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Abstract. We show that a single particle distribution for the D2Q13 lattice Boltz-
mann scheme can simulate coupled effects involving advection and diffusion of velocity
and temperature. We consider various test cases: non-linear waves with periodic bound-
ary conditions, a test case with buoyancy, propagation of transverse waves, Couette and
Poiseuille flows. We test various boundary conditions and propose to mix bounce-back
and anti-bounce-back numerical boundary conditions to take into account velocity and
temperature Dirichlet conditions. We present also first results for the de Vahl Davis
heated cavity. Our results are compared with the coupled D2Q9-D2Q5 lattice Boltzmann
approach for the Boussinesq system and with an elementary finite differences solver for
the compressible Navier-Stokes equations.
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Introduction

• Lattice Boltzmann schemes have proven their efficiency for the computation of quasi-
incompressible flows. We refer e.g. to [2, 7, 9] among others. In these cases, the physical
conservations of mass and momentum are implemented in the framework of lattice Boltz-
mann schemes. When compressible effects are taken into account, it is necessary to
add the conservation of energy. A classical approach is to begin with weakly compress-
ible effects that can be modelled with the so-called Boussinesq approximation. In that
case, the incompressibility condition remains a good approximation and coupled effects
between conservations of momentum and energy are taken into account with a precise
thermodynamical analysis. We refer to Landau [12] or Batchelor [1] for the derivation of
the Boussinesq approximation. The implementation of the Boussinesq approximation is
possible with the lattice Boltzmann approach with the introdution of two particle distri-
butions. This idea has been also proposed in the context of finite volumes by the team
of Perthame [8], and with lattice Boltzmann schemes by Shan and Chen [18], Dellar [3],
Mezrhab et al [14] and Wang et al [20] among others.

• In this contribution, we study a direct approximation of the compressible Navier
Stokes equations with a lattice Boltzmann scheme using a single particle distribution.
A first tentative [10] has shown that for a critical value of the Prandlt number, the
thermal wave and the viscous one merge together, the physics is badly represented and an
instability occurs in general. In consequence, no satisfying compressible flows have been
obtained with this direct numerical modelling. In a second tentative [11], we have analyzed
with great details several lattice Boltzmann schemes with four conservation laws in two
space dimensions. With a adequate fitting of the parameters of the scheme, it is possible
to enlarge the zone in the spectral space where the thermal and viscous waves remain
decoupled. Moreover, these parameters guarantee also the isotropy of the acoustic waves.
Our objective is to enlarge the domain of validity of our previous study: incorporate the
treatment of boundary conditions with rigid walls with a given temperature or adiabatic
boundaries, study several couplings between velocity and temperature for elementary
Couette and Poiseuille flows, study the possibility of Dirichlet and Neumann boundary
conditions. Finally, our objective is the simulation of the de Vahl Davis test case [19]
described in Figure 1.

• The outlook of the article is the following. In Section 1, we recall fundamental aspects
of the coupled D2Q9-D2Q5 lattice Boltzmann approach. We present our actual choices
for the implementation of the lattice Boltzmann approach with the D2Q13 stencil and to
treat all the physical fields with single particle distribution and the D2Q13 scheme. In
Section 3, we develop a very elementary finite-difference approach for the compressible
Navier-Stokes equations. With this tool, we can compare our new D2Q13 approach with
a classical reference. In Section 4, we consider a simple test case for non-linear waves. We
study the buoyancy in Section 5, the propagation of transverse waves in Section 6, the
simulation of Couette flows in Section 7 and Poiseuille flows in Section 8. In Section 9,
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we consider a test case to take into account various temperature and flux-type boundary
conditions. First results for the de Vahl Davis heated cavity are presented in Section 10.

Figure 1. De Vahl Davis test case for natural convection

1) Coupled D2Q9-D2Q5 lattice Boltzmann scheme

• The Boussinesq approximation of the compressible Navier-Stokes equations can be
written as a system of coupled partial differential equations. The unknowns are the
velocity u, the temperature T and the pressure p. The parameters are the shear viscosity
ν, the temperature dissipation rate κ, the thermal expansion coefficient β and g the
Earth’s gravity. The buoyancy term (1−β (T −T0)) g is a source term for the momentum
equation and the velocity field u directly imposes strong constraints for the transport of
temperature. The equations of the Boussinesq system are

(1)



















divu = 0 ,
∂u

∂t
+ u•∇u+∇p− ν△u =

(

1− β (T − T0)
)

g ,

∂T

∂t
+ u•∇T − κ△T = 0 .

The Rayleigh number is defined according to

(2) Ra ≡
| g | β∆T L3

ν κ
.

• A difficult stationary test case is the computation of the velocity and temperature
fields for Ra = 106. The references are the original contribution of de Vahl Davis [19],
the Le Quéré [13] and the associated workshop in the 2000’s with various Navier-Stokes
solvers, the introduction of the D2Q9-D2Q5 coupled approximation by Mezrhab et al.

[14] and the very precise results of Wang et al [20] with the same approach.
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• Recall that the discrete velocities of a D2Q5 lattice Boltzmann scheme follow the axis
of coordinates:

(3) vj ∈ {(0, 0), (1, 0), (0, 1), (−1, 0), (0, −1)} , 0 ≤ j ≤ 4 .

For a D2Q9 scheme we add to the previous D2Q5 velocities (3) the four ones along the
diagonals:

(4) vj ∈ {(1, 1), (−1, 1), (−1, −1), (1, −1)} , 5 ≤ j ≤ 8 .

The flow is simulated with a D2Q9 lattice Boltzmann scheme with 3 conserved moments,
the density and the two components of the momentum:

(5) ρ ≡
8

∑

j=0

fj , (jx , jy) ≡
8

∑

j=0

vj fj .

The six other moments of the fluid are presented in the reference [9]. The equilibrium
values for the moments of order two have to take into account the compressible effects:

(6) Eeq = αρ+ 3
j2x + j2y

ρ
, XXeq =

j2x − j2y
ρ

, XY eq =
jxjy
ρ

.

The equilibrium values of the three last moments have no influence on the physical prop-
erties. The sound velocity cs, the shear viscosity µ and the bulk viscosity ζ are given
from the previous equilibria according to

(7) cs =

√

4 + α

6
, µ =

1

3

( 1

sXX

−
1

2

)

, ζ = −α
( 1

sE
−

1

2

)

.

• The temperature is simulated with a simple D2Q5 scheme with only one conserved
moment

(8) T ≡
4

∑

j=0

gj .

The other nontrivial equilibrium values follow the relations

(9) Eeq = β ρ , jeqx = ρ Vx , jeqy = ρ Vy .

The diffusion coefficient κ is easy to identify:

(10) κ =
β + 4

10

( 1

sE
−

1

2

)

.

This D2Q5 model as defined does not satisfy the Galilean invariance with respect to
advection at uniform speed {Vx, Vy} (see Qian and Zhou [16]); the equivalent equation
for the D2Q5 scalar scheme is equal to

∂T

∂t
+ Vx

∂T

∂x
+ Vy

∂T

∂y
− κ△T +

( 1

sE
−

1

2

)(

V 2
x

∂2T

∂x2
+ 2Vx Vy

∂2T

∂x ∂y
+ V 2

y

∂2T

∂y2

)

= 0

and can be easily identified with the methods developed e.g. in [5].
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2) Compressible D2Q13 lattice Boltzmann scheme

• The stencil of the D2Q13 lattice Boltzmann scheme is built (see e.g. [10, 11]) on the
D2Q9 scheme with the following complementary velocity set:

(11) vj ∈ {(2, 0), (0, 2), (−2, 0), (0, −2)} , 9 ≤ j ≤ 12 .

A family of 13 orthogonal moments are generated by the condition

(12) mk = pk(vj) , 0 ≤ j, k ≤ 8 ,

with the following set {pk} of polynomials

(13)



































































































scalars ρ 1
E −28 + 13 (x2 + y2)

ǫ 140 + (x2 + y2) (−361/2 + 77(x2 + y2)/2)

̟ −12 + (x2 + y2)(581
12

+ (x2 + y2)(−273
8

+ 137
24
(x2 + y2)))

vectors jx x

jy y

qx x (3 + x2 + y2)

qy y (3 + x2 + y2)

rx x (101
6

+ (x2 + y2)(−63
4
+ 35

12
(x2 + y2)))

ry y (101
6

+ (x2 + y2)(−63
4
+ 35

12
(x2 + y2)))

tensors XX x2 − y2

XY x y

XXe (x2 − y2) (−65
12

+ 17
12
(x2 + y2)) .

• The collisions conserve two scalars ρ and E and two vector components jx and jy.
The equilibrium values of the other moments and the relaxation rates are constrained
by the result of a linearized analysis of the four hydrodynamic modes. The four modes
show isotropic behaviour for their attenuation and propagation velocity meaning that
Galilean invariance is achieved. In this contribution, we search the equilibrium values of
the relevant moments with the following framework:

(14)











qeqx = jx (c1 + h1ρ+ k1E) , reqx = jx (c2 + h2ρ+ k2E) ,

ǫeq = cǫρρ+ cǫEE , ̟eq = c̟ρρ+ c̟EE ,

XXeq =
j2
x
−j2

y

ρ
, XY eq = jxjy

ρ
, XXeq

e = 0 .

• With a classical notation for the Hénon coefficient:

(15) σi ≡
1

si
−

1

2
,

we can recover the physical waves : two acoustics, one transverse and one longitudinal
diffusion:

(16)























h1 =
17

26
−

c1
2
−

E0

13
, k1 =

2

13
,

h2 = −
( 39

2
+

13

2
c1 + E0

)

k2 ,

−
7

624
(13 c1 + 95 + 2 E0)

874481 + 459459 c1 − 103428 cǫE + 70686 E0

114404 + 51051 c1 − 11492 cǫE + 7854 E0

.


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In order to enforce isotropy at second order around a null velocity, we have to set

(17)



































σqx = −
1309

2

σXX(13 c1 + 95 + 2 E0)

114404 + 51051 c1 − 11492 cǫE + 7854 E0

,

cǫρ = 140 + 28 cǫE ,

+
(13 c1 + 95 + 2 E0) (114404 + 51051 c1 − 11492 cǫE + 7854 E0)

22984 Pr
,

c2 = −
65

24
−

21

8
(c1 + h1 + k1 E0)− k2 E0 − h2 .

These constraints leave as independent parameters : Pr, E0, c1, k2, cǫE, c̟ρ, c̟E and the
relaxation rates sXX , srx, sǫ, s̟ and sXXe.

3) Navier Stokes solver for a compressible gas

• This approach starts from the conservation equations of mass and momentum:

(18)



























∂

∂t
ρ+

∂

∂x
ρvx +

∂

∂y
ρvy = 0

∂

∂t
ρvx +

∂

∂x
ρvxvx +

∂

∂y
ρvxvy +

∂

∂x
P − ν△vx − ξ

∂

∂x

(

div vx
)

= 0

∂

∂t
ρvy +

∂

∂x
ρvxvy +

∂

∂y
ρvyvy +

∂

∂y
P − ν△vy − ξ

∂

∂y

(

div vy
)

= 0 .

We add also the conservation of total energy. We assume the fluid is a perfect gas, then
the pressure P is given according to

(19) P = ρRT

and the internal energy per unit mass e is related to T by

(20) e =
RT

γ − 1
.

Then the evolution equation for the internal energy takes the form

(21)











∂

∂t
ρe+

∂

∂x
ρevx +

∂

∂y
ρevy + P

[ ∂

∂x
ux +

∂

∂y
uy

]

− κ
[ ∂2

∂x2
T +

∂2

∂y2
T
]

−ν
[( ∂

∂x
ux −

∂

∂y
uy

)2

+
( ∂

∂x
uy +

∂

∂y
ux

)2]

− ξ
( ∂

∂x
ux +

∂

∂y
vy

)2

= 0 .

• A linearized analysis gives the propagation and damping of the four hydrodynamic
modes. We deduce an algebraic expression for the sound velocity cs, the relaxation ντ of
the transverse mode, the relaxation νdiff of the diffusive mode, and the damping νacous of
the sound modes:

(22) cs =
√

γRT , ντ = ν , νdiff = κ
γ − 1

Rγ
, νacous =

1

2
(ν + ξ) + γ

(γ − 1)2

2Rγ
.

The non-linear terms allow to show that a uniform advection speed {Vx, Vy} leads to phase
shifts compatible with Galilean invariance.

• The model can be approximately simulated with simple finite difference expressions
for the space derivatives. We have developed a compressible Navier-Stokes solver for the


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numerical resolution of the mathematical model (18) - (21). We use a cell vertex approach
(with the nomenclature of Roache [17]). All the differential operators are discretized with
centered finite differences. The discrete evolution in times is obtained with an elemen-
tary forward Euler first order explicit scheme. The Dirichlet boundary conditions for
velocity and temperature are implemented in a clear way by forcing the given value on
the boundary node vertex. For the adiabatic wall where ∂T

∂n
is null, a Neumann homo-

geneus boundary condition is enforced with mirror techniques decribed in the classical
reference [17].

4) A simple test case

• This test case has been studied in our contribution [11]. The domain is a Nx × Ny

rectangle with periodic boundary conditions. This test case is error-free as far as boundary
conditions are concerned. The initial condition is a fluid at rest: Vx = Vy = 0. The initial
temperature T (x, y) = T0 + δT0 cos k•x is associated with a wave number k = 2πK/Nx.
Then density, pressure or energy are such that no acoustic wave is excited. This is possible
with the following conditions:

(23)











For D2Q9-D2Q5 : ρ = 1 ,

For D2Q13 : ρ = 1− 28 (T (x, y)− T0) ,

For Navier Stokes : P = RT0 , ρE = P
γ−1

+
ρ (V 2

x
+V 2

y
)

2
.

One verifies that T (x, y, t) relaxes exponentially in time.

5) Buoyancy

Figure 2. Buoyancy flow with the compressible Navier-Stokes solver. The nonlinear
exchanges between temperature and density are not affected by the gravity.


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• For the first scheme D2Q9-D2Q5 we simulate buoyancy by adding a vertical force (Vy)
proportional to T − T0. For the D2Q13 scheme and the direct approach of Navier-Stokes
equations with finite differences, we add vertical force in the Vy momentum equation
proportional to ρ − ρ0. Then the vertical speed increases approximately linearly with
time and there is essentially no horizontal velocity. With the Navier-Stokes solver, we use
a domain composed by 510 mesh points in width, and periodic in height. The temperature
is periodic relative to the x direction. With the D2Q13 lattice Boltzmann solver, we use
the same domain as previously: a domain of 510 meshes in width and periodic in height,
with an (initial) temperature periodic in x (see Fig. 3).

Figure 3. Buoyancy flow with the D2Q13 direct lattice Boltzmann solver. The non-
linear exchanges between temperature and density are not affected by the gravity.

6) Transverse waves

• With the D2Q13 stencil, the non linear behaviour for transverse waves is operating
as follows. The initial conditions vy(x, y, 0) ≡ Vy0 cos kx leads to density waves of wave
vector 2k. We modify the initial conditions by ρ(x, y, 0) = ρ0+a vy(x, y, 0)

2. We measure
the following global agregates relative to time:

(24) Ṽy(t) =
∑

x

vy cos(k x) , ρ̃(t) =
∑

x

ρ cos(2 k x) , Ẽ(t) =
∑

x

E cos(2 k x) .

The typical result for D2Q13 is summarized in Fig. 4: the growth of Ẽ in time is propor-
tional to ν k2 V 2

y .


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Figure 4. Transverse waves with the D2Q13 direct lattice Boltzmann solver. The
growth of Ẽ in time is proportional to ν k2 V 2

y .

• The interpretation of this evolution can be stated as follows. The linearized equivalent
equations at order 1 with space derivatives can be written in matrix form

(25)
∂t ∂r 0

(14
13

+ 1
2
V 2) ∂r ∂t

1
26
∂r

0 1
2
(39 + 13c1 + 2E0) ∂r ∂t

= 0 .

Without advective velocity, the diffusive mode is (1, 0, −28)t id est E = −28 ρ. With
a transverse velocity V , the diffusive mode is equal to (1, 0, −28 − 13V 2)t, id est

E = −28 ρ̃ with a density ρ replaced by ρ̃ ≡ 1 + 13
28
V 2.

7) Couette flows

• Typical boundary conditions for Couette flows with the D2Q9-D2Q5 scheme are
stated as follows. For x = 1 and x = Nx the velocity is known: Vx = 0 and Vy is given.
This type of boundary condition is classically achieved by a “bounce-back” condition.
Assuming a zero value for the mean temperature, for x = 1 the temperature is imposed:
T = +∆T and when x = Nx it has the opposite sign: T = −∆T for x = Nx . This
boundary condition is achieved by an “anti-bounce-back”. In consequence, the way we
implement the boundary conditions is not straightforward. For the unit velocities with
non-zero component parallel to the boundary, we use a bounce-back boundary condition.
For the other velocities, an “anti-bounce-back” is implemented. We consider for example:

(26) f1 + f3 = 2 (pρ ρ+ pXX XX + pE E)

with E and XX imposed and ρ estimated by extrapolation from values measured in the
fluid.


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Figure 5. Mixed “bounce-back” and “anti-bounce-back” boundary conditions for a
flow simulated with the D2Q13 lattice Boltzmann scheme. In this case, both velocity and
temperature are imposed.

Figure 6. Couette flow with the D2Q9-D2Q5 coupled scheme. Result for the temper-
ature field without motion of the lateral plates.

• With the coupled D2Q9-D2Q5 scheme, the density is unchanged (see Fig. 6). For the
discretization of the compressible Navier Stokes equations, the pressure remains constant.
Then, due to the equation of state (19), the variation of density and temperature are
coupled. This effect is clearly visible on the Fig. 7 (direct Navier Stokes solver) With the
D2Q13 lattice Boltzmann scheme, the internal energy e (proportional to the temperature)
can be recovered thanks to the relation e = E − 13

2
(V 2

x + V 2
y ) as displayed on Fig. 8.


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Figure 7. Couette flow with a finite difference direct Navier-Stokes solver. Same result
for the temperature field without motion of the plates.

Figure 8. Couette flow with the D2Q13 lattice Boltzmann solver. The dashed curves
show the “temperature” T ≡ E − 13

2
(V 2

x + V 2
y ). There is no variation of the temperature

when no gradient is imposed between the plates.


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8) Poiseuille flow

• A Poiseuille flow is realized by adding an external term to take into account the
gradient of pressure. Then a parabolic velocity profile is obtained as usual. Moreover, we
add a Couette-type temperature profile between the lateral plates. In all our simulations,
we do not observe any variation of the temperature when no gradient is imposed between
the plates. Moreover, when a gradient of temperature is imposed, we observe a regular
evolution of the temperature without destruction of the parabolic profile.

Figure 9. Poiseuille flow with the D2Q9-D2Q5 coupled scheme. No variation of the
temperature when no gradient is imposed between the plates.

Figure 10. Poiseuille flow with a finite difference direct Navier-Stokes solver. No
variation of the temperature when no gradient is imposed between the plates.


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Figure 11. Poiseuille flow with the D2Q13 lattice Boltzmann scheme. No variation of
the temperature when no gradient is imposed between the plates.

9) Test of an adiabatic boundary for the D2Q13 scheme

Figure 12. Test of an adiabatic boundary with the D2Q13 lattice Boltzmann solver.
A uniform source of energy is applied. The y-velocity is null when the left boundary is
fixed. The other fields are unchanged.

• In order to implement correctly a null flux Neumann boundary condition relative
to the temperature, we have tested our schemes for a uniform volumic source of energy.
A homogeneous temperature given at the left boundary and a homogeneous Neumann
condition for temperature at the right boundary. At the left boundary the velocity is


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given as homogeneous or inhomogeneous: vy = 0 or vy = 0.02. We impose a null velocity
at the right boundary. The solution is a “semi-parabol” and is correctly simulated as
decribed in Fig. 12.

10) Thermal test case of de Vahl Davis

• The de Vahl Davis [19] test has been described in the introduction. We have used
a 187 × 187 domain with a Prandtl number equal to 0.71 with the lattice Boltzmann
simulations and a grid with 256× 256 mesh points with the simple Navier-Stokes solver.
Our results are summarized in the following table.

Rayleigh de Vahl Davis Le Quéré Mezrhab D2Q9-D2Q5 Navier Stokes D2Q13
105 4.519 4.521 4.521 4.57 4.50
106 8.800 8.8252 8.824 8.828 8.88 8.73

Table 1. Comparison of Nusselt number integrated in all the domain for two Rayleigh
numbers.

Figure 13. De Vahl Davis thermal test case for natural convection with the D2Q13
direct lattice Boltzmann solver. Rayleigh number = 105. Iso-velocity curves for the
modulus of the fluid speed. The maximum velocity is 5.5 10−3.


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Figure 14. De Vahl Davis thermal test case for natural convection with the D2Q13
direct lattice Boltzmann solver. Rayleigh number = 105. Modulus of the asymmetry
of the Fluid Speed. Curves for the departure from center symmetry. The maximum
difference of velocity |V (x, y) + V (x0 − x, y0 − y)| is 0.28 10−3 (5 %).

• We have compared our results with those of de Vahl Davis [19], Le Quéré [13], Mezhrab
et al. [14], Wang et al. [20] with the coupled approach D2Q9-D2Q5 and our simple finite
differences Navier-Stokes solver. The results “D2Q13” obtained with a single particle
distribution are correct but must be considered as preliminary compared to the other
results. Inspection of the thermal and velocity fields obtained with the D2Q9+D2Q5
shows that they are symmetric with respect to the center of the cavity. Similar inspection
for the fields obtained either with D2Q13 or the simple compressible Navier-Stokes code
used here show disymmetries that increase with the Rayleigh number. A detailed analysis
of these asymmetries will be performed later and checked with data obtained with more
sophisticated Navier-Stokes codes.

Conclusion
In this contribution, we have shown that coupled fluid and thermal flows that characterize
natural convection can be simulated in two space dimensions with a D2Q13 lattice Boltz-
mann scheme. We have tested our approach by a progressive complexification of the test
cases. The de Vahl Davis test case gives encouraging results when we compare our result





Pierre Lallemand and François Dubois

to previous ones obtained with a D2Q9-D2Q5 coupled approach or with a direct simu-
lation of the compressible Navier Stokes equations with finite differences. Nevertheless,
complementary studies are necessary to improve this method of simulation.
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