
HAL Id: hal-00922891
https://hal.science/hal-00922891v1

Submitted on 2 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generation of an Architecture View for Web
Applications using a Bayesian Network Classifier

Juan-Carlos Castrejon-Castillo, Rafael Lozano, Genoveva Vargas-Solar

To cite this version:
Juan-Carlos Castrejon-Castillo, Rafael Lozano, Genoveva Vargas-Solar. Generation of an Architecture
View for Web Applications using a Bayesian Network Classifier. CONIELECOMP 2012 - International
Conference on Electrical Communications and Computers, Feb 2012, Cholula, Puebla, Mexico. pp.368-
373, �10.1109/CONIELECOMP.2012.6189940�. �hal-00922891�

https://hal.science/hal-00922891v1
https://hal.archives-ouvertes.fr


Generation of an Architecture View for Web
Applications using a Bayesian Network Classifier

Juan Castrejón, Rafael Lozano
Campus Ciudad de México

Instituto Tecnológico y de Estudios Superiores de Monterrey
{A00970883, ralozano}@itesm.mx

Genoveva Vargas-Solar
LIG-LAFMIA Labs

Centre National de la Recherche Scientifique
Genoveva.Vargas@imag.fr

Abstract—A recurring problem in software engineering is the
correct definition and enforcement of an architecture that can
guide the development and maintenance processes of software
systems. This is due in part to a lack of correct definition and
maintenance of architectural documentation. In this paper, an
approach based on a bayesian network classifier is proposed to
aid in the generation of an architecture view for web applications
developed according to the Model View Controller (MVC)
architectural pattern. This view is comprised of the system
components, their inter-project relations and their classification
according to the MVC pattern. The generated view can then
be used as part of the system documentation to help enforce
the original architectural intent when changes are applied to
system. Finally, an implementation of this approach is presented
for Java based-systems, using training data from popular web
development frameworks.

Index Terms—Documentation, Software engineering, Software
maintenance, Software verification and validation

I. INTRODUCTION

The use of a software architecture to guide the development
and maintenance processes of a system has been widely
studied in the software engineering area [1]. Even though
there is not a unique definition of software architecture, the
general idea is that it should describe the system components
along with their relations, recognizing that there is not a
unique representation that can comprise all these relations
and components [2]. It is for this reason that architecture
views are created to support the different representations of the
system components, their relationships and requirements. Each
of these views can then be used to communicate requirements
and design constraints to the system stakeholders [1].

One or more architecture patterns are usually taken as
reference models for the definition of the components types
that constitute a software solution [1]. These patterns convey
common structures and interactions that are proved to solve
particular requirements. It is important to note that, in order
to be useful, the patterns intents should be documented in one
or more of the system architecture views.

Concerning web application development, the Model View
Controller (MVC) pattern [3] is one of the most influential
architecture patterns that have guided design and implemen-
tation of web systems for the last years [4], due to its
natural separatation of business, presentation, and control
logic. This separation greatly reduces the complexity needed to

apply changes to individual components, by maintaining clear
responsibilities and dependencies by means of three logical
grouping layers, that is, Model, View and Controller layer.

The Model layer contains the business information with
which the system operates. The View layer is responsible for
the presentation of the information in a way suitable to the
system users. The Controller layer is in charge of responding
to events, probably invoquing changes both in the View and
Model layer. Web applications usually implement a variation
of the MVC pattern, named Model 2 [5]. This variation focuses
on efficiently handling and dispatching full page form posts
and reconstructing the full page content via front controllers.

In regard to the classification of system components, we
should consider that a classification process can be defined as
a formal method used to establish a function whereby we can
associate a new observation into one of existing classification
groups [6]. This process is also known as Supervised Learning,
and allows us to deduce the classification function from a set of
training data, consisting of input objects and desired outputs.

Numerous approaches to the problem of generating a func-
tion classifier from a set of training data are based on the
Bayes’ theorem [6]. This theorem expresses posterior proba-
bility of a hypothesis in terms of previous probability of the
hypothesis given evidence, and the probability of the evidence
given the hypothesis. Bayes’ theorem is shown in the following
equation, considering the variable A as the hypothesis and
variable B as the evidence.

P (A|B) =
P (B|A)P (A)

P (B)
(1)

A Bayesian network is a probabilistic graphical model that
represents a set of random variables and their conditional in-
dependences using a directed acyclic graph [6]. The use of this
probabilistic model as classifier allows us to benefit from the
results of a training process in which the classification groups
are identified from the analysis of key random variables.

In this case, it is important to notice that given a sufficiently
large dataset of training instances, the resulting probabilistic
model will represent a close approximation to the probability
distribution governing the random variables domains [7].



II. RELATED WORK

The use of Bayesian approaches for modeling the un-
certainty in software systems has been studied previously
along with the so-called Uncertainty Principle in Software
Engineering [8]. This principle states that uncertainty is in-
herent and inevitable in software development processes and
products. It is suggested that uncertainties associated with one
or more properties of software artifacts should be modeled and
maintained explicitly. To that purpose, the use of networks
of software artifacts, annotated with uncertainty values, can
be used to effectively analyze the uncertainty of the system
as a whole, supporting prediction and guidance of future
development activities [8].

The use of probabilistic models that analyze the source code
of software systems in order to identify clusters, is a wide
spread technique among reverse engineering tools [9], [10].
In this regard, a probabilistic approach is described in [11] for
the partition of software systems into meaningful sub-systems,
using the information of zones inside each compilation unit.
This approach includes the analysis of method and class
signatures, along with variable identifiers. These classification
variables are similar in nature to the ones used in this study,
however the classification mechanisms differ.

In [12] an approach based on Bayesian learning is proposed
to automatically recover a software system’s architecture,
given incomplete or out-of-date documentation. The proposed
methodology includes the training of a Naı̈ve Bayes classifier
that is later used to predict an appropiate sub-system for
the project software modules. The global variables accesed
by these software modules are then used as attributes for
the bayesian model. This represents a key difference with
the approach presented in this paper, because we take into
consideration dependencies not only through global variables,
but also through external APIs and inter-project associations.

III. PROBLEM

According to the Uncertainty Principle in Software Engi-
neering, uncertainty permeates software development in all of
its phases [8]. Coupled with inherent complexity in software
systems, software quality and developer productivity are topics
that require monitoring to avoid degrading over time.

Monitoring of a correct implementation of architecture
patterns during the development and maintenance of a software
system is not always enforced by the project members [13].
This is one of the reasons why a system may degenerate from
the initial architecture intent, causing severe problems when
changes have to be applied to the system.

We also have to consider that for the implementation of
architecture patterns, uncertainty arises because we do not
know for sure to which code elements the patterns components
are mapped. Ideally, this information would be kept in the
project’s documentation, but in a great number of software
systems, it is unavailable, incomplete or out-of-date [13]. A
reason for this situation is the fact that software systems are
expected to undergo a number of changes during their lifetime,
and even if architectural documentation was developed for the

original system, there’s no guarantee that this documentation
was effectively updated to reflect subsequent changes [13].

In this regard, a key feature in the domain of Web applica-
tions is the separation of responsibilities for maintaining each
of the project components [3]. The MVC pattern promotes
this separation by assigning project components to one of three
possible grouping layers, and defining clear interactions among
them. However, a problem arises when an implementation does
not quite follow the architectural intent of the patterns being
used [13]. For instance, when a component of a given layer
is given more responsibilities than it should, or when invalid
dependencies are added between components. As the system
undergoes new changes, these incorrect implementations add
complexity to the maintenance of the project, probably causing
a detriment to the system quality.

The process of updating software system documentation can
be misleading without the appropiate mechanisms to validate
that implementation changes comply with the architectural
constraints imposed over the project. Ultimately, this mech-
anisms should enforce that the original architectural intent is
maintained over the project’s life cycle.

IV. OBJECTIVES

An approach with the following objectives is proposed in
order to help avoid the problems stated in the previous section:

• Classify each of a web project components into one of
the layers defined by the MVC pattern.

• Analyze the relationships among components to help
identify invalid dependencies.

• Generate an architecture view comprised of the project
components and their inter-project dependencies.

• Provide an implementation of this approach that can be
used in Java web projects.

Considering that web application development covers a
wide range of technologies [5], it would be very ambitious to
develop an implementation to support all of them. Nonetheless,
in order to provide support for best practices and the general
approach followed in Java web application development, the
implementation described in this paper considers four of the
most popular frameworks in the Java environment. These are:

• Grails [14].
• Spring Roo [15].
• Play framework [16].
• Apache Struts 2 [17].

V. PROPOSED SOLUTION

A. Uncertainty Model

To handle the uncertainty in the implementation of the MVC
architecture pattern, the use of a Bayesian network classifier is
proposed. This choice has been made because this probabilistic
model allows us to represent in an effective manner the
conditional dependencies between random variables. In this
case, the variables are based on the system implementation
artifacts and its relationships with components defined outside
the project, that is, external libraries. Using this classifier, the
project components are grouped according to the MVC layers.



The following random variables, and their domains, are
proposed in order to generate an effective probabilistic model:

• Type. Identfies a component’s file type (domain: java, jsp,
xml and html).

• Suffix. Identifies the suffix of a component’s file name
(domain: controller, service, validator, context, servlet,
web, aspect, form, dao, manager and none).

• ExternalAPI. Identifies the external API that a component
depends on (domain: springmvc, aspectj, hibernate, jdbc
and none).

• Layer . Identifies the grouping layers defined by the MVC
pattern (domain: model, view and controller).

The intent of using these random variables is to capture
a component’s behaviour through the analysis of standard
naming conventions and the identification of common external
APIs used to carry out the expected responsabilities of com-
ponents in each of the layers defined by the MVC pattern.

For instance, a component grouped in the Controller layer
is most likely to depend on the Spring MVC framework,
and less likely to depend on database access APIs, such as
JPA or Hibernate. We assume a similar logic for the naming
conventions. Take for example a controller component, it is
more likely to be named *Controller.java, than *Dao.java.

To complete the definition of the Bayesian network, we
need to identify dependencies among the random variables, to
later assign probabilistic values to the possible combinations
of these variables. One way of doing this is by using historical
data, to obtain an approximation of the probability distribution
governing the attributes domains. For this case, we used the
data of 17 representative web projects that make use of the
Java based frameworks mentioned in the previous section.
These sample projects are included in the public distributions
of these frameworks, and are listed next:

• Grails: Recipes [14].
• Spring Roo: Pet Clinic, Vote and Wedding [15].
• Play framework: Booking, Chat, Forum, Job Board, Twit-

ter, Validation, Yabe and Zen [16].
• Struts 2: Blank, Mail reader, Portlet, Showcase and Rest

Showcase [17].

Altogether, these applications were comprised of 619 com-
ponents that had to be manually analyzed and classified. In
order to obtain the dependency relations and probabilistic
values for all the possible combinations of the random vari-
ables, the Weka software [18] was used, taking as input this
manually classified set. The complete process for creating the
probabilistic model using Weka is detailed next.

• An Attribute-Relation File Format file [18], ARFF, was
created to store the manual classification results.

• Each of the applications components was manually an-
alyzed in order to assign values to the Type, Suffix,
ExternalAPI and Layer random variables.

• The Weka Explorer interface was used to classify the data
in the ARFF file according to the BayesNet Classifier
using the TAN search algorithm [18].

• The probabilistic model was saved into a Model object
file [18]. This model is later used during classification.

After this process, Weka generates a probabilistic model,
depicted in Fig. 1, along with the probability distribution tables
for all the possible combinations of the random variables. For
illustrative purposes, the distributions tables for the Layer and
Types variables are shown in Tables I and II, respectively.

Fig. 1. Weka-generated Bayesian model

TABLE I
PROBABILITY DISTRIBUTION TABLE FOR THE LAYER VARIABLE

Model View Controller
0.28 0.257 0.463

TABLE II
PROBABILITY DISTRIBUTION TABLE FOR THE TYPE VARIABLE

File Type
Layer java jsp xml properties
model 0.986 0.003 0.003 0.009
view 0.034 0.562 0.158 0.245

controller 0.642 0.002 0.317 0.04

Using the Bayesian network generated by Weka, 542 in-
stances of the ARFF file are corrected classified. That is, we
have around 87% of effectivity using the training set as a test
option. This high effectivity is compelling enough to think
that this model provides a relatively good approximation to
the probability distribution governing the attributes domains.
In Fig. 2 the Weka classification results are shown:

Fig. 2. Weka classification results. Please note that a square represents an
error, while a cross represents a successful classification.



Another advantage of using Weka for the generation of
the probabilistic model is that the more data we gather the
better our probability distributions will be, without us needing
to manually update the values in the probability distribution
tables. We would just need to repeat the process explained
before, in order to generate an updated probabilistic model.

B. Relationship analysis

Complementing classification results, a further analysis is
perfomed to guarantee that invalid dependencies, as stated in
the Model 2 pattern [5], a variation of MVC for web projects,
are not found in the implementation components. This analysis
also verifies that the grouping of components by packages
and directories is consistent with a traditional web project
distribution. The Model 2 pattern [5] is depicted in Fig. 3.

Fig. 3. Model 2 pattern

A component classified as Model should only have relations
with other Model components. A component classified as View
shouldn’t have direct relationships with Model components,
instead the Controller components should provide the required
Java Beans that contain a subset of the model for the View
components to use. A component classified as Controller can
have direct relations with both Model and View components.
Those components that don’t conform to this relationship rules
are marked as invalid in the generated architectural view.

Once the components are classified, all the packages that
contain code artifacts are analyzed to get the most frequent
component type for each of the packages. For example, a
package containing a majority of View components is classified
as a View package. Once all the packages are classified, those
components having a different component type than that of
their package, are marked as invalid. A similar logic applies
for directories that does not necessarily contain code artifacts.

C. Architecture view

As final result, an architecture view is generated by group-
ing the classified components according to their package or
directory, showing for each component its MVC classifica-
tion and by linking the components using their inter-project
relationships. The components identified as invalid during
the Relationship analysis are highlighted to allow further
examination by the system development team.

D. Implementation for Java based projects
An implementation for Web projects, supporting a subset of

the technologies used in the Java environment is provided to
help test the validity of the proposed approach [19].

The implementation includes a generic module that can be
included in any development environment, by means of JAR
file import. A second module includes plugins for the Eclipse
platform [20], to promote an automated use of our approach.

In order to use the Bayesian network, previously generated
with Weka, in this implementation, we need to be able to
assign for each of the analyzed components, values for the
Type, ExternalAPI and Suffix random variables. In this case,
the assignment is done through a static code analysis process.

For code components, the dependencies evaluation part of
the static analysis includes the use of the ASM framework
[21]. Based on the Visitor design pattern [3], a new class
was developed to extend from ASM’s EmptyVisitor class, to
allow us to inspect a project’s Java classes. This new class,
DependencyVisitor, is responsible for identifying for each class
both its inter-project and external dependencies.

The drawback of this approach is that classes used by an
analyzed component that belong to the same package, are
not added to the inter-project dependencies, unless they’re
declared as argument of a method. However, this does not
affect the final results because of the Relationship analysis
that’s perfomed after the components classification.

As a result of this dependencies evaluation, we can give
values to the ExternalAPI variable, by looking for supported
libraries in the components’ external dependecies list. For
Java classes, the Type variable is assigned the value java.
The Suffix variable can be given values directly from the java
classes filenames. For non-code components, only the Type and
Suffix variables are considered before classification. Values are
obtained directly from the components file names.

Once the components have been assigned values for the
Type, Suffix and ExternalAPI variables, the Bayesian network
model is loaded from disk and is then used to classify those
components, thus giving values to the Layer variable.

Once the classification process is over, the Relationship
analysis is performed for all the project components, in order
to identify invalid relations among them. It should be noted
that the definitions of valid relationships are kept in the
definiton of the Layer class. Instances of this particular class
are then associated to the project components, according to
the result of their classification process.

If an invalid relation is identified for a component, it
is marked as invalid. Project packages and directories are
classified into one of the MVC layers by grouping the com-
ponents associated to them according to their classification,
and then taking the grouping layer of the largest group. Those
components having a different classification than that of their
package or directory are also marked as invalid. Once all
the components are classified and the Relationship analysis is
over, a SVG file is created from this data using the Graphviz
drawing tools [22]. Layers are identified by a combination of
a color and a shape. These combinations are shown in Fig. 4.



Fig. 4. Graphic representation of the MVC Layers

We can see that each layer has its invalid counterpart, that
differs from the valid one in shape and fill style but not in
color. These are the styles used in the architecture view.

E. Eclipse plugin

The implementation details explained in previous sections
are part of a generic implementation module. Besides this
module, a plugin for the Eclipse platform was developed to
ease the use of this implementation in Java projects. This
plugin [19] allows us to invoke the MVC classifier process
from within an Eclipse view, and also see the results within
Eclipse. The plugin is designed to work with Project elements
and WAR files, by adding a context menu entry when these
objects are selected with a right-click in an Eclipse view.

The Eclipse menu provided by our plugin is represented by
the Pattern Views –>Generate MVC View for Project-War files
path. An instance of this menu is depicted in Fig. 5.

Fig. 5. Context Menu for Project elements

Finally, if any of the context entries is selected, an Eclipse
view containing the generated architecture view is shown to
the user, using the SVG Salamander library [23] (See Fig. 6).

Fig. 6. MvcView Eclipse view

F. Sample application

In order to explain the use of the Java implementation
described in the previous section, we now present fragments
of the architecture view generated for a real-world Java web
application. This application is named Indvalid [24] and was
designed to automatically validate digital tax receipts, in order
to help enterprises comply with the mexican regulation in this
regard. This application is a Java web system developed using
several modules from the Spring Framework [25].

To show how valid components are depicted in the archi-
tecture view, we can analyze the following fragment in Fig. 7.

Fig. 7. Fragment of an architecture view showing valid components

By analyzing this fragment of the architecture view, we can
see that components are grouped by packages and directories,
according to their file type. For each component, its classifica-
tion results are shown by means of its shape and color. Each
layer is represented by at least one component. Note that only
valid components are shown in this architecture fragment.

In order to show how invalid components are depicted in
the architecture view, a fragment of a package contained in the
view generated for the Indvalid system is depicted in Fig. 8.



Fig. 8. Fragment of an architecture view showing invalid components

We can appreciate that two components of this package have
been marked as invalid. This is because their classification
group, Model, differs from the package’s classification group,
Controller. This package was classified as such because most
of the components it contains were classified as Controller.

Finally, to show how a more complete architecture view is
presented to the user, a bigger part of the architecture view
generated for the Indvalid project is depicted in Fig. 9.

Fig. 9. Fragment of the Indvalid architecture view

VI. CONCLUSIONS

In this paper, an approach for the generation of an architec-
ture view was proposed for MVC Web applications, by using a
bayesian network classifier over the components that comprise
a software system, and by identifying invalid relationships
among them. The probabilistic model, a bayesian network,
is generated using the Weka software, and trained with data
of a representative set of sample web applications associated
to popular Java based web frameworks. In this first stage, the
effectiveness of the generated probabilistic model is promising.

In order to validate the proposed approach, an implementa-
tion for Java Web projects was developed. This implementation
is divided in two parts, a generic module and an Eclipse plugin.
Using this implementation, development teams will be able to
use the classifier with any Java web project, generating the
architecture view into a SVG file, allowing further analysis.

The generated architecture view can be used as a comple-
ment to the existing documentation associated to web appli-
cations. If no documentation exists, this view may represent a
good starting point for development teams in order to help
identify the system components, their responsabilities and
interactions between them, all based on the MVC pattern.

VII. FUTURE WORK

In order to improve the accuracy of the model, the bayesian
network should be trained and tested with data covering a
wider range of web projects. To this extent, the implementation
should support not only Java but also other web technologies.

An improvement to the proposed approach could be the
generation of the architecture view not only as a SVG file,
but also using standard architectural notations, such as UML.

The probabilistic model may also be updated with additional
random variables in order to perform a more thorough analysis
of the components associated to web projects. Finally, the clas-
sification of system components with alternative algorithms
and data mining tools is also intended as future work.

REFERENCES

[1] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice.
New York: Addison-Wesley Professional, 2 ed., 2003.

[2] I. Gorton, Essential Software Architecture, ch. Understanding Software
Architecture, pp. 1–15. New York: Springer, 1 ed., 2006.

[3] E. Freeman, E. Freeman, B. Bates, and K. Sierra, Head First Design
Patterns. O’ Reilly & Associates, Inc., 2004.

[4] Sun-Developer-Network, “Java blueprints - j2ee patterns.” http://java.
sun.com/blueprints/patterns/MVC-detailed.htm/, July 2011.

[5] Sun-Developer-Network, “Designing enterprise applications with the
j2ee platform.” http://java.sun.com/blueprints/guidelines/designing
enterprise applications 2e/web-tier/web-tier5.html, July 2011.

[6] R. E. Neapolitan, Learning Bayesian Networks. Prentice Hall, 2003.
[7] F. Jensen and T. Nielsen, Bayesian Networks and Decision Graphs

(Information Science and Statistics). Springer, 2 ed., 2007.
[8] H. Ziv and D. Richardson;, “The uncertainty principle in software

engineering,” in ICSE’97, 19th International Conference on Software
Engineering, (Boston, MA), 1996.

[9] O. Maqbool and H. Babri, “Hierarchical clustering for software archi-
tecture recovery,” IEEE Transactions on Software Engineering, vol. 33,
pp. 759–780, November 2007.

[10] A. Kuhn, S. Ducasse, and T. Gı́rba, “Semantic clustering: Identifying
topics in source code,” Information and Software Technology, vol. 49,
no. 3, pp. 230–243, 2007.

[11] A. Corazza, S. D. Martino, and G. Scanniello, “A probabilistic based
approach towards software system clustering,” Software Maintenance
and Reengineering, European Conference on, vol. 0, pp. 88–96, 2010.

[12] O. Maqbool and H. Babri;, “Bayesian learning for software architecture
recovery,” in Electrical Engineering, 2007. ICEE ’07. International
Conference on, (Lahore, Pakistan), 2007.

[13] J. Chen and S. Huang, “An empirical analysis of the impact of software
development problem factors on software maintainability,” Journal of
Systems and Software, vol. 82, no. 6, pp. 981–992, 2009.

[14] SpringSource, “Grails.” http://grails.org/, July 2011.
[15] SpringSource, “Spring roo.” http://www.springsource.org/roo, July 2011.
[16] Zenexity, “Play framework.” http://www.playframework.org/, July 2011.
[17] Apache-Software-Foundation, “Apache struts 2.” http://struts.apache.org/

2.x/, July 2011.
[18] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.

Witten, “The weka data mining software: an update,” SIGKDD Explor.
Newsl., vol. 11, pp. 10–18, November 2009.

[19] J. Castrejón, “Bayesian network mvc analyzer.” http://code.google.com/
p/mvc-analyzer/, July 2011.

[20] Eclipse-Foundation, “Eclipse-ide.” http://www.eclipse.org/, July 2011.
[21] E. Bruneton, R. Lenglet, and T. Coupaye, “Asm: A code manipulation

tool to implement adaptable systems,” in In Adaptable and extensible
component systems, 2002.

[22] J. Ellson, E. Gansner, L. Koutsofios, S. North, and G. Woodhull,
“Graphviz open source graph drawing tools,” in Graph Drawing
(P. Mutzel, M. Jnger, and S. Leipert, eds.), vol. 2265 of Lecture Notes
in Computer Science, pp. 594–597, Springer Berlin / Heidelberg, 2002.

[23] M. McKay, “Svg salamander.” http://svgsalamander.java.net/, July 2011.
[24] Indigo-IT, “Indvalid.” http://www.indvalid.com/, July 2011.
[25] SpringSource, “Spring framework.” http://www.springsource.org/about,

July 2011.


