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Abstract. We show that a single particle distribution for the “energy-conserving”
D2Q13 lattice Boltzmann scheme can simulate coupled effects involving advection and
diffusion of velocity and temperature. We consider various test cases: non-linear waves
with periodic boundary conditions, a test case with buoyancy, propagation of transverse
waves, Couette and Poiseuille flows. We test various boundary conditions and propose
to mix bounce-back and anti-bounce-back numerical boundary conditions to take into
account velocity and temperature Dirichlet conditions. We present also first results for
the de Vahl Davis heated cavity. Our results are compared with the coupled D2Q9-D2Q5
lattice Boltzmann approach for the Boussinesq system and with an elementary finite
differences solver for the compressible Navier-Stokes equations. Our main experimental
result is the loss of symmetry in the de Vahl Davis cavity computed with the single D2Q13
lattice Boltzmann model without the Boussinesq hypothesis. This result is confirmed by
a direct Navier Stokes simulation with finite differences.
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Introduction

• Lattice Boltzmann schemes have proven their efficiency for the computation of quasi-
incompressible flows. We refer e.g. to [2, 9, 11] among others. In these cases, the physical
conservations of mass and momentum are implemented in the framework of lattice Boltz-
mann schemes. When compressible effects are taken into account, it is necessary to
add the conservation of energy. A classical approach is to begin with weakly compress-
ible effects that can be modelled with the so-called Boussinesq approximation. In this
case, the incompressibility condition remains a good approximation and coupled effects
between conservations of momentum and energy are taken into account with a precise
thermodynamical analysis. We refer to Landau [14] or Batchelor [1] for the derivation of
the Boussinesq approximation. The implementation of the Boussinesq approximation is
possible with the lattice Boltzmann approach with the introdution of two particle distri-
butions. This idea has been also proposed in the context of finite volumes by the team of
Perthame [10], and with lattice Boltzmann schemes by Eggels and Somers [5], Mezrhab
et al [16] and Wang et al [21] among others.

• In this contribution, we study a direct approximation of the compressible Navier
Stokes equations with an “energy-conserving” lattice Boltzmann scheme using a single
particle distribution. A first tentative study [12] has shown that for a critical value of
the Prandlt number, the thermal wave and the viscous one merge together, the physics
is badly represented and an instability occurs in general. In consequence, no satisfying
compressible flows have been obtained with this direct numerical modelling. In a second
tentative [13], we have analyzed with great details several lattice Boltzmann schemes
with four conservation laws in two space dimensions. With an adequate fitting of the
parameters of the scheme, it is possible to enlarge the zone in the spectral space where the
thermal and viscous waves remain decoupled. Moreover, these parameters guarantee also
the isotropy of the acoustic waves. Our objective is to enlarge the domain of validity of our
previous study: incorporate the treatment of boundary conditions with rigid walls with a
given temperature or adiabatic boundaries, study several couplings between velocity and
temperature for elementary Couette and Poiseuille flows, study the possibility of Dirichlet
and Neumann boundary conditions. Finally, our objective is the simulation of the de Vahl
Davis test case [20] described in Figure 1.

• The outlook of the article is the following. In Section 1, we recall fundamental aspects
of the coupled D2Q9-D2Q5 lattice Boltzmann approach. We present our actual choices
for the implementation of the lattice Boltzmann approach with the D2Q13 stencil and to
treat all the physical fields with single particle distribution and the D2Q13 scheme. In
Section 3, we develop a very elementary finite-difference approach for the compressible
Navier-Stokes equations. With this tool, we can compare our new D2Q13 approach with
a classical reference. In Section 4, we consider a simple test case for non-linear waves. We
study the buoyancy in Section 5, the propagation of transverse waves in Section 6, the
simulation of Couette flows in Section 7 and Poiseuille flows in Section 8. In Section 9,
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we consider a test case to take into account various temperature and flux-type boundary
conditions. First results for the de Vahl Davis heated cavity are presented in Section 10.

Figure 1. De Vahl Davis test case for natural convection

1) Coupled D2Q9-D2Q5 lattice Boltzmann scheme
• The Boussinesq approximation of the compressible Navier-Stokes equations can be
written as a system of coupled partial differential equations. The unknowns are the
vector field of velocity u, and the scalar fields of temperature T and pressure p. The
parameters are the shear viscosity ν, the temperature dissipation rate κ, the thermal
expansion coefficient β and g the Earth’s gravity. The buoyancy term (1−β (T −T0)) g

is a source term for the momentum equation and the velocity field u directly imposes
strong constraints for the transport of temperature. Assuming that the density is ρ = 1,
the equations of the Boussinesq system are

(1)


divu = 0 ,

∂u

∂t
+ u•∇u+∇p− ν4u =

(
1− β (T − T0)

)
g ,

∂T

∂t
+ u•∇T − κ4T = 0 .

The Rayleigh number is defined from the temperature difference ∆T ≡ T1−T0 between
the two sides according to

(2) Ra ≡
| g | β∆T L3

ν κ
.

• A difficult stationary test case is the computation of the velocity and temperature
fields for Ra = 106. The references are the original contribution of de Vahl Davis [20],
the Le Quéré [15] and the associated workshop in the 2000’s with various Navier-Stokes
solvers, the introduction of the D2Q9-D2Q5 coupled approximation by Mezrhab et al.
[16] and the very precise results of Wang et al [21] with the same approach.
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• Recall that the discrete velocities of a D2Q5 lattice Boltzmann scheme follow the axis
of coordinates:

(3) vj ∈ {(0, 0), (1, 0), (0, 1), (−1, 0), (0, −1)} , 0 ≤ j ≤ 4 .

For a D2Q9 scheme we add to the previous D2Q5 velocities (3) the four ones along the
diagonals:

(4) vj ∈ {(1, 1), (−1, 1), (−1, −1), (1, −1)} , 5 ≤ j ≤ 8 .

The flow is simulated with a D2Q9 lattice Boltzmann scheme with 3 conserved moments,
the density and the two components of the momentum:

(5) ρ ≡
8∑
j=0

fj , (jx , jy) ≡
8∑
j=0

vj fj .

The six other moments of the fluid are presented in the reference [11]. The equilibrium
values for the moments of order two have to take into account the compressible effects:

(6) Eeq = αρ+ 3
j2
x + j2

y

ρ
, XXeq =

j2
x − j2

y

ρ
, XY eq =

jxjy
ρ

.

The equilibrium properties either have no influence on the physical properties or are set
to give an isotropic shear viscosity. The sound velocity cs, the shear viscosity µ and the
bulk viscosity ζ are given from the previous equilibria according to

(7) cs =

√
4 + α

6
, µ =

1

3

( 1

sXX
− 1

2

)
, ζ = −α

( 1

sE
− 1

2

)
.

• The temperature is simulated with a simple D2Q5 scheme with only one conserved
moment

(8) T ≡
4∑
j=0

gj .

The other nontrivial equilibrium values follow the relations

(9) Eeq = β ρ , jeq
x = ρ Vx , jeq

y = ρ Vy , XXeq = 0 .

The diffusion coefficient κ is easy to identify:

(10) κ =
β + 4

10

( 1

sE
− 1

2

)
.

This D2Q5 model as defined does not satisfy the Galilean invariance with respect to
advection at uniform speed {Vx, Vy} (see Qian and Zhou [18]); the equivalent equation
for the D2Q5 scalar scheme is equal to
∂T

∂t
+ Vx

∂T

∂x
+ Vy

∂T

∂y
− κ4T +

( 1

sE
− 1

2

)(
V 2
x

∂2T

∂x2
+ 2Vx Vy

∂2T

∂x ∂y
+ V 2

y

∂2T

∂y2

)
= 0

and can be easily identified with the methods developed e.g. in [4].
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2) Compressible D2Q13 lattice Boltzmann scheme
• The stencil of the D2Q13 lattice Boltzmann scheme is built (see e.g. [12, 13]) on the
D2Q9 scheme with the following complementary velocity set:

(11) vj ∈ {(2, 0), (0, 2), (−2, 0), (0, −2)} , 9 ≤ j ≤ 12 .

A family of 13 orthogonal moments are generated by an elementary linear mapping of the
particle distribution fj:

mk =
12∑
j=0

Mkj fj .

The coefficients Mkj of the matrix are computed from the 13 velocities presented in (3),
(4) and (11) with the help of polynomials pk by the condition

(12) Mkj = pk(v
x
j , v

y
j ) , 0 ≤ j, k ≤ 8 .

The following set {pk} of polynomials are presented in (13) as combinations of monomials
of increasing power. They have been chosen as symmetric as possible and have been
orthogonalized. Instead of giving the final moment matrix, we give the “recipe” to build
it in terms of the components x ≡ vxj and y ≡ vyj of the 13 basic velocities.

(13)



scalars ρ 1
E −28 + 13 (x2 + y2)

ε 140 + (x2 + y2) (−361/2 + 77(x2 + y2)/2)

$ −12 + (x2 + y2)(581
12

+ (x2 + y2)(−273
8

+ 137
24

(x2 + y2)))

vectors jx x

jy y

qx x (3 + x2 + y2)

qy y (3 + x2 + y2)

rx x (101
6

+ (x2 + y2)(−63
4

+ 35
12

(x2 + y2)))

ry y (101
6

+ (x2 + y2)(−63
4

+ 35
12

(x2 + y2)))

tensors XX x2 − y2

XY x y

XXe (x2 − y2) (−65
12

+ 17
12

(x2 + y2)) .

• The collisions conserve two scalars ρ and E and two vector components jx and jy.
The equilibrium values of the other moments and the relaxation rates are constrained by
the result of a linearized analysis of the four hydrodynamic modes. The four modes show
isotropic behaviour for their attenuation and propagation velocity meaning that Galilean
invariance is achieved. The equilibrium expressions can be taken as simple functions of
the conserved variables that have the same symmetry properties. The choice of linear and
quadratic expressions leads to:

(14)


qeq
x = jx (c1 + h1ρ+ k1E) , req

x = jx (c2 + h2ρ+ k2E) ,

εeq = cερ ρ+ cεE E , $eq = c$ρ ρ+ c$E E ,

XXeq =
j2x−j2y
ρ

, XY eq = jxjy
ρ
, XXeq

e = 0 .
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With this specific choice of εeq and $eq we introduce new parameters that give some
freedom to develop as in [13] a solution to the unphysical coupling observed in [12].

• Following Hénon [7], many formulae can be simplified using

(15) σi ≡
1

si
− 1

2
.

With an asymptotic analysis as the one presented in [13], we can recover the physical
waves : two acoustics, one transverse and one longitudinal diffusion. To satisfy correct
advection of these four waves in the presence on a uniform background velocity, the
following relationships have to be satisfied :

(16)


h1 =

17

26
− c1

2
− E0

13
, k1 =

2

13
,

h2 = −
( 39

2
+

13

2
c1 + E0

)
k2

− 7

624
(13 c1 + 95 + 2 E0)

874481 + 459459 c1 − 103428 cεE + 70686 E0

114404 + 51051 c1 − 11492 cεE + 7854 E0

for a situation with density equal to 1 and “energy" equal to E0. In order to enforce
isotropy at second order around a null velocity, we have to set

(17)



σqx = −1309

2

σXX (13 c1 + 95 + 2 E0)

114404 + 51051 c1 − 11492 cεE + 7854 E0

,

cερ = 140 + 28 cεE

+
(13 c1 + 95 + 2 E0) (114404 + 51051 c1 − 11492 cεE + 7854 E0)

22984 Pr
,

c2 = −65

24
− 21

8
(c1 + h1 + k1 E0)− k2 E0 − h2 .

These constraints leave as independent parameters : Pr, E0, c1, k2, cεE, c$ρ, c$E and the
relaxation rates sXX , srx, sε, s$ and sXXe. The free parameters are chosen to get a
stable scheme by computing the roots of the dispersion equation for several values of the
wave vector ranging from 0 to 2π in magnitude and several directions with respect to the
axis x and y. Our approach is heuristic and nothing a priori guaranties the L2 stability.

3) Navier Stokes solver for a compressible gas
• This approach starts from the conservation equations of mass and momentum:

(18)



∂

∂t
ρ+

∂

∂x
ρvx +

∂

∂y
ρvy = 0

∂

∂t
ρvx +

∂

∂x
ρvxvx +

∂

∂y
ρvxvy +

∂

∂x
P − ν4vx − ζ

∂

∂x

(
div v

)
= 0

∂

∂t
ρvy +

∂

∂x
ρvxvy +

∂

∂y
ρvyvy +

∂

∂y
P − ν4vy − ζ

∂

∂y

(
div v

)
= 0 .

We add also the conservation of total energy. We assume the fluid is a perfect gas, then
the pressure P is given according to

(19) P = ρRT
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and the internal energy per unit mass e is related to T by

(20) e =
RT

γ − 1
.

Then the evolution equation for the internal energy takes the form

(21)


∂

∂t
ρe+

∂

∂x
ρevx +

∂

∂y
ρevy + P

[ ∂
∂x
ux +

∂

∂y
uy

]
− κ
[ ∂2

∂x2
T +

∂2

∂y2
T
]

−ν
[( ∂
∂x
ux −

∂

∂y
uy

)2

+
( ∂
∂x
uy +

∂

∂y
ux

)2]
− ζ

( ∂
∂x
ux +

∂

∂y
vy

)2

= 0 .

• A linearized analysis gives the propagation and damping of the four hydrodynamic
modes. We deduce an algebraic expression for the sound velocity cs, the relaxation ντ of
the transverse mode, the relaxation νdiff of the diffusive mode, and the damping νacous of
the sound modes:

(22) cs =
√
γRT , ντ = ν , νdiff = κ

γ − 1

Rγ
, νacous =

1

2
(ν + ζ) +

(γ − 1)2

2Rγ
.

The non-linear terms allow to show that a uniform advection speed {Vx, Vy} leads to phase
shifts compatible with Galilean invariance.
• The model can be approximately simulated with simple finite difference expressions
for the space derivatives. We have developed a compressible Navier-Stokes solver for the
numerical resolution of the mathematical model (18) - (21). We use a cell vertex approach
(with the nomenclature of Roache [19]). All the differential operators are discretized with
centered finite differences. The discrete evolution in times is obtained with an elemen-
tary forward Euler first order explicit scheme. The Dirichlet boundary conditions for
velocity and temperature are implemented in a clear way by forcing the given value on
the boundary node vertex. For the adiabatic wall where ∂T

∂n
is null, a Neumann homo-

geneous boundary condition is enforced with mirror techniques decribed in the classical
reference [19].

4) A simple test case
• This test case has been studied in our contribution [13]. The domain is a Nx × Ny

rectangle with periodic boundary conditions. This test case is error-free as far as boundary
conditions are concerned. The initial condition is a fluid at rest: Vx = Vy = 0. The initial
temperature T (x, y) = T0 + δT0 cos k•x is associated with a wave number k = 2πK/Nx.
Then density, pressure or energy are such that no acoustic wave is excited. This is possible
with the following conditions:

(23)


For D2Q9-D2Q5 : ρ = 1 ,

For D2Q13 : ρ = 1− 28 (T (x, y)− T0) ,

For Navier Stokes : P = RT0 , ρE = P
γ−1

+
ρ (V 2

x +V 2
y )

2
.

One verifies that T (x, y, t) relaxes exponentially in time.
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5) Buoyancy

Figure 2. Buoyancy flow with the compressible Navier-Stokes solver. The nonlinear
exchanges between temperature and density are not affected by the gravity.

• For the first scheme D2Q9-D2Q5 we simulate buoyancy by adding a vertical force (Vy)
proportional to T − T0. For the D2Q13 scheme and the direct approach of Navier-Stokes
equations with finite differences, we add vertical force in the Vy momentum equation
proportional to ρ − ρ0. Then the vertical speed increases approximately linearly with
time and there is essentially no horizontal velocity. With the Navier-Stokes solver, we use
a domain composed by 510 mesh points in width, and periodic in height. The temperature
is periodic relative to the x direction. With the D2Q13 lattice Boltzmann solver, we use
the same domain as previously: a domain of 510 meshes in width and periodic in height,
with an (initial) temperature periodic in x (see Fig. 3).

Figure 3. Buoyancy flow with the D2Q13 direct lattice Boltzmann solver. The non-
linear exchanges between temperature and density are not affected by the gravity.
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6) Transverse waves
• With the D2Q13 stencil, the non linear behaviour for transverse waves is operating
as follows. The initial conditions vy(x, y, 0) ≡ Vy0 cos kx leads to density waves of wave
vector 2k. We modify the initial conditions by ρ(x, y, 0) = ρ0 +a vy(x, y, 0)2. We measure
the following global agregates relative to time:

(24) Ṽy(t) =
∑
x

vy cos(k x) , ρ̃(t) =
∑
x

ρ cos(2 k x) , Ẽ(t) =
∑
x

E cos(2 k x) .

The typical result for D2Q13 is summarized in Fig. 4: the growth of Ẽ in time is propor-
tional to ν k2 V 2

y .

Figure 4. Transverse waves with the D2Q13 direct lattice Boltzmann solver. The
growth of Ẽ in time is proportional to ν k2 V 2

y .

• The interpretation of this evolution can be stated as follows. The linearized equivalent
equations at order 1 with space derivatives can be written in matrix form

(25)
∂t ∂r 0

(14
13

+ 1
2
V 2) ∂r ∂t

1
26
∂r

0 1
2
(39 + 13c1 + 2E0) ∂r ∂t

= 0 .

Without advective velocity, the diffusive mode is (1, 0, −28)t id est E = −28 ρ. With
a transverse velocity V , the diffusive mode is equal to (1, 0, −28 − 13V 2)t, id est
E = −28 ρ̃ with a density ρ replaced by ρ̃ ≡ 1 + 13

28
V 2.

7) Couette flows
• Typical boundary conditions for Couette flows with the D2Q9-D2Q5 scheme are
stated as follows. For x = 1 and x = Nx the velocity is known: Vx = 0 and Vy is given.
This type of boundary condition is classically achieved by a “bounce-back” condition.
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Assuming a zero value for the mean temperature, for x = 1 the temperature is imposed:
T = +∆T and when x = Nx it has the opposite sign: T = −∆T for x = Nx . This
boundary condition is achieved by an “anti-bounce-back” as proposed by Ginzburg [6]. In
consequence, the way we implement the boundary conditions is not straightforward. For
the unit velocities with non-zero component parallel to the boundary, we use a bounce-
back boundary condition. For the other velocities, an “anti-bounce-back” is implemented.
We consider for example:
(26) f1 + f3 = 2 (pρ ρ+ pXX XX + pE E)

with E and XX imposed and ρ estimated by extrapolation from values measured in the
fluid.

Figure 5. Mixed “bounce-back” and “anti-bounce-back” boundary conditions for a
flow simulated with the D2Q13 lattice Boltzmann scheme. In this case, both velocity and
temperature are imposed.

Figure 6. Couette flow with the D2Q9-D2Q5 coupled scheme. Result for the temper-
ature field without motion of the lateral plates.
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• With the coupled D2Q9-D2Q5 scheme, the density is unchanged (see Fig. 6). For the
discretization of the compressible Navier Stokes equations, the pressure remains constant.
Then, due to the equation of state (19), the variation of density and temperature are
coupled. This effect is clearly visible in the Fig. 7 (direct Navier Stokes solver) With the
D2Q13 lattice Boltzmann scheme, the internal energy e (proportional to the temperature)
can be recovered thanks to the relation e = E − 13

2
(V 2

x + V 2
y ) as displayed in Fig. 8.

Figure 7. Couette flow with a finite difference direct Navier-Stokes solver. Same result
for the temperature field without motion of the plates.

Figure 8. Couette flow with the D2Q13 lattice Boltzmann solver. The dashed curves
show the “temperature” T ≡ E − 13

2
(V 2

x + V 2
y ). There is no variation of the temperature

when no gradient is imposed between the plates.
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8) Poiseuille flow
• A Poiseuille flow is realized by adding an external term to take into account the
gradient of pressure. Then a parabolic velocity profile is obtained as usual. Moreover, we
add a Couette-type temperature profile between the lateral plates. In all our simulations,
we do not observe any variation of the temperature when no gradient is imposed between
the plates. Moreover, when a gradient of temperature is imposed, we observe a regular
evolution of the temperature without destruction of the parabolic profile.

Figure 9. Poiseuille flow with the D2Q9-D2Q5 coupled scheme. No variation of the
temperature when no gradient is imposed between the plates.

Figure 10. Poiseuille flow with a finite difference direct Navier-Stokes solver. No
variation of the temperature when no gradient is imposed between the plates.
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Figure 11. Poiseuille flow with the D2Q13 lattice Boltzmann scheme. No variation of
the temperature when no gradient is imposed between the plates.

9) Test of an adiabatic boundary for the D2Q13 scheme

Figure 12. Test of an adiabatic boundary with the D2Q13 lattice Boltzmann solver.
A uniform source of energy is applied. The y-velocity is null when the left boundary is
fixed. The other fields are unchanged.

• In order to implement correctly a null flux Neumann boundary condition relative
to the temperature, we have tested our schemes for a uniform volumic source of energy.
A homogeneous temperature given at the left boundary and a homogeneous Neumann
condition for temperature at the right boundary. At the left boundary the velocity is
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given as homogeneous or inhomogeneous: vy = 0 or vy = 0.02. We impose a null velocity
at the right boundary. The solution is a “semi-parabol” and is correctly simulated as
decribed in Fig. 12.

10) Thermal test case of de Vahl Davis
• The de Vahl Davis [20] test has been described in the introduction. We have used
a 187 × 187 domain with a Prandtl number equal to 0.71 with the lattice Boltzmann
simulations and a grid with 256× 256 mesh points. For the simple Navier-Stokes solver
with finite differences, we have used 128×128, 196×196 and 256×256 mesh sizes. The
results for the mean Nusselt number is respectively equal to 4.5099, 4.5154 and 4.5157
for a Rayleigh number equal to 105. Our results are globally summarized in the following
table. Simulations have been done on graphics card and implemented with Cuda. We
do not have precise comparisons of execution times between the two lattice Boltzmann
models. We estimate the overhead to be roughly + 20 % for D2Q13 compared to the
coupled D2Q9-D2Q5.

Figure 13. De Vahl Davis thermal test case for natural convection with the D2Q13
direct lattice Boltzmann solver. Rayleigh number = 105. Iso-velocity curves for the
modulus of the fluid speed. The maximum velocity is 5.5 10−3.
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Rayleigh de Vahl Davis Le Quéré Mezrhab D2Q9-D2Q5 Navier Stokes D2Q13
105 4.519 4.521 4.521 4.51 4.50
106 8.800 8.8252 8.824 8.828 8.88 8.73

Table 1. Comparison of Nusselt number integrated in the whole cavity for two Rayleigh
numbers.

Figure 14. De Vahl Davis thermal test case for natural convection with the D2Q13
direct lattice Boltzmann solver. Rayleigh number = 105. Modulus of the asymmetry of
the fluid speed. Modulus of the asymmetry of the Fluid Speed. Curves for the departure
from center symmetry. The maximum difference of velocity |V (x, y) + V (x0 − x, y0 − y)|
is 0.28 10−3 (5 %).

• We have compared our results with those of de Vahl Davis [20], Le Quéré [15], Mezhrab
et al. [16], Wang et al. [21] with the coupled approach D2Q9-D2Q5 and our simple finite
differences Navier-Stokes solver. The results “D2Q13” obtained with a single particle
distribution are correct but must be considered as preliminary compared to the other
results. Inspection of the thermal and velocity fields obtained with the D2Q9-D2Q5
shows that they are symmetric with respect to the center of the cavity. Similar inspection
for the fields obtained either with D2Q13 or the simple compressible Navier-Stokes code
used here show disymmetries that increase with the Rayleigh number. A detailed analysis
of these asymmetries will be performed later and checked with data obtained with more
sophisticated Navier-Stokes codes.





Pierre Lallemand and François Dubois

Conclusion
In this contribution, we have shown that coupled fluid and thermal flows that charac-

terize natural convection can be simulated in two space dimensions with a single D2Q13
lattice Boltzmann scheme by imposing the conservation of mass, momentum and energy.
We have tested our approach by a progressive complexification of the test cases. Observe
that strong compressible effects including the simulation of shock waves have not been
considered in this contribution. The de Vahl Davis test case for natural convection gives
encouraging results when we compare our result to previous ones obtained with a D2Q9-
D2Q5 coupled approach or with a direct simulation of the compressible Navier Stokes
equations with finite differences. Our results show that a lattice Boltzmann model with
a single D2Q13 distribution that conserves mass, momentum and energy gives results
that compare better to direct Navier-Stokes simulations with finite differences than with
simulations obtained with the Boussinesq approximation. Nevertheless, complementary
studies are necessary to improve this method of simulation and confirm our results.
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