les A i sont des objets et α i ∈ Hom(A i-1 , A i ). On a les dégénerescences

d i (A 0 α1 -→ • • • αn -→A n ) = A 0 α1 -→ • • • A i-1 αi-1•αi -→ A i+1 • • • αn -→A n et les opérateurs de face s i (A 0 α1 -→ • • • αn -→A n ) = A 0 α1 -→ • • • A i id -→A i • • • αn -→A n . 1 Si C est un groupoïde tel que ∀A, B ∈ objet(C), Hom(A, B) = ∅, alors h : (A 0 α1 -→ • • • αn -→A n ) -→ (A id -→A β1 -→ • • • βn -→A)
où l'on a choisi un y i ∈ Hom(A, A i ) et β i = y i -1 α i y i-1 réalise une équivalence d'homotopie entre C et la sous-catégorie pleine réduite à un seul objet C A dont les morphismes sont ceux de C ramenés dans Hom(A, A).

Cohomologie de Hochschild

Définition 2 Soit G un groupe et k un Z[G]-module (en particulier tout anneau avec unité muni de l'action triviale ). On pose

H * (G, k) = Ext * Z[G] (Z, k).
Pour calculer les groupes de cohomologie d'un groupe, il suffit donc de trouver des résolutions projectives de Z au dessus de Z[G] = A.

• résolution standard homogène HO *

• • • β0 -→A ⊗n+1 β0 -→ • • • • • • β0 -→A ε -→Z-→0 avec β 0 (g 0 ⊗ • • • ⊗ g n ) = n i=0 g 0 ⊗ • • • ⊗ ĝi ⊗ • • • ⊗ g n , ε(g) = 1 et g(g 0 ⊗ • • • ⊗ g n ) = gg 0 ⊗ • • • ⊗ gg n . Donc H * (G, k) est la cohomologie de C 1 G (G, k) β -→C 2 G (G, k) β -→ • • • • • • β -→C n+1 G (G, k) β -→ • • • où C n G (G, k) = Hom A (A ⊗n , k) et βϕ = ϕ • β 0 .
Remarque Etant donné X un ensemble d'indices et pour tout x ∈ X un morphisme ϕ x ∈ Hom A (A ⊗n , k) tel que pour tout a ∈ A ⊗n l'ensemble des x ∈ X tel que ϕ x (a) soit non nul est fini, on peut définir

x∈X ϕ x ∈ Hom A (A ⊗n , k) • résolution standard non-homogène IHO * • • • b0 -→A ⊗ A ⊗n b0 -→ • • • • • • b0 -→A ν -→Z-→0 où A ⊗ A ⊗n est le A-module libre engendré par A ⊗n , b 0 [α 1 , . . . , α n ] = α 1 [α 2 , . . . , α n ] + n-1 i=0 (-1) i [α 0 , . . . , α i α i+1 , . . . , α n ] +(-1) n [α 1 , . . . , α n-1 ]α n (A ⊗ A n est muni d'une action triviale à droite) et ν([ ]) = 1. H * (G, k) est aussi la cohomologie du complexe k b -→C 1 (G, k) b -→ • • • • • • b -→C n (G, k) b -→ • • • où C n (G, k) = Hom(A ⊗n , k) et bϕ = ϕ • b 0 .
Si D n+1 désigne le sous-module de A ⊗n+1 engendré par les g 0 ⊗ • • • ⊗ g n avec g i = g i+1 pour un i (0 ≤ i ≤ n -1),alors D * +1 est stable par β 0 ; on en déduit la résolution libre normalisée homogène de Z quotient de HO * +1 par D * +1 . On peut de même définir la résolution normalisée non-homogène à l'aide du sous-complexe ID * +1 où ID n+1 est engendré par les [α 1 , . . . , α n ], l'un des α i étant égal à 1.

Remarque importante

Si C(G) est le groupoïde dont l'ensemble des objet est le groupe G et tel que Hom(g 1 , g 2 ) = {g 1 -1 g 2 }, on voit que les deux résolutions HO * et IHO * sont deux réalisations du complexe simplicial C ( * ) (G) selon qu'on le regarde au niveau des objets ou des morphismes.

Cohomologie cyclique

Si G est un groupe discret et k une Q-algèbre commutative (en pratique k = C), on note k[G] la k-algèbre engendré par les fonctions caractéristiques des points du groupe munie du produit de convolution (on identifiera par la suite un point et sa fonction caractéristique).

On pose

1 λ 0 (g 0 ⊗ • • • ⊗ g n ) = (-1) n g n ⊗ g 0 ⊗ • • • ⊗ g n-1 β ′ 0 (g 0 ⊗ • • • ⊗ g n ) = n-1 i=0 g 0 ⊗ • • • ⊗ ĝi ⊗ • • • ⊗ g n s 0 (g 0 ⊗ • • • ⊗ g n ) = g 0 ⊗ • • • ⊗ g n ⊗ g n Soit C * * (G) le bicomplexe:   β  -β ′   β C 3 G (G, k) 1-λ -→ C 3 G (G, k) N λ -→ C 3 G (G, k) 1-λ -→   β  -β ′   β C 2 G (G, k) 1-λ -→ C 2 G (G, k) N λ -→ C 2 G (G, k) 1-λ -→   β  -β ′   β C 1 G (G, k) 1-λ -→ C 1 G (G, k) N λ -→ C 1 G (G, k) 1-λ -→ Définition 3 On définit HC * (G, k) comme la cohomologie totale du bicomplexe C * * (G)
On peut encore voir la cohomologie cyclique de G comme la cohomologie totale du bicomplexe

 b  -b ′  b C 3 (G, k) 1-t -→ C 3 (G, k) Nt -→ C 3 (G, k) 1-t -→  b  -b ′  b C 2 (G, k) 1-t -→ C 2 (G, k) Nt -→ C 2 (G, k) 1-t -→  b  -b ′  b C 1 (G, k) 1-t -→ C 1 (G, k) Nt -→ C 1 (G, k) 1-t -→  b  -b ′  b k 0 -→ k Id -→ k 0 -→ où t[α 1 , . . . , α n ] = [α 0 , . . . , α n-1 ] avec α 0 = (α 1 . . . α n ) -1 . On définit < G > (respectivement < G > ′ ,< G > ′′ ) l'ensemble des classes de conjugaison (respectivement finies, infinies). Si x est un élément de G, on notera x sa classe de conjugaison. Soit C n+1 (k[G], x) l'ensemble des fonctions à valeur dans k localisées en x, i-e à support dans {x 0 ⊗ • • • ⊗ x n ∈ G n+1 tel que x 0 • • • x n ∈ x}(il est stable par β 0 ), alors C * +1 (k[G], x) ⊂ C * (k[G], k[G] * ) est stable par d, d ′ , 1 -λ les dérivations usuelles en cohomologie cyclique: d ′ 0 (x 0 ⊗ • • • ⊗ x n ) = n-1 i=0 x 0 ⊗ • • • ⊗ x i x i+1 ⊗ • • • ⊗ x n d 0 (x 0 ⊗ • • • ⊗ x n ) =d ′ 0 (x 0 ⊗ • • • ⊗ x n ) + x n x 0 ⊗ x 1 ⊗ • • • ⊗ x n-1 λ 0 (x 0 ⊗ • • • ⊗ x n ) =(-1) n x n ⊗ x 0 ⊗ • • • ⊗ x n-1
Il en résulte : 1.4 Décomposition de HC * (G, k)

Proposition 1 Si G est un groupe discret, C n (G) = C n (k[G], k[G] * ) = C n+1 (k[G]) = x∈<G> C n+1 (k[G], x). En particulier comme 1 = {1}, on a C * (G) ≃ C * +1 (k[G], 1) de la façon suivante: si ψ ∈ C n (G, k), on définit ψ{x 0 ⊗ • • • ⊗ x n } = δ x0...xn,1 ψ[x 1 , . . . , x n ]. A travers cet
Sur A ⊗n+1 , on a les opérateurs de face si (a

0 ⊗ • • • ⊗ a n ) = (a 0 ⊗ • • • ⊗ a i ⊗ a i ⊗ • • •⊗a n ). On considère le A-module ∆ n+1 = si A ⊗n (∆ 1 = {0}) qui est stable par β 0 car β 0 (a 0 ⊗ • • • ⊗ a n ) = n 0 (-1) i a 0 ⊗ • • • ⊗ ε(a i ) ⊗ • • • ⊗ a n .
Si S n est le groupe des permutations de Z/nZ, pour

ψ ∈ C n+1 G (G, k), on construit σψ(g 0 ⊗ • • • ⊗ g n ) = 1 (n + 1)! γ∈Sn εψ(g γ(0) ⊗ • • • ⊗ g γ(n) ). A ⊗n /∆ n est projectif si 2 est inversible dans k : si M p -→ N -→ 0   ϕ A ⊗n /∆ n
, ϕ se prolonge à A ⊗n en φ nulle sur ∆ n et l'on peut construire ψ telle que φ = pψ; σψ relève ψ.

De la résolution projective

• • • β0 -→A ⊗n+1 /∆ n β0 -→ • • • • • • β0 -→A ε -→Z-→0, il résulte que H * (G, k) est la cohomologie du complexe C 1 σ (G, k) β -→C 2 σ (G, k) β -→ • • • • • • β -→C n+1 σ (G, k) β -→ • • • où C * σ (G, k) est le sous-complexe de C * G (G, k) des fonctions nulles sur ∆ * . Comme toute forme linéaire alternée est totalement antisymétrique, si ϕ ∈ C n+1 σ (G, k), ∀γ ∈ S n+1 , ϕ(g γ(0) ⊗ • • • ⊗ g γ(n) ) = ε(γ)ϕ(g 0 ⊗ • • • ⊗ g n ).
En particulier ϕ(g 0 ⊗ • • • ⊗ g n ) = 0 dès que g i = g j pour deux indices distincts. On appelle cette résolution la résolution normale.

σβϕ(g 0 ⊗ • • • ⊗ g n ) = 1 (n + 1)! i, γ (-1) i ε(γ)ϕ(g γ(0) ⊗ • • • ⊗ g γ(i) ⊗ • • • ⊗ g γ(n+1) ) En considérant γ-→ i n+1 ... ... n+1 n • γ • γ(i) γ(i)+1 ... ... n+1 γ(i) [0,n]
, il vient σβ = βσ et donc ϕ est cohomologue à σϕ. NB Si l'on muni G d'une relation de bon ordre telle que 1 soit le plus grand élément, ϕ ∈ C n+1 σ (G, k) est entièrement déterminée par ses valeurs sur les

n + 1-uplés g 0 < • • • < g n = 1. Plus précisément, si A n+1 = {g 0 < • • • < g n = 1} muni de la différentielle β0 (g 0 < • • • < g n = 1) = β ′ (g 0 ⊗ • • • ⊗ g n ) + (-1) n ε(η)g n-1 -1 g η(0) ⊗ • • • ⊗ 1 (η est la permutation qui classe g n-1 -1 g 0 , • • • , g n-1 -1 g n-1 ), la restriction C n+1 σ (G, k)-→C(A n+1 , k)
est un isomorphisme de complexes. NB On remarquera qu'à travers cette résolution, on voit que H n (G, k) s'injecte dans HC n (G, k).

Plus précisément, B :

H * (G, k) -→ HC * +1 (G, k) est nul. De plus, si ϕ ∈ H n (G) est totalement antisymétrisé, il se relève en ϕ dans H n λ (G). De la suite exacte 0-→H n-2 λ (G) S -→H n λ (G) I -→H n (G) B -→0
, on tire:

Proposition 3 HC n (G, k) = ⊕ i≥0 S i H n-2i (G, k) ≃ ⊕ i≥0 H n-2i (G, k) Notations Etant donné une cochaine ϕ, on notera ϕ(• • •) sa réalisation homogène, ϕ[. . .] sa réalisation inhomogène et ϕ{. . .} sa présentation dans C n+1 (k[G]).
Si x est un point du groupe G, on note x sa classe de conjugaison, G x son centralisateur et {x} le sous-groupe engendré par x.

Décomposition de HH * (k[G])

Définition 4 On définit le groupoïde Ad(G) dont les objets sont les éléments du groupe et Hom(g

1 , g 2 ) = {α ∈ G | α -1 g 1 α = g 2 }.
Sur le complexe simplicial Ad(G) ( * ) , on a les diférentielles :

d i (g 0 α1 -→ • • • αn -→g n ) = (g 0 α1 -→ • • • g i-1 αiαi+1 -→ g i+1 • • • αn -→g n ) α i+1 • α i = α i α i+1 . Si ψ : Ad(G) (n) → k, on lui associe r(ψ) : G n+1 → k x 0 ⊗ • • • ⊗ x n → ψ(g 0 x1 -→ • • • xn -→g n ) avec g 0 = (x 1 • • • x n )x 0 , g i = x i -1 g i-1 x i .
Il est immédiat de vérifier que r est un isomorphisme de complexes, d'où

Proposition 4 HH * (k[G]) = H * (Ad(G), k) Ad(G) ( * ) = x∈<G> Ad(G, x) ( * ) où Ad(G, x) est la sous-catégorie de Ad(G)
dont on réduit l'ensemble des objets à x. On peut remarquer que si x = ŷ, Hom(x, y) = ∅. Donc si l'on note G x le centralisateur de x dans G, Ad(G x ) est une sous-catégorie pleine de Ad(G, x). L'inclusion simpliciale Ad(G x ) ( * ) ⊂ Ad(G, x) ( * ) est donc une équivalence d'homotopie. Il en résulte : 

Proposition 5 HH * (k[G]) = x∈<G> H * (G x , k).
• ε A = ε B • α. Sur C ( * ) , on définit λ(A 0 α1 -→ • • • αn -→A n ) = (-1) n A n α0 -→A 0 α1 -→ • • • αn-1 -→ A n-1 où α 0 = ε A0 • (α n • • • • • α 1 ) -1 = (α n • • • • • α 1 ) -1 • ε An . On peut alors voir un n- simplexe comme un chemin fermé (pointé) indexé par Z/nZ A n α0 -→A 0 α1 -→ • • • αn -→A n avec α n • • • • α 0 = ε An .
On adjoint une structure cyclique à la catégorie Ad(G) en posant ε g = g; on a:

λ 0 (g 0 α1 -→ • • • αn -→g n ) = (-1) n g n α0 -→g 0 α1 -→ • • • αn-1 -→ g n-1 où α 0 = (α 1 • • • α n ) -1
g 0 (cela correspond à la permutation circulaire sur les indices si on regarde les n-simplexes comme des chemins fermés).

Soit C n+1 (k[G x ],
x) l'ensemble des fonctions définies sur 

{x 0 ⊗ • • • ⊗ x n ∈ G n+1 tel que x 0 • • • x n = x}. Si C ( * ) (Ad(G)) désigne l'ensemble des applications de C ( * ) (Ad(G)) dans k, l'isomorphisme r : C ( * ) (Ad(G))-→C * +1 (k[G]) consiste
(k[G], 1) = ⊕ i≥0 H n-2i (G, k) Si x est d'ordre fini n, soit K = {x} le sous-groupe engendré par x. Si k est un Q-module, pour tout Z[G]-module M , on a Hom Z[G] (M, k) = Hom Q[G] (Q ⊗ Z M, k), donc H * (G, k) = Ext * Q[G] (Q, k). Q vu comme Q[K]
-module muni de l'action triviale admet la résolution projective suivante:

• • • Nτ -→Q[K] 1-τ -→Q[K] Nτ -→ • • • 1-τ -→Q[K] ε -→Q-→0 avec τ x k = x k+1 et N τ = 1 + τ + • • • + τ n-1 N τ et 1 -τ sont premiers entre eux donc H n (K, k) = k si n = 0 0 sinon car H * (K, k) est la cohomologie du complexe k 0 -→k n id -→k 0 -→k-→ • • • NB En fait, comme k est un Q-module, k = Q[K] ⊗ Z[K] k est Z[K]-injectif. On pose Γ x = G x /{x}. Soit p le projecteur 1 n n-1 i=0 x i de Q[G] : il vérifie ε(p) = 1 et pa = ε(a)p pour tout a ∈ Q[K]. Si ϕ ∈ Hom Q[Gx] (Q[G x ] n+1 , k), on définit sϕ ∈ Hom Q[Γx] (Q[Γ x ] n+1 , k) par sϕ(y 0 ⊗ • • • ⊗ y n ) = ϕ(x 0 ⊗ • • • ⊗ x n ) = ϕ(px 0 ⊗ • • • ⊗ px n ) où x i relève y i dans G x ; c'est indépendant du choix d'un tel relèvement.
Donc s réalise un isomorphisme en cohomologie de Hochschild. On en déduit en cohomologie cyclique l'isomorphisme

HC * (k[G], x) = HC * (Ad(G x , x)) = HC * (Ad(Γ x , 1)) . Proposition 7 Si x ∈< G > ′ , HC n (k[G x ], x) = ⊕ i≥0 H n-2i (Γ x , k).

x d'ordre infini

On se donne un élément x ∈ G tel que x ∈< G > ′′ .

Soit π :

H n (k[Γ x ], 1)-→H n λ (k[G x ], x) qui à ψ ∈ H n (Γ x ) associé π(ψ) : g 0 ⊗ • • • ⊗ g n -→δ g0•••gn,1 ψ( ġ0 ⊗ • • • ⊗ ġn ). Proposition 8 π : H n (k[Γ x ], 1)-→HC n (k[G x ], x) est un isomorphisme. • π est surjective ⋆ Si ϕ est un cocycle dans C n+1 λ (k[G], x), ϕ est cohomologue à un cocycle normalisé ψ (i-e tel que ψ(• • •) soit totalement antisymétrisé): en effet, C n+2 (k[G x ], x) B -→C n+1 (k[G x ]) vérifie ImB = C n+1 λ et si φ ∈ C n+2 (k[G x ], x) est un cocycle totalement anti- symétrisée , x 0 . . . x n = x, g i = x 0 . . . x i Bφ{x 0 ⊗ • • • ⊗ x n }= n i=0 (-1) n(n-i) φ(g i ⊗ g i+1 ⊗ • • • ⊗ g n ⊗ xg 0 ⊗ • • • ⊗ xg i ) = (-1) n+1 n i=0 (-1) i φ(xg 0 ⊗ • • • ⊗ xg i ⊗ g i ⊗ • • • ⊗ g n ) ⋆ De la résolution 0-→Z[{x}] x-1 -→Z[{x}] ε -→Z-→0, on tire H n (Z, k) = k si n = 0 0 si n > 0 ⋆ Si ϕ ∈ C n+1 λ (k[G x ],
x) est un cocycle normalisé et g 0 , , . . . , g n ∈ G x , on définit θ ∈ H n (Z, k) par 

θ(k 0 ⊗ • • • ⊗ k n ) = ϕ(x k0 g 0 ⊗ • • • ⊗ x kn g n ) Il existe η ∈ C n Z (Z,
⊗ • • • ⊗ g n ) = ϕ(x -1 g n ⊗ • • • ⊗ g n-1 ), il vient θ(k 0 ⊗• • •⊗k n ) = (-1) n θ(k n ⊗k 0 ⊗• • •⊗k n-1 ) = (-1) n θ(k n -1⊗k 0 ⊗• • •⊗k n-1 ). Donc ϕ{x 0 x k0 , • • • , x n x kn } = ϕ{x 0 , • • • , x n } si k i = 0.
Si les éléments y 0 , . . . , y n de Γ x se relèvent en x 0 , . . . , x n dans G x tels que x 0 • • • x n = x; on pose alors ψ{y 0 , . . . , y n } = ϕ{x 0 , . . . , x n } ; c'est indépendant du choix de tels relèvements et π(ψ) = ϕ dans H n λ (k[G x ], x). • π est injective Si ψ ∈ H n (k[Γ x , 1) est tel que π(ψ) soit un cobord, on peut toujours supposer π(ψ) = bB(ϕ).

Décomposition

Theorème 1 Si G est un groupe discret,

HC n (C[G]) = x∈<G> ′ ⊕ i≥0 H n-2i (Γ x , C) x∈<G> ′′ H n (Γ x , C) .
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  isomorphisme, b et t se transforment respectivement en d et λ. On a donc Proposition 2 Si G est un groupe discret, HC * (G, k) est un facteur direct de HC * (k[G])
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  Décomposition de HC * (k[G]) 3.1 Groupoïde cyclique Définition 5 Etant donné un groupoïde C, mettre une structure cyclique sur C correspond à se donner ε A ∈ Hom(A, A) pour tout objet A ∈ C. On astreint alors les morphismes α ∈ Hom(A, B) à vérifier la relation α

  à regarder les cochaines définies comme des chemins fermés au niveau des morphismes (r commute à d et λ). NB La résolution normalisée n'ext pas stable par λ 0 . Enfin, l'inclusion Ad(G x , x) ( * ) ⊂ Ad(G, x) ( * ) induit une équivalence d'homotopie entre catégories cycliques. Proposition 6 HC * (k[G]) = x∈<G> HC * (Ad(G x , x)) = x∈<G> HC * (k[G x ], x) 3.2 x d'ordre fini Si x = 1, d'après les résultats du paragraphe 1.4, HC n

  k) tel que θ = bη = bση = σbη (il est d'ailleurs facile de voir que si η est totalement antisymétrisée, τ i,i+1 bη = -bη , d'où σbη = bη). En utilisant λϕ(g 0

le complexe D * +1 n'est pas stable par β ′ 0 et λ 0 .