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On finiteness of the number of
N-dimensional Hopf C*—algebras

Etienne Blanchard

Abstract

Given an algebraically closed field k£ and an integer N, D. Stefan has proved
that there exists only a finite number of Hopf k-algebras which are both semi-
simple and co-semi-simple. In the C*-algebraic framework, we provide in this
note explicit upper-bounds for the number of Hopf C*—algebra structures on a

given finite dimensional C*—algebra.
Operator theoretical methods (Timisoara, 1998), Theta Found., Bucharest, (2000), pp 39-46. (with an added appendix)

Keywords: Hopf C*-algebra, Finite dimensional Kac algebra, Multiplicative unitary.
AMS Subject Classification: 16W30, 46105, 47d35.

1 Introduction.

Given an algebraically closed field k£ and an integer N, D. Stefan has proved through
cohomological arguments that there exists only a finite number of Hopf k-algebras which
are both semi-simple and co-semi-simple ([4, Theorem2.2]).

In order to provide an insight into his proof in the C*—algebraic case, let us introduce
the following algebraic formulation of the definition of a finite dimension Hopf C*-
algebra, a particular case of the definition of a compact Hopf C*-algebra given by
Woronowicz in [6].

Definition 1. Given a non zero integer N, an N-dimensional Hopf C*—algebra is a
pair (A,0), where A is a C*—algebra of dimension N and § : A — A® A is a unital
co-associative bisimplifiable C*-morphism, i.e. a C*-morphism such that :

a) for alla € A, one has (6 ®id)od(a) = (id®d)od(a) (in AR AR A),
b) the linear spaces lin{5(A)(A®1)} and lin {6(A)(1® A)} are both equal to A® A.

The demonstration of D. Stefan for the finiteness of the number of Hopf C*—algebras
with given finite dimension then depends on the following proposition.

Proposition 2 ([4], Theorem 2.1). Assume that (A,0) is a finite dimensional Hopf
C*—algebra and that the operator T'€ Hom(A, A® A) satisfies the two conditions :

a) Ya,b € A, T(ab) =T(a)d(b) + 6(a)T(b),
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b) (T®id)od+ (0®id)oT = (id®T)od+ (id®§) oT in Hom(A, A%?).
Then T = 0.

The proof of finiteness goes as follows. Suppose that there exists an infinite number
of distinct Hopf C*—algebra structures (A, d,) on the finite dimensional C*—algebra A.
Taking a subsequence if necessary, one may assume that the sequence of coproducts
0, € Hom(A, A ® A) converges toward a coproduct ¢ satisfying the relation & # 9,
for all n € N. Then § € Hom(A, A ® A) also defines by continuity a Hopf C*—algebra
structure on A and the sequence T}, = ||6,, — || *(6,, — &) of norm 1 operators admits at
least one accumulation point 7" € Hom(A, A® A). Then T satisfies the conditions of the
previous proposition for the Hopf C*—algebra (A, d) and is therefore zero, a conclusion
which is absurd.

Let us remark that this proof of finiteness of the number of Hopf C*—algebra struc-
tures on a finite dimensional C*—algebra does not provides us with any upper bound of
this finite number, a question that we shall study in this note using the framework of
multiplicative unitaries.

Note also more generally that A. Ocneanu has shown that there are only finitely

many classes of inclusions of subfactors with given finite index and finite depth.

I would like to express my gratitude to G. Skandalis for fruitful discussions. I also thank
the referee for his motivating comments.

2 Preliminaries.

We describe in this section the one-to-one correspondence between finite dimensional
Hopf C*—algebras and multiplicity 1 multiplicative unitaries acting on the tensor square
of a finite dimensional Hilbert space (the reader may find a more refined presentation
of this equivalence in [1] or [2]). We also provide two technical lemmas which will be
used in the demonstration of the main proposition 5.

2.1 Assume that (A,0) is a finite dimensional Hopf C*~algebra. Then the tracial state
p: A = ®&;M;,(C) — C defined by ¢(p) = k;/N for any minimal projection p €
My, (C) C A is a Haar state i.e. such that

(p®id)od(a) = (id® p)od(a) = p(a)la

for all a € A ([6], see also [5, theorem 2.3]). Consider the G.N.S. construction (H, L, e)
associated to this state ¢ and define the operator V' € L(H ® H) through the formula

V(L(a)e ® L(b)e) = (L ® L)(0(a)(1®b))(e ®@e) for a,b € A.

As ¢ = w, . o L defines the Haar state on (A4, §), the operator V' is unitary and one
derives from the coassociativity condition the pentagonal relation

VigVisVag = VasVis (in LHR HR H) ),
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i.e. V' is a multiplicative unitary ([1]). Furthermore, one has for all a € A the relation

(L& L)d(a) = V(L(a) @ 1)V*.

2.2 Conversely let H be a finite dimensional Hilbert space and let V € L(H @ H)
be a multiplicative unitary. Then the vector space L(S) generated by the operators
(w®id)(V), w € L(H)*, is naturally endowed with a structure of bisimplifiable Hopf
C*—algebra of coproduct d(a) = V(a ® 1)V* for a € L(S) ([1, théoreme 4.10]). If 7 is
the normalised trace on L(H), the operator p, = (id®7)(V) is a non zero projection on
the vector space of fix vectors by V', i.e. the vectors £ € H such that V({®n) =£{®@n
for all n € H. One calls multiplicity of V' the rank of this projector.

If ¥ € L(H ® H) is the volt operator (defined by the relation ¥(§ ® n) = n ® € for
&,m € H), one checks that the unitary XV *X is also multiplicative. Define also for w €
L(H)* the linear form w* by w*(a) = w(a*)* for a € L(H). Then the vector space p(S)
generated by the elements (id®@w)(V) = (w*®id)(XV*X)*, w € L(H)*, is endowed with
a structure of bisimplifiable Hopf C*—algebra of coproduct g(b) =V*(1®b)V for b e S.
The vectors 7 € H in the image of the projector p, = (id®@7)(XV*Y) = (r®1d)(V) are
said to be cofiz vectors by V'; they satisfy the equality V(§ ® n) = ® n for all £ € H.

Note that the rank of the projector p, is the same as the one of p, since T(ﬁT) =
(ren)(V) = T(pT ) As a consequence, if the multiplicity of V' is 1, one may find a
unit fix vector e € H and a unit cofix vector é € H such that (e, é) = (dim H) /2 since
pr € S is the rank 1 projection 6 ¢ and 7(p,) = (e, p,e) = |{e, €)|*.

Remarks. a) The restriction of the trace 7 to the algebra L(S) is equal by uniqueness
to the Haar state w, . on the Hopf C*-algebra L(S), where e € H is a unit fix vector.

-~

b) The multiplicative unitary V' belongs the C*-algebra p(S) ® L(S) C LIH®H) ([1]).

2.3 Let us investigate more precisely the properties of a given multiplicity 1 multi-
plicative unitary V' € L(H ® H) acting on the tensor square of a finite N—dimensional
Hilbert space H.

Assume that the two norm 1 vectors e, ¢ € H are fix and cofix vectors by V satisfying
the equality (e,é) = N~'/2. As the vector e is a cyclic separating vector for the C*—
algebra L(S), one can define an operator U € L(H) through the formula

U((w ® id)(V).e) = (w*®id)(V)*.e forwe L(H)"
Then U is an involutive unitary and the commutant of the C*—algebra L(S) (resp.

p(S)) is equal to the C*—algebra R(S) = UL(S)U (resp. A(S) = Up(S)U). Moreover

~

the two unitaries V =S(U @ 1)V(U@ 1L € L(S)@A(S) and V = (U U)V(U @ U)
are multiplicative and one has the equality

SVVV(I®U)=1 (in L(HRH)). (1)

These properties exactly mean that the multiplicity 1 multiplicative unitary V is always
irreducible ([1] section 6) and this implies the following lemma.
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Lemma 3. Given two unit vectors e, é in a Hilbert space H of dimension N such that
(e,é) = N~V2 define the map

m:TE€LHDH) — NV2(id®@we)(XT) € LIH).

Then w(V') =1 for every multiplicity 1 multiplicative unitary V € L(H ® H) which
admits the vector e (resp. €) as a fix (resp. cofix) vector.

Proof. As the two vectors e and é are fixed by U, formula (1) entails for all £;,& € 'H
the sequence of equalities :

(&, (V&) = (6 ® &, X7V‘7(1 RU)(&E®e)=(6®6,6Ue) = N7V2(6,6). O

Lemma 4. Let V € L(H®H) be a multiplicative unitary of multiplicity 1 acting on the
tensor square of a finite dimensional Hilbert space H and denote by T the normalised
trace on L(H).

-~

a) If x € A(S) and y € L(S), then 7(zy) = 7(x) 7(y).
b) One has for all a € L(H) the equality

(TRid) (Ve )V*)=1(a)l =(d7) (V' (1®a)V).
Proof. a) The element \(x) ® 1 commutes by construction with V' & p(g) ® L(S)
and for all y € L(.S), one has the equality §(y) = V(y ® 1)V* € L(S) ® L(S). As the
form 7 defines by restriction the Haar state on the Hopf C*—algebra L(.S), one has the
following sequence of equalities.

T(xy) =

|
ety
® ®
\]
S~—

b) It is enough to check the first equality since the second one can then be deduced
replacing the multiplicative unitary V' by XV *X. R

If the operator a € L(H) admits the decomposition a = zy with x € A(S) and
y € L(95), assertion a) implies that

(r@id)(V(a® 1)V*)

(7 ®id)[(z © 1)o(y)]
= 7(z) (T ®id)[6(y)]
:T(l‘)T(y)l :T(a 1.

The multiplicity 1 of the multiplicative unitary V then allows us to conclude since the

-~

vector space generated by the products zy, x € A(S) and y € L(S), is all the algebra
L(H). O



3 The approach of multiplicative unitaries.

The purpose of this section is to reformulate the finiteness problem in terms of
multiplicative unitaries. In order to do so, recall that two multiplicative unitaries
V,W € L(H ® H) are said to be equivalent if there exists a unitary Z € L(H) (corre-
sponding to a change of orthonormal basis of H) such that V(Z ® Z) = (Z @ Z)WV.

3.1 Let ¢, ¢ € 'H be two unit vectors satisfying the relation (e,é) = N~Y2. Given
any multiplicity 1 multiplicative unitary V' € L(H ® H), one can always assume, up to
equivalence by 2.2, that the vector e (resp. é) is a fix (resp. cofix) vector for V'. Indeed
if f and f are fix and cofix unit vectors for V' satisfying (f, f Y =N""2and Z € L(H)
is a unitary such that Ze = f, Zé = f, then the operator (Z ® Z) V'(Z ® Z) has the
requested properties.

One can therefore state without loss of generality the following proposition.

Proposition 5. Given a Hilbert space H of finite dimension N and two unit vectors
e,é € 'H satisfying the relation (e,é) = N~Y2 there exists a constant k > 1 satisfying
the following properties.

If V,V' € LI(H® H) are two multiplicity 1 multiplicative unitaries admitting the
vector e (resp. €) as a fix (resp. cofix) vector and satisfying the inequality |V — V|| <
1/k, then

a) there exists a unitary Z € L(H) such that

V' = (Z@2)V(Ze Z)|| <k|V' - V|*,
b) there exists a unitary Z € L(H) such that V' = (Z @ Z)*"V(Z R Z).

Proof. a) Step 1. Let us first expand the pentagonal relation satisfied by V' as a
formula depending on the difference R =V’ — V.
If one sets f(R) = RiaRi3Va3 + ViaRi3Ras + R12VigRog — RosRip + Ri2Ri3Ras, then

O - (V+R)12(V+R)13(V+R>23— (V+R)23<V+R>12 (2)
= 04 Ri2Vi3Vas + ViaRi3Vas + ViaVisRas — RogVia — VasRio + f(R).

Using the normalised trace 7 on £(H), define the two operators K = —(7®id)(RV™*),
K' = (id®7)(V*R) in L(H) and the map a = (id@7®1id): L(HOHRIH) — LIHOH).
One can then write the following sequence of equalities.
Oé(Vlz* [312‘/13‘/23 + ViaR13Vas + ViaVizRag — Ro3Via — ‘/23312] Vg%)
— a((V'R)iaVis + Ris + Vig(RV*)a5 — Viy(RV*)2sViaVis — VigVas(V*R) 12755
= (K'@ 1)V +R- V(1@ K) - a(Vy(RV)2sVia) .V = V. (Vas(V' R) 12V
=R-VK'®1+1®K)+(K'®1+1®K)V by lemma 4.b) .

This gives the inequality [R—V(K'®1+ 1K)+ (K' @1+ 1@ K)V| < ||[f(R)] <
4]|R||? + || R||® by above equation (2).



The unitarity of the operator V' means that 1 = (V')*V’ =14+ R*V + V*R + R*R,
so that | K + K*|| = ||(r ® id)(R*V + V*R)|| < ||R||* and || K" + (K")*|| < ||R||*. Thus
the two skew-ajoint operators K, = (K — K*) and K| = (K’ — (K')*) provide us
with the upper estimate

IR-VEK 1+12K,)+ (K e1+1xK,)V| )
<AIRIP + [IRIP + 2(K, — K|+ 2[K; — K'| < 6] R + [|1R]|°.

Step 2. In order to derive a unitary approximation from (3), define for ¢t € [0, 1]
the unitaries v; = exp(tK,), wy = expt(tK!) in L(H) and ¢(t) = (w; @ v)*V (w; ®
v) € L(H ® H). The function g is C* and for all ¢ € [0,1], one has the formula

g (t) = (w@v)* [(K’L R1+1K,)V+V(K ®1+1® KL)] (w;®@v;). As a consequence,

if one sets Z; = v; and Z] = wy, the Taylor formula gives us the inequality

IV = (21 20"V (Z © 22)]| < V' = 9(0) — g/ O)]| + sup{llg"(®)].0 <t < 1)
<6|RIP + (R + 16 (max{|K. |, K}) ()
< (22 + |RI) - IRJ?.

Step 3. Let 7 be the map T € L(H ® H) — NY2(id ® we ) (X T) € L(H). Then
(V) =7(V') = 7(SVE) = 7(SVE) = 1 € L(H)

by lemma 3 since e (resp. €) is a fix (resp. cofix) vector for each of these multiplicity 1

-~

multiplicative unitaries. Moreover, as the algebra A(S) ® R(S) commutes with V €

-~

p(S) @ L(S) (cf. 2.3), one has the relation

TV - (Z1 @ Z,)'V(Z, @ Z,)] =1- N1/2 Z3(id ® wzQé,Zle)(E VA (5)

-~

where the elements a € R(S) and b € A(S) are uniquely determined by the equalities
i) Zie = 1(XVE) Zye = NY2(id @ we z,.)(V)e = ae and
i) Zié = n(EVE)Zjé = NY*(w, 7. @ id)(V)é = bé
since the vector e (resp. ¢é) is separating for the algebra R(S) (resp. A(S)). Thus
equations (3) and (5) give us the inequality |1 — Zfab*Z}|| < NY2 (22 + ||R|) || R||*.

-~

Set t = 23 N'/2||R||> and suppose from now on that t < 1/2, an hypothesis which
implies in particular that [|[R|| < 1 and ||1 —abZ] Z{|| < 1/2, so that the operator a
(and similarly b) is invertible. One can then define in £(H) the two unitaries

Zy =u*Zy and Z =v*Z; where a = u|a| and b = v|b]|.

The previous inequality [|1 — Ziab*Z{|| = || Zx(Z3)" —|a].|b| || < 23 N'/? || R||* < sin(5)
implies that the spectrum of the unitary operator Z,(Z)* is contained in the arc

{exp(iz); x € [-0,0]} where 0 € [0, 7] is determined by the formula sin(f) = t, since



the spectrum of the invertible element |a|.|b| is the same as the one of the positive
element |b|'/2(|a|)|b|'/? and is therefore real. This entails

49

. 2
1Zo — ZY|P <1 —e?)P=2(1-V1—t2) < (1 —t3) 122 < _t? < %

t
V3
and so V' —(Z2® 25)*'V(Z2® Zo)|| < 23| R|?+2]| 22— Z3]| < 23 (1+(7/3)N'2)|IR%.

t* (6)

Step 4. The last step consists in finding a unitary Zs close to Zs, which admits the
vectors e and é as fixed points. By construction K,é = 0 and so Z;é = é, whence
Zyé = |a|7la*¢ = ¢é since aé = NY2(¢, Zie)é = |alé. Similarly Zje = e whereas
Zye = cos(#)e + sin(0')¢ where ¢ € H is a unit vector orthogonal to e which satisfies
(€,¢) = (& Zje) = (é,¢e) = N2,

One can therefore find a unitary Z € £(H) such that Zé = é, Ze = Zje and

~ e
M—w—m—(

Thus the vector e (resp. €) is a fix (resp. cofix) vector for the multiplicative unitary

(Z3 ® Z3)*V(Z3 ® Z3) where Z3 = Z5Z. Besides one has the inequality

60’

it ) I =1 Z3e — Zse|| < (7/6) x 23 N'/2 || R||* by (6).

V' = (Zs © Zs)V(Zs® Zs)| < |V = (220 Z5)"V(Z2 @ Z)|| + 4| Z — 1
<k|V' —=V|? with k= 23(1+7N?)

as soon as 23 N'/2||R||?> < 1/2, a condition which is always fulfilled if || R|| < 1/k.

b) One can find by induction thanks to assertion a) unitaries Z,, € L(H), n > 3, such
that [V — (Zusr © Zuc)V (Zuss ® Zust)| < KV’ — (Z, © Za)V(Zy © Z0)| <
(k||V" = V)" 2|V = V| and a weak limit Z € L(H) of the sequence { Z, },>3 has
the desired property. Il

One clearly derives from proposition 5.b) and [1, théoréme 4.7] the following theo-
rem.

Theorem 6. Given a Hilbert space H of finite dimension N, there exists only finitely
many equivalence classes of multiplicative unitaries V€ L(H @ H).

3.2 In order to refine the upper estimate of the number of possible N-dimensional
Hopf C*—algebras, fix an N-dimensional C*-algebra S and let (H, L,e) be the GNS
construction for the trace state ¢ on S introduced in 2.1. Suppose also that there is
at least one Hopf C*-algebra structure on S, so that one can fix a unit vector é € 'H
satisfying the relation (¢,e) = N~!/2 and such that this vector é is a cofix vector (up
to equivalence) for any multiplicity 1 multiplicative unitary V' € L(H) ® L(S).

Assume that the coproducts §, ¢ : S — S ® S define two structures of Hopf C*—
algebra on S. Then ¢ defines the Haar state for both (5,4) and (S,4’) and one can
suppose, up to equivalence, that e (resp. é) is a fix (resp. cofix) vector for both



associated multiplicity 1 multiplicative unitaries V', V' € L(H) ® L(S) C L(H @ H)
(cf. 2.2 remark b).

Define the antilinear isometry J : H — H by ze — z*e for x € L(S) (cf e.g.
[2, 1.6]). With the notations of above proposition 5, one has Z; € L(S) since K =
(1 ®@id)[(V =V")V*] € L(S). The operator a € R(S) defined through the equality
ae = Zje therefore satisfies a = JZ7J' € L(S) and the unitary Zo = JZ,J 7, verifies :

a) Zine = e, Zi2¢ = ¢ and

b) V' = (22 @ Z2)"V(Zo @ Zo)|| = |V' = (Z2 ® Z1)'V (22 ® Z1)|| < k|| R|* with
k =23(1+ (7/3)N1/?).

As any multiplicity 1 multiplicative unitary V € L(H) ® L(S) is a rank N operator
in L(H ® H), one gets the pretty rough upper-bound

2(N-1)

(2] = a1+ (7/3)8572)

for the number of possible Hopf C*—algebra structures on the N-dimensional C*—algebra

S.
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4 Appendix

The given proof of proposition 2 is incorrect as pointed out by A. Wassermann. The
correct one actually goes as follows.

Suppose that (A, A, e, ) is a finite dimensional Hopf C*-algebra and that the -
linear map T': A — A® A satisfies for all z,y in A (i) T'(zy) = T'(2)A(y)+A(z)T(y)
and (ii) ((dRA)T(x)+(1d@T)A(r) = (A®id)T(x)+(T®id)A(x) (cf proposition 2).



Take Sweedler notations A(a) = Y a1 ® ag € A® A for a € A and consider the
linear map

ac€A— ala)=> (pRid) [(S(al) ® 1)T(a2)} cA.
We have the equality > S(aj)a; = e(a) and so by (i), alab) = > (¢ ®
id) [(S(b1)S(a1) © 1) T (ag) A(by)] + (¢ @ id) [(S(a1) @ 1) Aaz)T(b)(S(b2) @ 1)] =
ala)b+ aa(b) for all a,b € A, i.e. ais a derivation. There exists therefore h € A
with a(a) = ah — ha .

Recall that (¢ ® id) [( DA(c )} = (id ® ) [A(S(b))u ® S(c))] for all byc € A
(f [6]). Thus Aa(a) = ~T(a) + (@ @ id)A(a) + X (¢ @id@id) | (S(a) @ 10 1)(Ae
id)T(aQ)] = —T(a) + (a ®id)A(a) + (id ® a)A(a) thanks to above formula (ii).
Set ay(a) = exp(t h)aexp(—th) and Ai(a) = (ar ® ay)Aa_¢(a) for all ¢ € R. Then

T(a) =[Aa),l1®@h+h®1—-A(h)] = %At(a)) is inner and there are therefore
t=0
only finitely many possible Hopf C*-algebras structures on the C*-algebra A.
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