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Subtriviality of continuous fields of nuclear

C∗-algebras

By Etienne Blanchard
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Abstract

We extend in this paper the characterisation of a separable nuclear C∗-algebra
given by Kirchberg proving that given a unital separable continuous field of nu-
clear C∗-algebras A over a compact metrizable space X, the C(X)-algebra A is
isomorphic to a unital C(X)-subalgebra of the trivial continuous field O2⊗C(X),
image of O2 ⊗ C(X) by a norm one projection.

AMS classification: 46L05.

0 Introduction

In order to study deformations in the C∗-algebraic framework, Dixmier introduced
the notion of continuous field of C∗-algebras over a locally compact space ([7]). In the
same way as there is a faithful representation in a Hilbert space for any C∗-algebra
thanks to the Gelfand–Naimark–Segal construction, a separable continuous field of C∗-
algebras A over a compact metrizable space X always admits a continuous field of
faithful representations π in a Hilbert C(X)-module, i.e. there exists a family of rep-
resentations {πx, x ∈ X}, in a separable Hilbert space H which factorize through a
faithful representation of the fibre Ax such that for each a ∈ A, the map x 7→ πx(a) is
strongly continuous ([4, théorème 3.3]).

In a work on tensor products over C(X) of continuous fields of C∗-algebras over X
([16]), Kirchberg and Wassermann raised the question of whether the continuous field
of C∗-algebras A could be subtrivialized, i.e. whether one could find a continuous field
of faithful representations π such that the map x 7→ πx(a) ∈ L(H) is actually norm
continuous for all a in A. In this case, given any C∗-algebra B, the minimal tensor
product A⊗B is a C(X)-subalgebra of the trivial continuous field [L(H) ⊗B] ⊗ C(X)
and is therefore a continuous field with fibres (A ⊗ B)x = Ax ⊗ B. They proved
that a non-exact continuous field with exact fibres cannot be subtrivialized and they
constructed such examples.

The non-trivial example of the continuous field of rotation algebras over the unit
circle T had already been studied by Haagerup and Rørdam in [10]. More precisely, they
constructed continuous functions u, v from T to the unitary group U(H) of the infinite-
dimensional separable Hilbert space H satisfying the commutation relation utvt = tvtut
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for all t ∈ T and the uniform continuity condition max {‖ut − ut′‖, ‖vt − vt′‖} < C ′|t−
t′|1/2 where C ′ is a computable constant.

Our purpose in the present paper is to show that the subtrivialization is always
possible in the nuclear separable case through a generalisation of the following theorem
of Kirchberg using RKK-theory arguments:

Theorem 0.1 ([15]) A unital separable C∗-algebra A is exact if and only if it is iso-
morphic to a C∗-subalgebra of O2. Moreover the C∗-algebra A is nuclear if and only if
A is isomorphic to a C∗-subalgebra of O2 containing the unit 1O2

of O2, image of O2

by a unital completely positive projection.

As a matter of fact, we get an equivalent characterisation of nuclear separable contin-
uous fields of C∗-algebras (theorem 3.2) which is made possible thanks to C(X)-linear
homotopy invariance of the bifunctor RKK(X;−,−) (theorem 1.6) and C(X)-linear
Weyl-von Neumann absorption results (proposition 2.5). This also enables us to have
a better understanding of the characterisation of separable continuous fields of nuclear
C∗-algebras given by Bauval in [2].

In an added appendix, the corresponding characterisation of exact separable con-
tinuous fields of C∗-algebras as C(X)-subalgebras of O2 ⊗ C(X) given by Eberhard
Kirchberg is described (theorem A.1).

I would like to thank E. Kirchberg for his enlightenment on the exact case. I also

want to express my gratitude to C. Anantharaman-Delaroche and J. Cuntz for fruitful

discussions.

1 Preliminaries

1.1 C(X)-algebras

Let X be a compact Hausdorff space and C(X) be the C∗-algebra of continuous func-
tions on X with complex values. We start by recalling the following definition.

Definition 1.1 ([13]) A C(X)-algebra is a C∗-algebra A endowed with a unital mor-
phism from C(X) in the centre of the multiplier algebra M(A) of A.

Remark: We do not assume that C(X) embeds into M(A). For instance, there is a
natural structure of C([0, 2])-algebra on the C∗-algebra C([0, 1]).

For x ∈ X, define the kernel Cx(X) of the evaluation map evx : C(X) → C at x;
denote by Ax the quotient of a C(X)-algebra A by the closed ideal Cx(X)A and by ax

the image of an element a ∈ A in the fibre Ax. Then the function

x 7→ ‖ax‖ = inf{‖[1 − f + f(x)]a‖, f ∈ C(X)}

is upper semi-continuous for any a ∈ A and the C(X)-algebra A is said to be a con-
tinuous field of C∗-algebras over X if the function x 7→ ‖ax‖ is actually continuous for
every a ∈ A ([7]).

2



Examples 1. If A is a C(X)-algebra and D is a C∗-algebra, the spatial tensor product
B = A ⊗ D is naturally endowed with a structure of C(X)-algebra through the map
f ∈ C(X) 7→ f ⊗ 1M(D) ∈ M(A ⊗D). In particular, if A = C(X), the tensor product
B is a trivial continuous field over X with constant fibre Bx ≃ D
2. Given a C(X)-algebra A, define the unital C(X)-algebra A generated by A and
u[C(X)] in M [A⊕ C(X)] where u(g)(a⊕ f) = ga⊕ gf for a ∈ A and f, g ∈ C(X). It
defines a continuous field of C∗-algebras over X if and only if the C(X)-algebra A is
continuous ([4, proposition 3.2]).

Remark: If A is a separable continuous field of non-zero C∗-algebras (not necessarily
unital) over the compact Hausdorff space X, the positive cone C(X)+ and so the C∗-
algebra C(X) are separable. Hence, the topological space X is metrizable.

Definition 1.2 ([4, 5]) Given a continuous field of C∗-algebras A over the compact
Hausdorff space X, a continuous field of representations of a C(X)-algebra D in the
multiplier C∗-algebra M(A) of A is a C(X)-linear morphism π : D → M(A), i.e. for
each x ∈ X, the induced representation πx of D in M(Ax) factorizes through the fibre
Dx.

If the C(X)-algebra D admits a continuous field of faithful representations π in the
C(X)-algebra M(A) where A is a continuous field over X, i.e. the induced representa-
tion of the fibre Dx in M(Ax) is faithful for every point x ∈ X, the function

x 7→ ‖πx(d)‖ = sup{‖(π(d)a)x‖, a ∈ A such that ‖a‖ ≤ 1}

is lower semi-continuous for all d ∈ D and the C(X)-algebra D is therefore continuous.
In particular a separable C(X)-algebra D is continuous if and only if there exists a

Hilbert C(X)-module E such thatD admits a continuous field of faithful representations
in the multiplier algebra M(K(E)) = L(E) of the continuous field over X of compact
operators K(E) acting on E ([4, théorème 3.3]).

Let us also mention the characterisation of separable continuous fields of nuclear
C∗-algebras over a compact metrizable space X given by Bauval in [2] using a natural
C(X)-linear version of nuclearity introduced by Kasparov and Skandalis in [14]§6.2 :
a C(X)-linear completely positive σ from a C(X)-algebra A into a C(X)-algebra B is
said to be C(X)-nuclear if and only if given any compact set F in A and any strictly
positive real number ε, there exist an integer k and C(X)-linear completely positive
contractions T : A → Mk(C) ⊗ C(X) and S : Mk(C) ⊗ C(X) → B such that for all
a ∈ F , one has the inequality

‖σ(a) − (S ◦ T )(a)‖ < ε.

One can then state the following results. The first assertion is a simple C(X)-linear
reformulation of the Choi-Effros theorem and the second one is due to Bauval.

Proposition 1.3 Let X be a compact metrizable space and A be a separable C(X)-
algebra.
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1. ([14]§6.2) Given a C(X)-algebra B and a closed ideal J ⊂ B, any contractive
C(X)-nuclear map A → B/J admits a contractive C(X)-linear completely posi-
tive lift A→ B.

2. ([2, théorème 7.2]) The C(X)-algebra A is a continuous fields of nuclear C∗-
algebras over X if and only if the identity map idA : A→ A is C(X)-nuclear.

Remark: In assertion 1., the ideal J = (C(X)B)J = C(X)J is a C(X)-algebra.

1.2 C(X)-extensions

Given a compact Hausdorff space X, we introduce a natural C(X)-linear version of the
semi-group Ext(−,−) defined by Kasparov ([12, 13]).

Call a morphism of C(X)-algebras a ∗-homomorphism between C(X)-algebras which
is C(X)-linear.

Definition 1.4 A C(X)-extension of a C(X)-algebra A by a C(X)-algebra B is a short
exact sequence

0 → B → D
π

−→A→ 0

in the category of C(X)-algebras. The C(X)-extension is said to be trivial if the map
π admits a cross section s : A→ D which is a morphism of C(X)-algebras.

As in the C∗-algebraic case a C(X)-extension 0 → B → D → A → 0 of A by
B defines unambiguously an homomorphism from D to the multiplier algebra M(B)
of B, which gives a morphism of C(X)-algebras σ : A → M(B)/B (called the Busby
invariant of the extension) and the C(X)-extension is trivial if and only if the map σ lifts
to a morphism of C(X)-algebras A → M(B). Conversely, given a morphism of C(X)-
algebras σ : A→M(B)/B, setting D = {(a,m) ∈ A×M(B), σ(a) = q(m)} where q is
the quotient map M(B) →M(B)/B, one has a C(X)-extension 0 → B → D → A→ 0
(see [12]§7).

Remark: A C(X)-extension 0 → B → D → A → 0 induces for every x ∈ X a
C∗-extension 0 → Bx → Dx → Ax → 0.

In order to define the sum of two C(X)-extensions, recall that the Cuntz algebra
O2 is the unital C∗-algebra generated by two orthogonal isometries s1 and s2 subject
to the relation 1 = s1s

∗
1 + s2s

∗
2 ([6]). Then if K is the C∗-algebra of compact operators

on the infinite-dimensional separable Hilbert space, one defines the sum of two C(X)-
extensions σ1 and σ2 of the C(X)-algebra A by the stable C(X)-algebra K⊗B through
the choice of a unital copy of O2 in the multiplier algebra M(K) of K to be the C(X)-
extension

σ1 ⊕ σ2 : a 7→ q(s1 ⊗ 1)σ1(a)q(s
∗
1 ⊗ 1) + q(s2 ⊗ 1)σ2(a)q(s

∗
2 ⊗ 1) ∈M(K ⊗B)/(K ⊗B),

where q is the quotient map M(K ⊗B) →M(K ⊗B)/(K ⊗B).
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Definition 1.5 Given a compact Hausdorff space X and two C(X)-algebras A and
B, Ext(X;A,B) is the semi-group of C(X)-extensions of A by K ⊗ B divided by the
equivalence relation ∼ where σ1 ∼ σ2 if there exist a unitary U ∈ M(K ⊗ B) of image
q(U) in the quotient M(K ⊗ B)/(K ⊗ B) and two trivial C(X)-extensions π1 and π2

such that for all a ∈ A,

(σ2 ⊕ π2)(a) = q(U)∗(σ1 ⊕ π1)(a)q(U) (in M(K ⊗B)/(K ⊗B)).

Let Ext(X;A,B)−1 be the group of invertible elements of Ext(X;A,B), i.e. the
group of classes of C(X)-extension σ such that there exists a C(X)-extension θ with
σ ⊕ θ trivial. One can generalise Kasparov’s theorem of homotopy invariance of the
group Ext(A,B)−1 to the framework of C(X)-algebras as follows.

Theorem 1.6 ([12]) Assume that A is a separable C(X)-algebra and that B is a
σ-unital C(X)-algebra. Then the group Ext(X;A,B)−1 is isomorphic to the group
RKK1(X;A,B) and is therefore C(X)-linear homotopy invariant in both entries A
and B.

Proof : Let us first make the following observation. Given a C(X)-algebra B and a
Hilbert B-module E , denote by L(E) the set of bounded B-linear operators on E which
admit an adjoint ([11]). Then any operator T ∈ L(E) is B-linear and so C(X)-linear.
This argument provides a natural extension of the Stinespring-Kasparov theorem ([12])
to the framework of C(X)-algebras. Consequently, if A is a separable C(X)-algebra and
B is a σ-unital C(X)-algebra, the class of a C(X)-extension σ : A→M(K⊗B)/(K⊗B)
is invertible in Ext(X;A,B) if and only if there is a C(X)-linear completely positive
contractive lift A→M(K ⊗B).

Let RE(X;A,B) be the set of Kasparov C(X)–A,B-bimodules ([13, definition 2.19]),
i.e. the set of Kasparov A,B bimodules (E , F ) such that the representation A →
L(E) is a C(X)-representation. Call a C(X)-linear operator homotopy an element
{(E , Ft), 0 ≤ t ≤ 1} ∈ RE(X;A,B ⊗ C([0, 1])) such that t 7→ Ft is norm continuous
and define on RE(X;A,B) the equivalence relation corresponding to the one defined
by Skandalis in [18, definition 2]. The constructions given by Kasparov in [12, sec-
tion 7] imply that, if the C(X)-algebra B is σ-unital, the group of equivalence classes
RK̃K(X;A,B ⊗ C1) is isomorphic to Ext(X;A,B)−1, where C1 is the first (graded)
Clifford algebra.

On the other hand, given two graded C(X)-algebras A and B with A separable, the
different steps of the demonstration of [18, theorem 19] provide us with an isomorphism
between the two groups RK̃K(X;A,B) and RKK(X;A,B) since proposition 2.21 of
[13] defines an intersection product in RK̃K-theory and lemma 18 of [18] gives us the
equality

(ev0 ⊗ idC(X))
∗(1C(X)) = (ev1 ⊗ idC(X))

∗(1C(X)) in RK̃K(X;C([0, 1]) ⊗ C(X), C(X)),

where 1C(X) is the Kasparov C(X), C(X)-bimodule (C(X), 0) and evt : C([0, 1]) → C

is the evaluation map at t ∈ [0, 1]. �

Remarks: 1. Kuiper’s theorem implies that the law of addition on the abelian group
Ext(X;A,B)−1 is independent of the choice of the unital copy of O2 in M(K).
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2. If A is a separable nuclear continuous field of C∗-algebras over X and B is a C(X)-
algebra, every C(X)-linear morphism from A to the quotient M(K ⊗ B)/(K ⊗ B)
is C(X)-nuclear and therefore admits a C(X)-linear completely positive lifting A →
M(K ⊗B) thanks to proposition 1.3. Accordingly one has the equality

Ext(X;A,B)−1 = Ext(X;A,B).

2 An absorption result

In this section we prove a continuous generalisation of a statement contained in [15]
which will enable us to get a C(X)-linear Weyl-von Neumann type result (proposi-
tion 2.5). Let us start with the following definition of Cuntz.

Definition 2.1 ([6]) A simple C∗-algebra A distinct from C is said to be purely infinite
if and only if for any non-zero a, b ∈ A, there exist elements x, y ∈ A such that a = xby.

Then, we can state a proposition from Kirchberg’s classification work, based on Glimm’s
lemma ([7], § 11.2). A sketch of proof can also be found in [1, proposition 5.1].

Proposition 2.2 ([15]) Let A be a purely infinite simple C∗-algebra and D be a sepa-
rable C∗-subalgebra of M(A). Assume that V : D → A is a nuclear contraction.

Then there exists a sequence (an) of elements in A of norm less than 1 such that
V (d) = limn→∞ a∗ndan for all d ∈ D.

Remark: A simple ring has by definition exactly two distinct two sided ideals and is
therefore non-zero.

Corollary 2.3 Let A be a continuous field of purely infinite simple C∗-algebras over a
compact Hausdorff space X and assume that D is a separable C(X)-subalgebra of the
multiplier algebra M(A) such that there is a unital C(X)-embedding of the C(X)-algebra
O∞⊗C(X) in the commutant D′ of D in M(A) and the identity map idD : D →M(A)
is a continuous field of faithful representations.

If V : D → A is a C(X)-nuclear contraction, there exists a sequence (an) in the
unit ball of A with the property that for all d ∈ D,

V (d) = lim
n→∞

a∗ndan.

Proof : If F is a compact generating set for D, it is enough to prove that given a
strictly positive real number ε > 0, there exists an element a in the unit ball of A such
that ‖V (d) − a∗da‖ < ε for all d ∈ F .

For x ∈ X, the fibre Ax is a purely infinite simple C∗-algebra and the map d 7→
V (d)x ∈ Ax factorizes through Dx ≃ (idD)x(D) ⊂M(Ax) since idD is a continuous field
of faithful representations. As a consequence, the previous proposition implies that we
can find an element g ∈ A with ‖g‖ ≤ 1 satisfying for all d ∈ F the inequality

‖
[
V (d) − g∗dg

]
x
‖ < ε.
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Thus, by upper semi-continuity and compactness, there exist a finite open covering
{U1, . . . , Un} of the space X and elements g1, . . . , gn in the unit ball of A such that for
all d ∈ F and x ∈ Ui, 1 ≤ i ≤ n,

‖
[
V (d) − g∗i dgi

]
x
‖ < ε.

Choose n orthogonal isometries w1, . . . , wn in the C∗-algebra O∞ ⊗ 1C(X) ⊂ D′ and
let {φi} be a partition of the unit 1C(X) subordinate to the covering {Ui} of X. The

element a =
∑

i φ
1/2
i wigi ∈ A verifies:

1. a∗a =
∑

i,j

√
φiφj g

∗
iw

∗
iwjgj =

∑
i φig

∗
i gi ≤ 1M(A),

2. for d ∈ F and x ∈ X, ‖
[
V (d) − a∗da

]
x
‖ ≤

∑
i φi(x)‖

[
V (d) − g∗i dgi

]
x
‖ < ε. �

Let us mention the following technical corollary which will be needed in theorem 3.2.

Corollary 2.4 If p ∈ O2 ⊗ C(X) is a projection such that for all points x ∈ X, px is
non-zero, then there exists an isometry u ∈ O2 ⊗ C(X) such that p = uu∗.

Proof : Let D2 = limn→∞O2
⊗n be the infinite tensor product of O2.

Given a projection q ∈ D2 ⊗ C(X) such that ‖qx‖ = 1 for all x ∈ X, we first show
that there exists an element v ∈ D2 ⊗ C(X) satisfying 1D2⊗C(X) = v∗qv. Namely, by
density of the algebraic tensor product

[
∪
n
O2

⊗n
]
⊙ C(X) = ∪

n

[
O2

⊗n ⊙ C(X)
]

in the C∗-algebra D2 ⊗C(X) and functional calculus one can find an integer n > 0 and
a projection r ∈ O2

⊗n ⊗C(X) ⊂ D2 ⊗C(X) such that ‖q− r‖ < 1, which implies that
r = s∗qs for some element s ∈ D2 ⊗ C(X). Take then a faithful state ϕ on O2

⊗n and
consider the C(X)-linear completely positive map

V : [O2
⊗n ⊗ 1O2

] ⊗ C(X) → O2
⊗n+1 ⊗ C(X)

defined by the formula V (d) = (ϕ ⊗ idC(X))(d)1O2
⊗n+1⊗C(X) for d ∈ [O2

⊗n ⊗ 1O2
] ⊗

C(X) ≃ O2
⊗n⊗C(X). According to corollary 2.3, there exists an element t ∈ O2

⊗n+1⊗
C(X) such that

1D2⊗C(X) = 1O2
⊗n+1⊗C(X) = t∗rt = (st)∗q(st).

Consider now the set P of projections p in O2⊗C(X) such that px 6= 0 for all points
x ∈ X. If p belongs to P , there exists an isometry v ∈ O2 ⊗ C(X) such that p ≥ vv∗

since the K-trivial purely infinite separable unital nuclear C∗-algebra D2 satisfying the
U.C.T. is isomorphic to O2 ([15]). As a consequence, if t is the isometry t = v(s1⊗1)v∗,
the projection r = tt∗ (Murray-von Neumann equivalent to 1O2⊗C(X)) verifies

p− r ≥ r′ = v(s2s
∗
2 ⊗ 1)v∗ ∈ P.

7



The non-empty set P therefore satisfies the conditions (π1)–(π4) defined by Cuntz
in [6]. But the C∗-algebra O2 ⊗ C(X) is K0-triviality thanks to [6, theorem 2.3] and
the theorem 1.4 of [6] enables us to conclude. �

One now deduces from corollary 2.3 the following absorption results ([21, 12, 15]):

Proposition 2.5 Let A be a σ-unital continuous field of purely infinite simple nuclear
C∗-algebras over a compact Hausdorff space X and let K be the C∗-algebra of compact
operators on the separable Hilbert space H. Denote by q the quotient map M(K⊗A) →
M(K ⊗ A)/(K ⊗ A).

1. Assume that D is a unital separable C(X)-subalgebra of the multiplier algebra
M(K ⊗ A) with same unit such that there is a unital C(X)-embedding of the
C(X)-algebra O∞ ⊗C(X) in the commutant of D in M(K⊗A) and the identity
map idD is a continuous field of faithful representations of D in M(K ⊗ A).

(a) If V is a unital C(X)-linear completely positive map from D in M(K ⊗ A)
which is zero on the intersection D ∩ (K ⊗ A), there exists a sequence of
isometries sn in M(K ⊗ A) such that for every d ∈ D,

V (d) − s∗ndsn ∈ K ⊗ A and V (d) = limn s
∗
ndsn.

(b) If π is a unital morphism of C(X)-algebras from D into M(K⊗A) which is
zero on the intersection D ∩ (K⊗A), there exists a sequence of unitaries un

in M(K ⊗ A) such that for every d ∈ D,

(d⊕ π(d)) − u∗ndun ∈ K ⊗ A and (d⊕ π(d)) = limn u
∗
ndun.

(c) Let B be a C(X)-algebra and assume that the quotient D/(D ∩ (K ⊗ A))
is isomorphic to the C(X)-algebra B, where B is the unital C(X)-algebra
generated by C(X) and B in M [B ⊕ C(X)] ([4, définition 2.7]).

Then, if π : B →M(K⊗A) is a C(X)-linear homomorphism, there exists a
unitary U ∈M(K ⊗ A) such that for all b ∈ B ⊂M(K ⊗ A)/(K ⊗ A),

b⊕ (q ◦ π)(b) = q(U)∗ b q(U).

2. Assume that the continuous field A is separable and let D be a separable C(X)-sub-
algebra of M(A) containing A such that the identity representation D →M(A) is
a continuous field of faithful representations and there is a unital C(X)-embedding
of the C(X)-algebra O∞ ⊗ C(X) in the commutant of D in M(A). Define the
quotient C(X)-algebra B = D/A.

If π : K⊗B →M(K⊗A) is a morphism of C(X)-algebras, there exists a unitary
U ∈M(K ⊗ A) such that for all b ∈ K ⊗B ⊂M(K ⊗ A)/(K ⊗ A),

b⊕ (q ◦ π)(b) = q(U)∗ b q(U).
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Proof : 1. It derives from corollary 2.3 by the same method as the one developed by
Kasparov in [11, theorem 5 and 6]. Nevertheless, for the convenience of the reader we
describe the different steps of the demonstration.
1.a) Let F be a compact generating set for D containing the unit 1M(K⊗A). Then
given a real number ε > 0, it is enough to find an element a ∈ M(K ⊗ A) such that
V (d) − a∗da ∈ K ⊗ A and ‖V (d) − a∗da‖ < 3ε for all d ∈ F .

Let {en} be an increasing, positive, quasicentral, countable approximate unit in the
ideal K ⊗ A of the C∗-algebra generated by K ⊗ A + V (D). If we set f0 = (e0)

1/2 and
fk = (ek − ek−1)

1/2 for k ≥ 1, we can then assume, passing to a subsequence of (en) if
necessary, that ‖V (d)fk − fkV (d)‖ < 2−kε for all k ∈ N and d ∈ F . This implies that
the series

∑
k[V (d)fk − fkV (d)]fk is convergent in K ⊗ A and its norm is less than ε.

Furthermore, the series
∑

k[fkV (d)fk] is strictly convergent in M(K ⊗ A) for all d ∈ F
since

∑
k f

2
k is strictly convergent to 1.

Notice now that the maps Vk(d) = fkV (d)fk are all C(X)-nuclear since the separable
continuous field K ⊗ A is nuclear. The corollary 2.3 therefore enables us to choose by
induction ak ∈ K ⊗ A satisfying the following conditions:

1. ∀d ∈ F ‖Vk(d) − a∗kdak‖ < 2−kε,

2. ∀d ∈ F,∀l < k ‖a∗l dak‖ < 2−l−kε,

3.
∑

k ak is strictly convergent toward an element a ∈M(A).

One then checks as in [11, theorem 5] that the limit a satisfies the desired properties.

1.b) Take a compact generating F for D containing 1M(K⊗A) and consider the homo-
morphism π′ = 1⊗ π : D →M(K⊗ (K⊗A)) ≃M(K⊗A). Given δ > 0, one can find,
thank to the previous assertion, an isometry s ∈M(K ⊗ A) such that

s∗ds− π′(d) ∈ K ⊗ A and ‖s∗ds− π′(d)‖ < δ for all d ∈ K∗K.

As a consequence, if we fix ε > 0, the choice of δ small enough gives us the inequality
‖pd − dp‖ < ε, and so ‖d − [pdp + p⊥dp⊥]‖ < 2ε for all d ∈ F , where p = ss∗ and
p⊥ = 1 − p.

Define the unital map Θ : D → M(p⊥(K ⊗ A)p⊥) by the formula Θ(d) = p⊥dp⊥.
According to the stabilisation theorem of Kasparov ([11, theorem 2]), one can construct
a unitary w ∈M(K ⊗ A) verifying for all d ∈ F the inequality

‖d− w∗[π′(d) ⊕ Θ(d)]w‖ < 3ε.

To finish the demonstration, notice that the two homomorphisms π′ and π′ ⊕ π are
unitarily equivalent.

1.c) Consider the unital extension π̃ of π to B. Then, the morphism π̃ ◦ q : D →
M(K ⊗ A) reduces the demonstration to the previous assertion.

2. The identity representation of the unital C(X)-algebra D = (K ⊗ D) + C(X) ⊂
M(K⊗A) is clearly a continuous field of faithful representations since the unital C(X)-
representation C(X) → M(A) is a continuous field of faithful representations. Extend

9



the map π : K ⊗ B = (K ⊗ D)/(K ⊗ A) → M(K ⊗ A) to a unital morphism of
C(X)-algebras π̃ : D/(K ⊗ A) → M(K ⊗ A). Applying assertion 1.b) to the unital
homomorphism d 7→ (π̃ ◦ q)(d) from the C(X)-subalgebra D ⊂ M(K ⊗ A) to the
multiplier algebra M(K ⊗ A) now leads to the desired conclusion. �

3 The subtriviality

Given a separable continuous field of nuclear C∗-algebras A over X, the strategy to
prove the subtriviality of the C(X)-algebra A will be the same as the one developed
by Kirchberg in [15] to prove theorem 0.1 whose main ideas of demonstration are also
explained in [1, Théorème 6.1]. We associate to A a C(X)-extension by an hereditary
C∗-subalgebra of the trivial continuous field O2 ⊗ C(X) (proposition 3.1) and then
prove that after stabilisation, this C(X)-extension splits by RKK-theory arguments
(theorem 3.2).

3.1 Let us construct the fundamental C(X)-extension associated to an exact separable
continuous field of C∗-algebras.

Proposition 3.1 Given a compact Hausdorff space X and a non-zero separable unital
exact C(X)-algebra A, there exist a unital C(X)-subalgebra F of O2 ⊗C(X) with same
unit and an hereditary subalgebra I of O2 ⊗ C(X) such that I is an ideal in F and the
C(X)-algebra A is isomorphic to the quotient C(X)-algebra F/I.

Furthermore, if the topological space X is perfect (i.e. without any isolated point)
and the C(X)-algebra A is continuous, the canonical map F → M(I) is a continuous
field of faithful representations.

Proof : Thanks to the characterisation of separable exact C∗-algebras obtained by
Kirchberg (theorem 0.1), one may assume that the C∗-algebra A is a C∗-subalgebra of
O2 containing the unit of O2.

Let G ⊂ O2 ⊗ C(X) be the trivial continuous field A ⊗ C(X) over X. Then the
kernel of the C(X)-linear morphism π : G → A defined by π(a ⊗ f) = fa is the ideal
J = C∆(X ×X)G where C∆(X ×X) is the ideal in C(X ×X) of functions which are
zero on the diagonal. Indeed suppose that T ∈ G verifies π(T ) = 0. Then given ε > 0,
take a finite number of elements ai ∈ A, fi ∈ C(X) such that ‖T −

∑
i ai ⊗ fi‖ < ε; one

has ‖T −
∑

i(1 ⊗ fi − fi ⊗ 1)(ai ⊗ 1)‖ < ε+ ‖π(
∑

i ai ⊗ fi)‖ < 2ε.
Define then the hereditary subalgebra I = J [O2 ⊗ C(X)]J in O2 ⊗C(X) generated

by J . It is a C(X)-algebra since it is closed by Cohen theorem (see e.g. [4, proposition
1.8]) and the product (1O2

⊗ f)(bc) = b(1O2
⊗ f)c belongs to I for all f ∈ C(X) and

b, c ∈ I. If we set F = I +G, the intersection G ∩ I is reduced by construction to the
subalgebra J , and so we have a C(X)-extension

0 → I → F → A→ 0.

Assume now that the space X is perfect and that the C(X)-algebra A is continuous.
We need to prove that the map Fx → M(Ix) is injective for each x ∈ X. Let a ∈ G
and b ∈ I be two elements such that the sum d = a + b ∈ F verifies for a given point
x ∈ X the equality
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dxIx + Ixdx = 0 (in [O2 ⊗ C(X)]x ≃ O2 ⊗ C).

To end the proof, we have to show that dx is zero. For every f ∈ C∆(X ×X), one
has (bf)x = −(af)x ∈ Jx, whence bx ∈ Jx and so dx ∈ Gx. But the representation of
Gx ≃ A in M(Jx) ≃ M(Cx(X)A) is injective since X is perfect and A is continuous,
from which we deduce that dx = 0. �

Remark: With the previous notations, if the C(X)-algebra A is nuclear and ψ is a
unital completely positive projection from O2 onto A, the map π ◦ (ψ ⊗ idC(X)) is a
unital C(X)-linear completely positive map from O2⊗C(X) onto the C(X)-subalgebra
A which is zero on the nuclear hereditary C(X)-subalgebra I.

3.2 We can now state the main theorem:

Theorem 3.2 Let X be a compact metrizable space and A be a unital separable C(X)-
algebra with a unital embedding of the C(X)-algebra C(X) in A.

The following assertions are equivalent:

1. A is a continuous field of nuclear C∗-algebras over X;

2. there exist a unital monomorphism of C(X)-algebras α : A →֒ O2 ⊗ C(X) and
a unital C(X)-linear completely positive map E : O2 ⊗ C(X) → A such that
E ◦ α = idA.

Proof : 2⇒1 By assumption the identity map idA = E◦idO2⊗C(X)◦α : A→ A is nuclear
since the C∗-algebra O2 ⊗C(X) is nuclear and so the C∗-algebra A is nuclear. Besides
the C(X)-algebra A is isomorphic to the C(X)-subalgebra α(A) of the continuous field
O2 ⊗ C(X) and is therefore continuous.

1⇒2 • Let us first deal with the case where the space X is perfect.
Given a unital nuclear separable continuous fields A over X which is unitaly em-

bedded in the C∗-algebra O2, consider the C(X)-extension

0 → I → F
π

−→A→ 0

constructed in proposition 3.1 and take the associated C(X)-extension

0 → K⊗ I ⊗O2 → D = (K ⊗ F ⊗ 1O2
) + (K ⊗ I ⊗O2) → K⊗ A→ 0.

The C(X)-nuclear quotient map σ = σ ◦ idK⊗A from the separable nuclear continuous
field K⊗A to the quotient D/(K⊗ I ⊗O2) ⊂M(K⊗ I ⊗O2)/(K⊗ I ⊗O2) admits a
C(X)-linear completely positive lifting K⊗A→ D (⊂ K⊗ [O2 ⊗C(X)] ⊗O2) thanks
to proposition 1.3. This means that the class of σ is invertible in Ext(X;K⊗A, I⊗O2)
(see the second remark following theorem 1.6).

But the group Ext(X;K⊗A, I⊗O2)
−1 is C(X)-linear homotopy invariant (theorem

1.6), hence zero since the endomorphism φ2(a) = s1as
∗
1 + s2as

∗
2 of O2 is homotopic to

the identity map idO2
([6, proposition 2.2]) and so [θ] = 2[θ] in Ext(X;K⊗A, I⊗O2)

−1

for any invertible extension θ of K ⊗ A by I ⊗ O2. As a consequence, the C(X)-
extension defined by σ is stably trivial. Furthermore, the identity representation of
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D ⊂M(K⊗I⊗O2) is a continuous field of faithful representations (proposition 3.1) and
the assertion 2. of proposition 2.5 implies that the quotient morphism (idK ⊗ π⊗ idO2

)
from D to K ⊗ A admits a cross section α which is a morphism of C(X)-algebras.

This monomorphism α is going to enable us to conclude by standard arguments,
using theorem 0.1 and the result of Elliott ([9]) that the C∗-algebra O2 is isomorphic
to O2 ⊗O2.

Choose a non-zero minimal projection e11 in the C∗-algebra K of compact operators
that we embed in O2 and let ϕ be a state on O2 such that ϕ(e11) = 1. If we take a
unital completely positive projection ψ of O2 onto the nuclear C∗-subalgebra A ⊂ O2

(theorem 0.1), the composed map

E = (ϕ⊗ idA) ◦
(
idO2

⊗ [π ◦ (ψ ⊗ idC(X))] ⊗ ϕ
)

is a unital C(X)-linear completely positive map from O2 ⊗ [O2 ⊗ C(X)] ⊗O2 onto A.
Take also an isometry u ∈ O2 ⊗ C(X) such that α(e11 ⊗ 1A) = uu∗ (corollary 2.4) and
define the unital C(X)-algebra morphism

β : A −→ O2 ⊗ [O2 ⊗ C(X)] ⊗O2 ≃ O2 ⊗ C(X)

by the formula β(a) = u∗α(e11 ⊗ a)u. If Ẽ : O2 ⊗C(X) → A is the completely positive
unital map d 7→ E(udu∗), one gets for all a ∈ A the equality

(Ẽ ◦ β)(a) = (E ◦ α)(e11 ⊗ a) = a

• Let us now come back to the general case of a compact space X.
Define the continuous field B = A ⊗ C([0, 1]) over the perfect compact space Y =

X × [0, 1]. According to the previous discussion, there exist a unital completely positive
map Ẽ : O2 ⊗ C(Y ) → B and a C(X) ⊗ C([0, 1])-linear monomorphism α̃ : B →
O2 ⊗ C(Y ) such that Ẽ ◦ α̃ = idB. If ev1 : C([0, 1]) → C is the evaluation map at
x = 1 ∈ [0, 1], define the two maps E : O2 ⊗ C(X) → A and α : A→ O2 ⊗ C(X) by

E(d) = (idA ⊗ ev1) ◦ Ẽ(d⊗ 1C([0,1])) and α(a) = (idO2⊗C(X) ⊗ ev1) ◦ α̃(a⊗ 1C([0,1])).

Then E is a unital C(X)-linear completely positive map, α is a unital C(X)-linear
monomorphism and one has the identity E ◦ α = idA. �

Remark: Assume that X is a locally compact metrizable space and that the C0(X)-
algebra A is a nuclear continuous field of C∗-algebras over X, where C0(X) denotes
the algebra of continuous functions on X vanishing at infinity. If X̃ is the Alexandroff
compactification of X, the unital C(X̃)-algebra A generated by A and C(X̃) in the
multiplier algebra M [A ⊕ C(X̃)] is a separable unital continuous field of C∗-algebras
over X̃ ([4, proposition 3.2]). By theorem 3.2, there exists therefore a C(X̃)-linear
monomorphism α : A →֒ O2 ⊗ C(X̃) and the C0(X)-algebra A is isomorphic to the
C0(X)-subalgebra α(A) of O2 ⊗ C0(X).
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4 Concluding remarks

4.1 A C(X)-subalgebra of O2 ⊗ C(X) is by construction exact and continuous. Con-
versely, if A is a non-zero exact separable unital continuous field of C∗-algebras over a
perfect metrizable compact space X, one has by proposition 3.1 a C(X)-extension

0 → I → F → A→ 0

where F is a C(X)-subalgebra of O2 ⊗ C(X). If the identity map A → A = F/I
admits a C(X)-linear completely positive lifting A → F , the same method as the one
used in theorem 3.2 will imply that the exact continuous field A is isomorphic to a
C(X)-subalgebra of the trivial continuous field O2 ⊗ C(X).

It is therefore interesting to know whether this map admits a C(X)-linear completely
positive lifting in the not discrete case.

4.2 Let us have a look at one of the technical problems involved, the Hahn-Banach type
extension property in the continuous field framework for finite type C(X)-submodules.

Let A be a separable unital continuous field of C∗-algebras over a compact metrizable
space X and let D be a finitely generated C(X)-submodule which is an operator system.
Assume that φ : D → C(X) is a C(X)-linear unital completely positive map. Then for
x ∈ X, there exists, thanks to [4, proposition 3.13], a continuous field of states Φx on
A, i.e. a C(X)-linear unital positive map from A to C(X), such that for all d ∈ D,

Φx(d)(x) = φ(d)(x).

As a consequence, given ε > 0 and a finite subset F of D, one can build by continuity
and compactness a continuous field of states Φ on A such that

max{‖Φ(d) − φ(d)‖, d ∈ F} < ε.

But one cannot find in general any continuous field of states on A whose restriction
to D is φ. Indeed, consider the C(Ñ)-algebra A = C

2 ⊗ C(Ñ) where Ñ = N ∪ {∞} is
the Alexandroff compactification of the space N of positive integers. Define the positive
element a ∈ C∞(Ñ)A ⊂ A by the formulas

an =

{
( 1

n+1
, 0) if n even

(0, 1
n+1

) if n odd

and let φ be the C(Ñ)-linear unital completely positive map with values in C(Ñ) defined
on the C(Ñ)-submodule generated by the two C(Ñ)-linearly independent elements 1A

and a through the formula

φ(a)(n) = 1
n+1

if n <∞ and φ(a)(∞) = 0.

Suppose that the continuous field of states Φ is a C(Ñ)-linear extension of φ to A. Then
as A. Bauval already noticed it, one has the contradiction

1 = Φ(1A)(∞) = Φ ((1, 0) ⊗ 1) (∞) + Φ ((0, 1) ⊗ 1) (∞)
= limn→∞ Φ ((1, 0) ⊗ 1) (2n+ 1) + limn→∞ Φ ((0, 1) ⊗ 1) (2n)
= 0 + 0 = 0.
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Appendix by Eberhard Kirchberg
(Humboldt Universität zu Berlin)

In this appendix, we solve in proposition A.3 the lifting question raised in paragraph
4.1 through a continuous generalisation of joint work of E.G. Effros and U. Haagerup
on lifting problems for C∗-algebras ([8], see also [22]). This result enables us to state
the following characterisation of separable exact continuous fields of C∗-algebras:

Theorem A.1 Let X be a compact metrizable space and A be a (unital) separable
continuous field of C∗-algebras over X.

Then the C∗-algebra A is exact if and only if there exists a (unital) monomorphism
of C(X)-algebras A →֒ O2 ⊗ C(X).

Let us start with a technical C(X)-linear version of Auerbach’s theorem ([17, propo-
sition 1.c.3]) for a continuous field of C∗-algebras A over X which gives us local bases
over C(X) with continuous coordinate maps for particular free C(X)-submodules of
finite type in A.

Define a C(X)–operator system in A to be a C(X)-submodule which is an operator
system.

Lemma A.2 ([8, lemma 2.4]) Let A be a separable unital continuous field of C∗-
algebras over a compact metrizable space X, E ⊂ A be a C(X)–operator system and
assume that there exists an integer n ∈ N

∗ such that for all x ∈ X, the dimension
dimEx of the operator system Ex ⊂ Ax equals n. Then the following holds.

Given any point x ∈ X, there exist an open neighbourhood U of x in X, self-adjoint
C(X)-linear contractions ϕi : A→ C(X) and self-adjoint elements fi ∈ E with ‖fi‖ ≤ 2
for 1 ≤ i ≤ n such that

∀a ∈ C0(U)E, a =
∑

i ϕi(a)fi.

Furthermore, there exists a continuous field of states Ψ : A → C(X) such that the
restriction of the map 2nΨ − idA to the operator system E is completely positive.

Proof : Let us fix a point x ∈ X. Then there exist, thanks to Auerbach’s theorem,
a normal basis {r1, . . . , rn} of the fibre Ex where each ri is self adjoint and norm one
hermitian functionals φj : Ax → C, 1 ≤ j ≤ n, such that φj(ri) = δi,j.

Consider the polar decomposition φj = φ+
j − φ−

j where φ+
j and φ−

j are positive
functionals such that 1 = ‖φj‖ = ‖φ+

j ‖ + ‖φ−
j ‖. By [4] lemme 3.12, there exist C(X)-

linear positive maps ϕ+
j and ϕ−

j : A → C(X) which extend the functionals φ+
j and

φ−
j on the fibre Ax to the C(X)-algebra A with the property that ϕ+

j (1) = ‖φ+
j ‖ and

ϕ−
j (1) = ‖φ−

j ‖. Take also n norm 1 self-adjoint elements ei ∈ E satisfying the equality
(ei)x = ri and define the matrix T = [ϕj(ei)]i,j ∈Mn(R) ⊗ C(X).

One has by construction Tx = 1Mn(R); the set U1 ⊂ X of points y ∈ X for which the
spectrum of Ty ∈ Mn(R) is included in the open set {z ∈ C, |z| > 1/2} is therefore an
open neighbourhood of x in X ([4, proposition 2.4 b)]). If η is a continuous function
on X with values in [0, 1] which is 0 outside U1 and 1 on an open neighbourhood U of
the point x ∈ X, the self-adjoint elements f1, . . . , fn of norm less than 2 are then well
defined in C0(U1)E by the formula
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T




f1
...
fn


 = η




e1
...
en




and satisfy the relation ϕj(fi)(y) = δi,j for each y ∈ U since the matrix Ty is invertible,
whence the desired equality for every a ∈ C0(U)E.

Keeping the same fixed point x, define now the continuous field of states Φ =
1
n

∑
i(ϕ

+
i + ϕ−

i ). Then one gets for all a ∈ C0(U)E the equality:

(2nΦ − idA)(a) =
∑

1≤i≤n

[
ϕ+

i (a)(2 − fi) + ϕ−
i (a)(2 + fi)

]
.

The restriction of the map (2nΦ− idA) to C0(U)E is therefore completely positive and
an appropriate partition of the unit 1C(X) enables us to conclude. �

Noticing that a C(X)-linear map σ : A → B between C(X)-algebras is completely
positive if and only if each induced map σx : Ax → Bx is completely positive (see for
instance [4, proposition 2.9]), the lemma A.2 allows us to state a continuous version
of theorem 2.5 of [8]. Replacing then the continuous field A by A ⊕M2∞(C) ⊗ C(X)
(where M2∞(C) = limn→∞M2n(C)) and working with finitely generated C(X)–operator
systems Ek ⊂ A⊕

⋃
nM2n(C)⊗C(X) for which the function x 7→ dim(Ek)x is continuous,

one derives the following desired C(X)-linear completely positive lifting result.

Proposition A.3 ([8, theorem 3.4]) Suppose that A and B are two unital separable
exact continuous fields of C∗-algebras over a compact space X with A = B/J for some
nuclear ideal J in B.

Then there exists a C(X)-linear unital completely positive lifting A→ B of idA.

Proof : Let us define the two continuous fields A = A ⊕M2∞(C) ⊗ C(X) and B =
B ⊕ M2∞(C) ⊗ C(X). It is clearly enough to find a C(X)-linear unital completely
positive cross section θ of the quotient morphism B → A (by [4, theorem 3.3]).

Consider a dense sequence {ak} in the self-adjoint part of A where each ak belongs
to the dense subalgebra A⊕

⋃
nM2n(C) ⊗ C(X) of A and a1 = 1. Let us show that we

may assume inductively that C(X)–operator system En generated by the ak, 1 ≤ k ≤ n,
satisfies the equality dim(En)x = n for every n ∈ N

∗ and every x ∈ X. The inductive
step is the following. Given n ≥ 2, there exists by construction an integer l such that
En ⊂ A⊕M2l(C) ⊗ C(X). Set a′n = an + 2−n−1dl ⊗ 1C(X) where

dl = 1M
2l (C) ⊗

(
1 0
0 0

)
∈M2l+1(C) ⊂M2∞(C).

Then the C(X)-module E ′
n = En−1 + C(X)a′n verifies for each x ∈ X the equality

dim(E ′
n)x = dim(En−1)x + 1.

Using proposition 1.3, one can now finish the proof by the same method as the one
developed by E.G. Effros and U. Haagerup in [8].3 (see also [22, theorem 6.10]). �
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