N

N
N

HAL

open science

Hybrid query plan generation

Carlos-Manuel Loépez-Enriquez, Genoveva Vargas-Solar, José-Luis
Zechinelli-Martini, Christine Collet

» To cite this version:

Carlos-Manuel Lépez-Enriquez, Genoveva Vargas-Solar, José-Luis Zechinelli-Martini, Christine Collet.
Hybrid query plan generation. LANMR 2012 - Logic / Languages, Algorithms and New Methods of

Reasoning, Sep 2012, Unidad Iztapalapa, Mexico. pp.117-128. hal-00922887

HAL Id: hal-00922887
https://hal.science/hal-00922887

Submitted on 2 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00922887
https://hal.archives-ouvertes.fr

Hybrid query plan generation

Carlos-Manuel LOPEZ-ENRIQUEZ!3, Genoveva VARGAS-SOLAR2,
José-Luis ZECHINELLI-MARTINI!, and Christine COLLET?

! University of the Americas (UDLAP)
2 French National Center for Scientific Research (CNRS)
3 Grenoble Institute of Technology (Grenoble INP)
carlos.lopezez@udlap.mx, genoveva.vargas@gmail.com,
joseluis.zechinelli@udlap.mx, christine.collet@grenoble-inp.fr

Abstract. A hybrid query is a requirement of data produced by data
services and a set of QoS preferences w.r.t. the query execution. In this
paper we present the problem of the hybrid query optimization and, in
particular, the generation of the search space of hybrid query plans. We
show how the constraints that characterize the generation of hybrid query
plans are modeled and validated by implementing them in an action
language. We present graphs with the experiment results that show the
complexity of this generation.

Keywords: Hybrid queries, answer set planning, multi-objective opti-
mization, logic programming, non-monotonic reasoning

1 Introduction

A hybrid query [CV11] is a spatio-temporal query over continuous and on-
demand data provided by data services and accessible through interfaces (API).
In particular, we focus on the characteristics associated to the on-demand data.
Data consumers express their data needs along their QoS preferences. For in-
stance, consider the data need “Where are my friends at this moment?” with
the QoS preferences “Privilege the execution price over the execution time and
this in turn on the battery consumption”.

Hybrid queries are evaluated with a service coordination approach [CVVC12]
that is represented by a query workflow. A query workflow * is a plan that
coordinates a set of services with computing capabilities for processing the query.
Services have QoS measures associated to their invocation and thus the execution
of a query workflow has a cost that is the aggregation of the QoS measures. In
centralized data bases the cost of query evaluation is the time, in distributed and
parallel data bases the cost is two-folded in execution time and communication
cost. The evaluation of hybrid queries in turn has a three dimensional cost:
execution time, execution price, and battery consumption.

A finite set of query workflows implements the same hybrid query but there
is a subset that satisfies the cost requirements of the user. For example, the

4 We refer to query workflow and query plan indistinctly.

117

cheaper or the faster. This is a combinatory optimization problem of minimizing
the cost of a query workflow QW that is a subset of activities A that implement
data operations.

QIVI‘l/lélA{COSt(QW) : QWis a query workflow} (1)

The optimization of queries over data services must tackle challenges such
as autonomy, non-durability of data, absence of fine grain data statistics, etc. In
[OB04] the authors discuss some non-centralized query optimization approaches
such as data mediation systems [TRV95HKWY97] where the cost model only
considers the execution time. The evaluation of queries over web services pre-
sented in [SMWMO6] proposes a service coordination approach. A service co-
ordination is optimized by ordering the service calls in a pipelined fashion and
by tunning the size of data. Nonetheless, the control over data size (i.e., data
chunks) and selectivity statistics is a strong assumption because of the autonomy
of services and the absence of data statistics in a real scenario. Another aspect to
consider during the optimization is the selection of the service instances, which
represents a factor for the service coordination cost. In [CAH05,WCSO08] the
optimal selection of services with a multidimensional cost is proposed for op-
timizing the complete service coordination. This selection is done by solving a
multiobjective assignation problem for a set of abstract services. However, the
possibility to modify the order of service invocations is not considered and this
is a key issue in the hybrid query optimization.

In this paper we focus on the generation of a search space of query work-
flows in order to get a finite set of hybrid query implementations. This work
is the foundation for adding a cost model in the future and be ables to choose
the most suitable query workflow w.r.t. user’s preferences. This is important
because a search space without constraints is in the order of n! permutations in
the number of activities required for evaluating the query. We propose a set of
constraints modeled in an action language (e.g., DLV-K) in order to characterize
the construction of query workflows with sequential and parallel compositions,
and to get only the coherent ones and therefore to reduce the size of the search
space.

The paper is organized as follows. Section 2 gives the bases of the environ-
ments where hybrid queries take place and explains how the hybrid query plans
are modeled with the notion of query workflow. In Section 3 we describe a set
of constraints for modeling the query workflow generation using an action lan-
guage. In Section 4 we show experiment results that confirm the complexity of
the problem. Finally, we conclude this paper and present the future work in
Section 5.

2 Querying dynamic environments

A dynamic environments is a set of distributed services that provide on-demand
data, continuous data and computation functionalities. Queries over dynamic en-
vironments, so called Hybrid queries, are expressions of data requirements over

118

on-demand and continuous data provided by data services and whose execution
is constrained by user’s preferences (e.g., price, battery consumption, execution
time). For example, the spatio-temporal query presented in the previous section
“Where are my friends at this moment?”. In this paper we are interested in the
hybrid queries over on-demand data. For example, “What are the interests of
my friend Joe”, where only on-demand data are considered.

In [CVVC12] the evaluation of hybrid queries with a service coordination ap-
proach is proposed. This approach assumes the existence of computation services
with data processing capabilities instead of an off-the-shelf query engine. Service
coordination models a plan for evaluating the hybrid query and is represented
by a query workflow.

2.1 Data and computing services

A service is a software entity with an abstract functionality described by an

Application Program Interface (API) with the specification of methods for acce-

ssing data. An operation has a name and a set of typified bound/free parameters

[RSU95]. Each parameter has a role identified by a unique name in the method.
For simplicity, we illustrate APIs with the following form

service name:method name(T:B;?,...,T:B,?, T:Fi!,...,T:F,!)

where the service identified by service_name has a method named method_name
with n bound parameters and m free parameters. Bound and free parameters will
be identified by question and exclamation marks respectively. Each parameter is
typified by a data type® T and has a unique name within in the method header.
From this general notion of service, we distinguish two service specializations.
(1) On-demand data service provides data in a request-response fashion through
synchronous data operations. (2) Computing service provides a set of methods to
perform operations over data (e.g., distance estimation, ordering, correlation).

2.2 Query workflow

A query workflow represents a control flow among a set of activities. Each activity
is a program that calls a data service method or a computing service method.
The control flow is defined by workflow operators such as sequence or parallel.

A query workflow QW is modeled as a direct acyclic graph QW=(V, E, init,
finish) where:

V is a set of vertices
E CV x Vis a set of edges
A C V is a set of activities named by unique names
init, finish € A are the initial init and finish finish activities of the QW
O C V is a set of workflow operators of the type op = {seq, par}
tagged by unique labels.

5 Data types are defined in the tuple data model in the thesis [CV11].

119

There are three activity specializations: the activity performs a service method
invocation and always has a previous and a next activity, the init activity has
no previous activity and its only goal is to launch the first activity of query
workflow, the finish activity has no next activity and its only goal is to stop the
query workflow execution after the last activity.

The compositions of activities E C V x V are defined by two workflow
operators: sequential and parallel ones. A sequential composition seq represents
the total order of a pair of activities a1, az such that e; = (a1, a2). It means that
the second activity as must be executed after a;. A parallel composition par
represents the partial order of activities a1, as, as, aq such that e; = (a1, a2), ea =
(a1,a3), es = (az2,a4), es = (as,aq). It means that ay and as are independent
from each other and are executed in parallel after a; and before ay.

In the next section we present how we model the query workflow generation
by abstracting the semantics of activities [CV11]. This semantics is inherited
from the data operations implemented by the services.

3 Query workflow generation

Query workflow generation is the process of enumerating all the query workflows
in order to have a search space for choosing a subset that satisfies the user’s
preferences. The enumeration without constraints is in the order of n! and, in
fact, the most of these query workflows would not be coherent w.r.t. the hybrid
query.

The generation is done by constructing query workflows whose activities are
subject to query workflow constraints. We model these constraints as action rules
in the language DLV-K® that allows the sequential or parallel execution of query
workflow activities.

In DLV-K, planning problems have a set of facts that represents the problem
domain named background knowledge. The facts are predicates of static know-
ledge and are the input of the planning problem. Planning problems are modeled
as state machines described by a set of fluents and a set of actions. A fluent is a
property of an object in the world and is part of the states of the world [Bar03].
Fluents may be true, false or unknown. An action is executable if a precondition
holds in the current state. Once an action is executed, the fluents and thus the
state of the plan are modified. The action rules define the subset of fluents that
must be held before the execution of action (i.e., preconditions) and the subset
of fluents to be hold after the execution (i.e., postconditions). Finally, a goal is
a set of fluents that must be reached at the end of plan. A goal is expressed by
the conjunction of fluents and by a plan length [€ Z .

The mapping from query workflows generation to a planning problem is di-
rect, as shown in Table 1. The APIs and the hybrid query are modeled as facts of
the background knowledge. The execution state of a query workflow is modeled
as fluents and query workflow activities as actions.

® http://www.dbai.tuwien.ac.at/proj/dlv/k

120

Query workflow Planning problem
APIs, hybrid query|Facts (background knowledge)
Query workflow states|Fluents
Query workflow activities|Actions
Result delivery|Goal: finished?(l € Z.)

Table 1. Mapping from Query workflow to a Planning problem

In the following, we show, along with a simple example, how we represent
the background knowledge for query plan generation. Afterwards, we show how
the query workflow state and activities are expressed in DLV-K.

3.1 Background knowledge

The background knowledge is the input for query workflow generation and it
is represented by a set of facts. The facts are two-folded in (1)service interface
representation and (2)hybrid query representation.

Service interface Consider the following three methods of service interfaces:

— profile:profile(string:nickname?,int:age!,string:sex!,string:email!)

This method provides the user profile formed by age, sex and email of
a given user with a nickname.

— interests:interests(string:nickname?,string:tag!,real:score!) This
method provides the interests of a given user identified by a nickname.
An interest is represented by a tag and has a score that qualifies the
interest over the tag.

The service interface and its methods are described by the facts service -
interface/1 and the operation/2 respectively. We distinguish between
bound and free parameters with the facts bound_p/4 and free_p/4. The
normal form of a parameter is stated by parameter/4 and this rule guaran-
tees that the parameter name is unique in the context of the service method.

service_intereface (profile).

operation (profile , profile).
bound_p(profile, profile, nickname, string).
free_p(profile , profile, age, int).
free_p(profile , profile, sex, string) .
free_p(profile , profile, email, string) .
service_interface(interests).

operation (interests , interests).
bound_p(interests, interests, nickname, string).
free_p(interests , interests , tag, string) .
free_p(interests , interests , score, real).

parameter (DSN,ON,PN,T):— bound_p(DSN,ON,PN,T) .
parameter (DSN,ON,PN,T):— free_p (DSN,ON,PN,T).

Listing 1.1. Service interfaces

121

© 00T U kW~

Hybrid query Now consider the query “What are the interests of my friend
Joe” that is represented by the hybrid query in facts:

project_ (p,nickname ,n).
project_ (i,score,s).

project_ (i,tag,t).

retrieve_ (profile ,profile ,p).
retrieve_ (interests ,interests ,i).
select_ (p, nickname).

join_ (p,nickname ,i,nickname) .

N O Ut W

Listing 1.2. Hybrid query in facts

This query expresses the need of data over the methods profile:profile
and interests:interests methods, the nickname of the profile is filtered
and correlated with the nickname of interests. Finally, the parameters nick-
name, score and tag are projected.

Observe that the selection over the nickname attribute is indicated only in
intention because the equality operators are not significant for the query
workflow generation.

3.2 Query workflow activities

The query workflow activities are represented as actions in DLV-K. Below we
present the intuition of activities, for more details about the semantics of activ-
ities please refer to [CV11]. In general, the activities are predicates that hold if
their facts from background knowledge are true. There are also activities that
are independent from facts.

init and finish These activities have the special purpose to init and finish
the query workflow execution accordingly with our model in subsection 2.2.
Thus the semantics is not associated with the query processing and there is
no dependency with the background knowledge.

on-demand This activity establishes a connection with a data service method
and requires a method of a service and the expressed need of the user to be
queried.
on_demand(DS) requires operation (DSN,ON), retrieve_ (DSN,ON,DS). 1

Listing 1.3. on-demand activity

bind _selection This activity invokes and retrieves data from a service method.
The invocation is done by a given bound parameter valid in the service inter-
face definition. The hybrid query must express that data are required from
this service method respect to a selected bound parameter.

bind_selection(DS,BP) requires operation (DSN,ON), 1
retrieve_ (DSN,ON,DS), bound_p(DSN,ON,BP,), select_ (DS,BP).2

Listing 1.4. bind-selection activity

bind _join The required correlation in the hybrid query is performed by this
activity. Correlation is binary between data from two service methods on a
parameter from each one. The parameter from the outer method must be

122

bound. This activity is analogous to bind_ selection but bind_ join takes
the value of a bound parameter from the output of another method (i.e.,
the inner method).

bind_join (DS1,P1,DS2,BP2)
requires operation (DSN1,ON1), retrieve_ (DSN1,ON1,DS1),
parameter (DSN1,0ON1,P1,),
operation (DSN2,0N2), retrieve_ (DSN2,0N2,DS2),
bound_p (DSN2,0N2,BP2,),
join_(DS1,P1,DS2,BP2).

DU W~

Listing 1.5. bind-join activity

select The select activity performs the filtering over a valid parameter of a
required service method in the hybrid query.

select (DS,P) requires operation (DSN,ON) ,
retrieve_ (DSN,ON,DS) ,
parameter (DSN,ON,P,),
select_ (DS,P).

=W =

Listing 1.6. select activity

project This activity projects a parameter of a service method required in the
hybrid query.
project(DS,P) requires project_ (DS,P,_). 1
Listing 1.7. project activity

The semantics of activities described above is completed with constraints
that define their preconditions and postconditions.

3.3 Query workflow constraints

The query workflow constraints define the conditions associated to the execution
of activities. A condition is a state of knowledge modifiable by the execution of
the activities. Conditions also define when the activities can be executed. Hence,
we talk about preconditions and postconditions of activities. A state is composed
by a set of fluents that occur during the execution of activities. The rules that
define when a fluent occurs can be static or dynamic. Static rules are those that
occur given the truth-value of a subset of fluents, and dynamic rules occur given
the truth-value of a subset of fluents and after the execution of an activity.

Below we present the constraints that describe how the activities can be
performed and how a query plan should be constructed.

— init and finish The first executable action in a query workflow is init.
This activity has no previous activity, thus its precondition is that the query
workflow is not initiated and produces a new state with initiated. The
last activity is finish and there is no other activity executed after this one.
The precondition to execute finish is that there is not evidence that the
query workflow is finished and the data is already delivered (See output
constraint below for details about delivered). The postcondition of finish
is finished and this is always the goal for the generation.

123

executable init if —initiated .
caused initiated after init.
executable finish if not finished , delivered.
caused finished after finish.

W

Listing 1.8. init and finish activities

on-demand Once initiated the plan, the data services must be connected(DS).
This fluent is produced by the execution of on_demand (DS) activity.

executable on_demand(DS) if initiated. 1
caused connected(DS) after on_demand(DS). 2

Listing 1.9. on-demand activity

During the execution, all data services must be connected. Therefore, there
is a fluent all connected that is false if there is not evidence that a data
service is connected. Otherwise, it is true.

caused —all_connected if not connected(DS). 1
caused all_connected if not —all_connected. 2

Listing 1.10. all_connected fluent

bind_selection One of the activities that implements data retrieval is bind
selection. It is only executable if there is not evidence that the data service
DS has already been retrieved and if there is a connection with DS. Once the
bind selection is executed, the fluent retrieved (DS) is true. retrieved (DS)
is an inertial fluent, thus the re-execution is not possible.

executable bind_selection(DS,BP) 1
if not retrieved(DS), connected(DS). 2
caused retrieved (DS) after bind_selection(DS,BP). 3

Listing 1.11. bind_selection activity

selection The filtering of data is done by the selection activity. It is exe-
cutable if there is not evidence that the parameter P of DS has already been
selected. There is also need that the data from DS has been retrieved and
obviously the selection select_ (DS,P) must be part of the hybrid query.
The execution of the selection makes the fluent true selected(DS,P) and it
is inertial, so the re-execution of the selection select (DS,P) is not possible.

executable select (DS,P) if not selected (DS,P), 1
retrieved (DS), select_ (DS,P). 2
caused selected (DS,P) after select (DS,P). 3

Listing 1.12. select activity

In order to be aware of the state of selection over all the required parameters
of a method DS, the all_selected_from(DSOName) becomes true if there is
no other parameter pending to be selected.

caused —all_selected_from (DS) if not selected (DS,P), select_(DS,P). 1
caused all_selected_from (DS) if not —all_selected_from (DS), 2
retrieved (DS) .

Listing 1.13. all_select from fluent

Analogously, all parameters from all data services must be selected when
they are required. Therefore, there is the fluent all_selected. This fluent
is true if there is no other method DS pending to be selected.

124

caused —all_selected if —all_selected_from (DS), select_ (DS,P). 1

caused —all_selected if —all_selected_from (DS), not select_ (DS,P), 2
parameter (DSN,ON,P,), retrieve_ (DSN,ON,DS).
caused all_selected if not —all_selected. 3

Listing 1.14. all select fluent

— projection This activity is executable if there is not evidence that the pa-
rameter P of DSOName has been projected. There is also need that the data
from DSOName be retrieved. The execution of projection makes the fluent
projected(DSOName,P) true and it is inertial, thus the re-execution of the
projection is not possible.

executable project(DS,P) if not projected(DS,P), retrieved(DS), 1
project_ (DS,P,_).
caused projected (DS,P) after project(DS,P). 2

Listing 1.15. project activity

The projected fluent is true once the action project(DS,P) is done. During
the query workflow execution, all the required parameters must be projected.
For DS grain the fluent all_projected_ from(DS) is true if there is no other
parameter from DS pending to be projected. For the entire query, the fluent
all projected is true if there is no other DS pending to be projected.
caused —all_projected from(DS) if not projected(DS,P), project_(DS,P,1

caused all_projected_from(DS) if not —all_projected_from (DS) after 2
project(DS,P).

caused —all_projected if —all_projected_from (DS), project_(DS,P,_).
caused all_projected if not —all_projected.

Ul W

Listing 1.16. all _projected from fluent

— output Once the hybrid query is processed, data must be delivered by the ac-
tivity output. In order to model this precondition, the fluent query_processed
is true if all the other possible activities have been processed. Otherwise, the
fluent is —query_processed.

caused —query_processed if not all_connected.
caused —query_processed if not all_retrieved.
caused —query_processed if not all_selected.
caused —query_processed if not all_projected.
caused query_processed if not —query_processed.

T W N+

Listing 1.17. query_processed fluent

Once the query is processed, the output activity delivers the result and the
fluent delivered becomes true.

=

executable output if query_ processed, not delivered.
caused delivered after output. 2

Listing 1.18. output fluent

4 Experiments

We performed experiments with a set of hybrid queries described below. The
objective of the experiments is to measure the size of the search space of query

125

workflows given a fixed number of activities and a goal to define the length of
the query workflow.

4.1 Configuration

In order to test the performance of query workflow generation, we have defined
four hybrid queries. All are based on the query example of subsection 3.1. In
order to make more complex the generation of query plans, we add two data
operations. The resulting queries are configured as follows:

Data operator
Query |select_(p,age) |join_(p,nickname,i.nickname) | Description # activities
Q1 X X no additional operators 11
Q2 v X +unary data operator 12
Q3 X v +binary operator 13
Q4 v v +both unary and binary operator 14

Table 2. Query configuration

Another dimension for the test is the max length of plans. The generated
plans depend on a required plan length. In DLV-K, one must specifies the desired
length that determines the size of the search space of query workflows and thus
the required time for the generation.

In the tests we used lengths from 6 to 14, and we will measure (1)the length
of the generated plans, (2)the size of the search space, and (3) the execution
time of the generation.

4.2 Results

The data retrieved from the experiments show (1) the behavior of the search
space growth during the generation and (2) the time required for generating all
the search space.

Each hybrid query requires a fixed number of activities accordingly with the
number of data operators required to process the query result. Given that the
length [bounds the size of query plans, there are hybrid queries that require a
largest [than others. For example, Q1 with 11 activities, requires at least anl = 7
to get query workflows with the must possible parallel compositions, and at most
[=11 to get completely sequential compositions. For reasons of space we invite
the reader to visit the URLs http://goo.gl/XKZuL and http://goo.gl/z4iu3 to
appreciate examples of query workflows of 7-length and 11-length respectively.
The growth of search space is shown in Table 3 and, as was expected, the size
of search space tends to be stable once the maximum length is reached. For
example, Q1 reach the maximum length with [= 11. This is analogous for ()2,
@3, and Q4. Nevertheless the size of search space for each one is considerably

126

! Queries

Q1 Q2 Q3 Q4
6 0 0 0 0
7 4 4 20 20
8 62 128 598 1192
9 278 956 5062 15820
10 578 3068 19822 90100
11 718 5368 43698 277800
12 718 6268 62358 525476
13 718 6268 62358 749840
14 718 6268 62358 749840

Table 3. Search space growth respect to the plan length

bigger than the others less complex. In the Figure 1(a), you can see that the
search spaces have an exponential growth until the max length.

search space size
seconds

5 B I L T I oo 1
(a) Search space pgroévth respect to the (b) Behavior of query workflow genera-

plan length tion during the time

Besides the size of search space, the time for processing the query work-
flow generation is also exponential (See 1(b)) and it is not feasible to generate
completely the search space in the context of query optimization. Thus, this enu-
meration must be done implicitly in order to avoid the combinatorial explosion.

5 Conclusion and future work

In this paper we presented the constraints for generating query workflows that
model the plans of hybrid queries. The constraints represent the semantics of

127

query workflow activities that is analogous to the data operation implemented by
the associated service method. We used the action language DLV-K for modeling
the planing problem of query workflow generation in order to get a first (and
naive) search space generation towards the optimization of hybrid queries. The
results show that time complexity for query workflow generation is exponential.

The constraints must be extended in order to consider the continuous data
operators for completely modeling hybrid queries. These constraints can be taken
to model a more sophisticated query workflow generation. This implies the abs-
traction of data operators types and their associated constraints in a general
form.

Theoretically, query workflow generation can be modeled mathematically
by taking the constraints presented here and modeling an objective function.
Additionally, the equivalence and coherence of query workflows must be proved.

References

Bar03. Chitta Baral. Knowledge Representation, Reasoning and Declarative Prob-
lem Solving. Cambridge University Press, 2003.

CAHO5. Daniela Claro Barreiro, Patrick Albers, and Jin-kao Hao. Selecting web ser-
vices for optimal composition. In International Conference on Web Services
(ICWS05), 2005.

CV11. Victor Cuevas-Vicenttin. FEwvaluation of Hybrid Queries Based on Service
Coordination. PhD thesis, Grenoble Institute of Technology, 2011.

CVVC12. Victor Cuevas-Vicenttin, Vargas-Solar Genoveva, and Christine Collet.
Evaluating Hybrid Queries through Service Coordination in HYPATIA.
In EDBT/ICDT 2012, pages 0-3, 2012.

HKWY97. Laura M. Haas, Donald Kossmann, Edward L. Wimmers, and Jun Yang.
Optimizing queries across diverse data sources. VLDB ’97: Proceedings of
the 23rd International Conference on Very Large Data Bases, pages 276—
285, 1997.

OBO04. Mourad Ouzzani and Athman Bouguettaya. Query Processing and Opti-
mization on the Web. Distributed and Parallel Databases, 15(3):187-218,
May 2004.

RSU95. A. Rajaraman, Y. Sagiv, and J.D. Ullman. Answering queries using
templates with binding patterns. In Proceedings of the fourteenth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database sys-
tems, pages 105-112. ACM, 1995.

SMWMO06. Utkarsh Srivastava, Kamesh Munagala, Jennifer Widom, and Rajeev Mot-
wani. Query optimization over web services. VLDB ’06, Proceedings of the
82nd International Conference on Very Large Data Bases, 2006.

TRV95. A. Tomasic, L. Raschid, and P. Valduriez. Scaling heterogeneous databases
and the design of DISCO. In Distributed Computing Systems, 1996., Pro-
ceedings of the 16th International Conference on, pages 449-457. IEEE,
1995.

WCSO08. Hiroshi Wada, Paskorn Champrasert, Junichi Suzuki, and Katsuya Oba.
Multiobjective Optimization of SLA-Aware Service Composition. 2008
IEEE Congress on Services - Part I, pages 368-375, July 2008.

128

