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Abstract. Given reduced amalgamated free products of C∗–algebras (A, φ) = ∗
ι∈I

(Aι, φι) and

(D,ψ) = ∗
ι∈I

(Dι, ψι), an embedding A →֒ D is shown to exist assuming there are conditional

expectation preserving embeddings Aι →֒ Dι. This result is extended to show the existence of the

reduced amalgamated free product of certain classes of unital completely positive maps. Finally,
the reduced amalgamated free product of von Neumann algebras is defined in the general case
and analogues of the above mentioned results are proved for von Neumann algebras.

Introduction.

We begin with some standard facts about freeness in groups, analogues of which we will

consider in C∗–algebras. If H is a subgroup of a group G and if Gι is a subgroup of G

containing H for every ι in some index set I, let us say that the family (Gι)ι∈I is free over H

(or free with amalgamation over H) if g1g2 · · · gn /∈ H whenever gj ∈ Gιj\H for some ιj ∈ I

with ι1 6= ι2, ι2 6= ι3, . . . , ιn−1 6= ιn. For example, if

G = (∗H)
ι∈I
Gι (1)

is the amalgamated free product of groups, then the family (Gι)ι∈I of subgroups is free over

their common subgroup H. The amalgamated free product of groups (1) has the universal

property that ifK is any group and if πι : Gι → K are group homomorphisms (ι ∈ I) such that

the restriction πι↾H is the same for all ι ∈ I then there is a group homomorphism π : G→ K

such that π↾Gι
= πι for every ι ∈ I. If, moreover, each of the homomorphisms πι is injective

and if the family
(
πι(Gι)

)
ι∈I

of images is free over π(H) then the homomorphism π is injective

on G.
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Given a unital C∗–algebra B and for each ι in some index set I a unital C∗–algebra

Aι containing B as a unital C∗–subalgebra,2 there is a universal amalgamated free product

C∗–algebra [3] A = (∗B)ι∈I
Aι of the Aι over B, satisfying a suitable universal property like

that for the amalgamated free product of groups. If G is the amalgamated free product of

groups (1) taken with discrete topology, then the full group C∗–algebra C∗(G) is the universal

amalgamated free product of full group C∗–algebras C∗(Gι) over their common C∗–subalgebra

C∗(H).

There is a reduced amalgamated free product of C∗–algebras, invented by Voiculescu [27],

(and independently and less generally by Avitzour [2]), which is related to the amalgamated

free product of groups via the reduced group C∗–algebra instead of via the full group C∗–

algebra. This reduced amalgamated free product construction is natural in the context of

Voiculescu’s noncommutative probabilistic notion of freeness, which is in turn an abstraction

in the context of operator algebras of the phenomenon of freeness in groups. If A is a unital

C∗–algebra having a unital C∗–subalgebra B and a conditional expectation φ : A → B,

and if Aι is an intermediate C∗–subalgebra, B ⊆ Aι ⊆ A, for every ι in some index set I,

then the family (Aι)ι∈I is said to be free with respect to φ if φ(a1a2 · · · an) = 0 whenever

aj ∈ Aιj ∩ kerφ for some ιj ∈ I with ι1 6= ι2, ι2 6= ι3, . . . , ιn−1 6= ιn. The motivating example

is for the reduced C∗–algebra A = C∗
r (G) of a group G arising as an amalgamated free product

of groups as in (1) and taken with discrete topology; thus A is the closed linear span of the

image of the left regular representation λ : G→ L(ℓ2(G)); letting B = spanλ(H) ⊆ A, letting

Aι = spanλ(Gι) ⊆ A, so that B ∼= C∗
r (H) and Aι

∼= C∗
r (Gι), and taking the conditional

expectation τGH : A→ B given by, for g ∈ G,

τGH (λ(g)) =

{
λ(g) if g ∈ H

0 if g /∈ H,

the family (Aι)ι∈I is free with respect to τGH .

Let us now describe Voiculescu’s reduced amalgamated free product construction. If B is

a unital C∗–algebra, if I is a set and if, for every ι ∈ I, Aι is a unital C∗–algebra containing

B as a unital C∗–subalgebra and having a conditional expectation φι : Aι → B whose GNS

representation3 is faithful, then there is a unital C∗–algebra A containing B as a unital C∗–

subalgebra, having a conditional expectation φ : A→ B and having embeddings (i.e. injective

2By a unital C∗–subalgebra of a C∗–algebra A we will mean a C∗–subalgebra B of A containing the
identity element of A.

3The GNS representation of φι is the canonical representation of Aι as bounded adjointable operators
on the Hilbert B–module L2(Aι, φι)
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∗–homomorphisms) Aι →֒ A that restrict to the identity map on B, this setup being unique

such that the following hold:

(i) φ↾Aι
= φι, for every ι ∈ I,

(ii) the family (Aι)ι∈I is free with respect to φ,

(iii) A is the C∗–algebra generated by
⋃

ι∈I Aι,

(iv) the GNS representation of φ is faithful (on A).

We denote this reduced amalgamated free product by

(A, φ) = ∗
ι∈I

(Aι, φι).

If the C∗–algebra over which one amalgamates is the scalars, B = C, then the φι are states

and the construction is called simply the reduced free product. For the actual construction,

see [27]. Details of Voiculescu’s construction are reviewed in [16, §1], and we will in this note

abide by the notation used there.

If we consider for the moment only the case when B = C, i.e. simply the reduced free

product of C∗–algebras, we may ask: to what extent does the reduced free product of C∗–

algebras have a universal property, analogous to those for the free product of groups and

the universal free product of C∗–algebras? Since the reduced free product of C∗–algebras

frequently gives rise to simple C∗–algebras, (see [2], [19], [14], [15] and [10]), it is clear that

any universal property for the reduced free product should be quite a bit more restrictive

in character than for the universal free product. At first glance, it seems plausible that the

reduced free product could have the universal property, which could be called the universal

property for state preserving and freeness preserving ∗–homomorphisms, that would be implied

by a positive answer to the following question.

Question 1. If

(A, φ) = ∗
ι∈I

(Aι, φι)

is a reduced free product of C∗–algebras, where the φι are states on the unital C∗–algebras Aι

having faithful GNS representations, and if D is a unital C∗–algebra with a state ψ and with

unital ∗–homomorphisms πι : Aι → D such that

(i) ψ ◦ πι = φι for every ι ∈ I,

(ii) the family
(
πι(Aι)

)
ι∈I

is free with respect to ψ,

does it follow that there is a ∗–homomorphism π : A→ D such that, denoting by αι : Aι → A

the injective ∗–homomorphisms arising from the free product construction, π ◦ αι = πι for

every ι ∈ I? (Note that π would necessarily be injective.)
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As observed in [20, 1.3], the answer to Question 1 is “yes” if the state ψ on D is assumed

to be faithful, (and a similar result holds in the amalgamated case). However, in [20, 1.4] an

elementary example was given for which the answer to Question 1 is “no.” Unfortunately, in the

printed version of [20], notational errors (for which the authors of [20] take full responsibility)

were introduced into Example 1.4. We therefore repeat this example below.

Example 2 ([20]). If 0 < γ < 1 we denote by

p

C
γ
⊕ C

1−γ
(2)

the pair (B, τ) where B is the two–dimensional C∗–algebra with a minimal projection p and

where τ is the state on B satisfying τ(p) = γ. Let

(A1, φ1) = (
p

C
3/4

⊕ C
1/4

),

(A2, φ2) = (
q

C
2/3

⊕ C
1/3

)

and

(A, φ) = (A1, φ1) ∗ (A2, φ2).

Then q is Murray–von Neumann equivalent in A to a proper subprojection of p; (see [14, 2.7]

or [1] for this result). Let D = M2(A) and let ψ be the state on D given by ψ(
b11 b12
b21 b22

) =

φ(b11). Although ψ is not faithful, clearly the GNS representation of ψ is faithful on D. Let

πj : Aj → D be the unital ∗–homomorphisms such that π1(p) =
(

p 0

0 0

)
and π2(q) =

(
q 0

0 1

)
.

Then ψ ◦πj = φj. Moreover, the pair
(
π1(A1), π2(A2)

)
is clearly free with respect to ψ. There

cannot, however, be a ∗–homomorphism π : A→ D such that π(p) = π1(p) and π(q) = π2(q),

because, as can be seen from [14, 2.7], π2(q) is not equivalent in D to a subprojection of π1(p).

The main result of this paper is an embedding result (Theorem 1.3) implying the following.

Property 3. Let

(A, φ) = ∗
ι∈I

(Aι, φι)

be a reduced free product of C∗–algebras, where the φι are states on the unital C∗–algebras Aι

having faithful GNS representations. Denote by αι : Aι → A the embeddings arising from the

reduced free product construction. Suppose for every ι ∈ I there is a unital C∗–algebra Dι

with a state ψι having faithful GNS representation, and suppose there is a ∗–homomorphism

πι : Aι → Dι such that ψι ◦ πι = φι. Let

(D,ψ) = ∗
ι∈I

(Dι, ψι)
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be the reduced free product of C∗–algebras and denote by δι : Dι → D the embeddings arising

from the reduced free product construction. Then there is a ∗–homomorphism π : A→ D such

that π ◦ αι = δι ◦ πι for every ι ∈ I.

This property was previously known under the additional assumption that every ψι is

faithful, which by [13] implies that ψ is faithful on D; as noted after Question 1, this in turn

implies the existence of π. Theorem 1.3 actually proves more generally a version of Property 3

for reduced amalgamated free products of C∗–algebras. Such an embedding result is frequently

useful for understanding reduced free product C∗–algebras; it has been used in [17] and several

times in [16].

We should point out that M. Choda has in [9] stated a theorem about reduced free

products of completely positive maps which is more general than Property 3. However, her

proof is incomplete, as it implicitly uses the full generality of Property 3 without justifying its

validity. Therefore, a proof of Property 3 is called for.

In §1, the main theorem about embeddings of reduced amalgamated free products of C∗–

algebras is proved. In §2, Choda’s argument proving the existence of reduced free products of

state preserving completely positive maps is generalized to prove existence of reduced amal-

gamated free products of certain sorts of completely positive maps. In §3, we consider the

reduced free product with amalgamation of von Neumann algebras and prove analogues of the

results in §1 and §2 for von Neumann algebras.

§1. Embeddings.

In the following lemma, with the reduced amalgamated free product of C∗–algebras

(A, φ) = ∗
ι∈I

(Aι, φι) we view each Aι as a C∗–subalgebra of A via the canonical embedding

arising from the free product construction.

Lemma 1.1. Let B be a unital C∗–algebra, let I be a set and for every ι ∈ I let Aι be a

unital C∗–algebra containing a copy of B as a unital C∗–subalgebra and having a conditional

expectation φι : Aι → B whose GNS representation is faithful. Let

(A, φ) = ∗
ι∈I

(Aι, φι)

be the reduced amalgamated free product. Then for every ι0 ∈ I there is a conditional expec-

tation Φι0 : A → Aι0 such that Φι0↾Aι
= φι for every ι ∈ I\{ι0} and Φι0(a1a2 · · · an) = 0

whenever n ≥ 2 and aj ∈ Aιj ∩ kerφ with ι1 6= ι2, . . . , ιn−1 6= ιn.
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Proof. We use the same notation as in [16] for the free product construction. Thus Eι =

L2(Aι, φι), ξι = 1̂Aι
∈ Eι, Eι = ξιB ⊕ Eo

ι and A acts on the Hilbert B–module

E = ξB ⊕
⊕

n≥1
ι1,... ,ιn∈I

ι1 6=ι2,ι2 6=ι3,... ,ιn−1 6=ιn

Eo
ι1 ⊗B Eo

ι2 ⊗B · · · ⊗B Eo
ιn .

Identify the submodule ξB ⊕ Eo
ι0 of E with the Hilbert B–module Eι0 and let Qι0 : E → Eι0

be the projection. Then Φι0(x) = Qι0xQι0 has the desired properties.

�

Explication 1.2. Consider the GNS representation
(
σ, L2(A,Φι0), η

)
= GNS(A,Φι0) associated

with the conditional expectation Φι0 : A → Aι0 found in Lemma 1.1. Since A is the closed

linear span of B and the set of reduced words of the form a1a2 · · · an where aj ∈ Aιj ∩ kerφ

and ιj 6= ιj+1, we see that the Hilbert Aι0–module in the GNS representation is

L2(A,Φι0) = Aι0 ⊕
⊕

n≥1
ι1,... ,ιn∈I

ι1 6=ι2,... ,ιn−1 6=ιn
ιn 6=ι0

Eo
ι1 ⊗B · · · ⊗B Eo

ιn ⊗B Aι0 . (3)

Moreover, the action σ of A on L2(A,Φι0) is determined by its restrictions σ↾Aι
, which are

easily described.

Let ρ : Aι0 → L(V) be a unital ∗–homomorphism, for some Hilbert space V. Then

σ⊗ 1 : A→ L
(
L2(A,Φι0)⊗ρ V

)
is a ∗–homomorphism; it is the representation induced, in the

sense of Rieffel [25], from ρ up to A, with respect to the conditional expectation Φι0 , and we

will denote this induced representation by ρ ⇂A. We have the following explicit description of

ρ ⇂A, obtained by tensoring (3) with ⊗ρV on the right. Writing H = L2(A,Φι0)⊗ρ V we have

H = V⊕
⊕

n≥1
ι1,... ,ιn∈I

ι1 6=ι2,... ,ιn−1 6=ιn
ιn 6=ι0

Eo
ι1 ⊗B · · · ⊗B Eo

ιn ⊗ρ V. (4)

Moreover, the ∗–homomorphism σ ⊗ 1 is determined by its restrictions

σι
def
= (σ ⊗ 1)↾Aι

: Aι → L(H),
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given as follows. Consider the Hilbert spaces

H(ι) =





(ηιB ⊗ρ↾B V)⊕
⊕

n≥1
ι1,... ,ιn∈I

ι1 6=ι2,... ,ιn−1 6=ιn
ιn 6=ι0, ι1 6=ι

Eo
ι1 ⊗B · · · ⊗B Eo

ιn ⊗ρ V if ι 6= ι0

⊕

n≥1
ι1,... ,ιn∈I

ι1 6=ι2,... ,ιn−1 6=ιn
ιn 6=ι0, ι1 6=ι0

Eo
ι1 ⊗B · · · ⊗B Eo

ιn ⊗ρ V if ι = ι0,

where ηιB is just the Hilbert B–module B with identity element denoted by ηι. If ι ∈ I\{ι0}

let

Wι : Eι ⊗B H(ι) → H (5)

be the unitary defined, using the symbol
..
⊗ to denote the tensor product in (5), by

Wι : ξι
..
⊗ (ηι ⊗ v) 7→ v

ζ
..
⊗ (ηι ⊗ v) 7→ ζ ⊗ v

ξι
..
⊗ (ζ1 ⊗ · · · ⊗ ζn ⊗ v) 7→ ζ1 ⊗ · · · ⊗ ζn ⊗ v

ζ
..
⊗ (ζ1 ⊗ · · · ⊗ ζn ⊗ v) 7→ ζ ⊗ ζ1 ⊗ · · · ⊗ ζn ⊗ v

whenever v ∈ V, ζ ∈ Eo
ι , ζj ∈ Eo

ιj and ι 6= ι1, ι1 6= ι2, . . . , ιn−1 6= ιn, ιn 6= ι0. Then for every

ι ∈ I\{ι0} and a ∈ Aι, we have

σι(a) =Wι(a⊗ 1H(ι))W
∗
ι .

Similarly, define the unitary

Wι0 : V⊕
(
Eι ⊗B H(ι0)

)
→ H

by

Wι0 : v ⊕ 0 7→ v

0⊕
(
ξι0

..
⊗ (ζ1 ⊗ · · · ⊗ ζn ⊗ v)

)
7→ ζ1 ⊗ · · · ⊗ ζn ⊗ v

0⊕
(
ζ

..
⊗ (ζ1 ⊗ · · · ⊗ ζn ⊗ v)

)
7→ ζ ⊗ ζ1 ⊗ · · · ⊗ ζn ⊗ v.

Then

σι0(a) =Wι0

(
ρ(a)⊕ (a⊗ 1H(ι0))

)
W ∗

ι0 .

Note that the above description is related to the construction of the conditionally free product,

due to Bożejko and Speicher [7], (see also [6]).
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Theorem 1.3. Let B̃ be a unital C∗–algebra. Let I be a set and for every ι ∈ I let Ãι be a

unital C∗–algebra containing a copy of B̃ as a unital C∗–subalgebra and having a conditional

expectation φ̃ι : Ãι → B̃. Suppose that B is a unital C∗–algebra that is contained as a C∗–

subalgebra of B̃ (without necessarily containing the identity element of B̃) and suppose that

for every ι ∈ I Aι is a unital C∗–algebra that is contained as a C∗–subalgebra of Ãι, that

B ⊆ Aι, that B contains the identity element of Aι and that φ̃ι(Aι) = B. Let φι : Aι → B

be the restriction of φ̃ι and suppose that φ̃ι and φι have faithful GNS representations. Let

κι : Aι → Ãι denote the inclusion. Consider the reduced amalgamated free products of C∗–

algebras

(Ã, φ̃) = ∗
ι∈I

(Ãι, φ̃ι)

(A, φ) = ∗
ι∈I

(Aι, φι)

and denote the inclusions arising from the free product construction by

α̃ι : Ãι → Ã

αι : Aι → A.

Then there is a ∗–homomorphism κ : A→ Ã such that

∀ι ∈ I κ ◦ αι = α̃ι ◦ κι. (6)

Moreover, κ is necessarily injective and is the unique ∗–homomorphism satisfying (6).

Proof. Since A is generated by
⋃

ι∈I αι(Aι), it is clear that κ will be unique if it exists. Let

1 denote the identity element of B̃ and let p be the identity element of B. If p 6= 1 then

we may replace B by B + C(1 − p) and each Aι by Aι + C(1 − p); hence we may without

loss of generality assume that B is a unital C∗–subalgebra of B̃ and thus each Aι is a unital

C∗–subalgebra of Ãι. Let

(π̃ι, Ẽι, ξ̃ι) = GNS(Ãι, φ̃ι),

(πι, Eι, ξι) = GNS(Aι, φι)

and

(Ẽ, ξ̃) = ∗
ι∈I

(Ẽι, ξ̃ι),

(E, ξ) = ∗
ι∈I

(Eι, ξι).
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The inclusion κι gives an inner product preserving isometry of Banach spaces Eι →֒ Ẽι sending

ξι to ξ̃ι, and we identify Eι with this subspace of Ẽι and thereby Eo
ι with the subspace of Ẽo

ι .

This allows canonical identification of the tensor product module

Eo
ι1 ⊗B · · · ⊗B Eo

ιp−1
⊗B Ẽo

ιp ⊗B̃ · · · ⊗B̃ Ẽo
ιn

with a closed subspace of Ẽo
ι1 ⊗B̃ · · · ⊗B̃ Ẽo

ιn . Hence, we may and do identify E with the

subspace

ξ̃B ⊕
⊕

n≥1
ι1,... ,ιn∈I

ι1 6=ι2,... ,ιn−1 6=ιn

Eo
ι1 ⊗B · · · ⊗B Eo

ιn

of Ẽ. Let A = (∗B)ι∈I
Aι be the universal algebraic free product with amalgamation over

B. Let σ : A → L(E), respectively σ̃ : A → L(Ẽ), be the homomorphism extending the

homomorphisms αι : Aι → L(E), respectively α̃ι ◦ κι : Aι → L(Ẽ), (ι ∈ I). In particular, we

have σ(A) = A. In order to show that κ exists, it will suffice to show that

∀x ∈ A ‖σ̃(x)‖ ≤ ‖σ(x)‖.

Note that the subspace E of Ẽ is invariant under σ̃(A) and that the restriction of σ̃(·) to E

gives σ. This implies

∀x ∈ A ‖σ̃(x)‖ ≥ ‖σ(x)‖,

which will in turn imply that κ is injective, once it is known to exist. Let τ be a faithful

representation of B̃ on a Hilbert space W. Consider the Hilbert space Ẽ ⊗τ W and let λ̃ :

L(Ẽ) → L(Ẽ⊗τ W) be the ∗–homomorphism given by λ̃(x) = x⊗1W. Then λ̃ is faithful, and

hence it will suffice to show that

∀x ∈ A ‖λ̃ ◦ σ̃(x)‖ ≤ ‖σ(x)‖. (7)

Our strategy will be to show that λ̃ ◦ σ̃ decomposes as a direct sum of subrepresentations,

each of which is of the form (ν ⇂A) ◦ σ, where ν ⇂A is the ∗–representation of A induced from

a representation ν of some Aι.

Given n ≥ 1 and ι1, . . . , ιn with ι1 6= ι2, . . . , ιn−1 6= ιn, and given p ∈ {1, 2, . . . , n},

consider the Hilbert space

Eo
ι1 ⊗B · · · ⊗B Eo

ιp−1
⊗B Kιp ⊗B̃ Ẽo

ιp+1
⊗B̃ · · · ⊗B̃ Ẽo

ιn ⊗τ W =

def
=




Eo
ι1 ⊗B · · · ⊗B Eo

ιp−1
⊗B Ẽo

ιp ⊗B̃ Ẽιp+1
⊗B̃ · · · ⊗B̃ Ẽo

ιn ⊗τ W

⊖ Eo
ι1 ⊗B · · · ⊗B Eo

ιp−1
⊗B Eo

ιp ⊗B Ẽιp+1
⊗B̃ · · · ⊗B̃ Ẽo

ιn ⊗τ W


 .
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Heuristically, Kι takes the place of Ẽι ⊖Eι, even when the latter does not make sense. Then

Ẽ⊗τW = (E⊗τ↾BW)⊕
⊕

n≥1
ι1,... ,ιn∈I

ι1 6=ι2,... ,ιn−1 6=ιn
p∈{1,2,... ,n}

Eo
ι1⊗B · · ·⊗BE

o
ιp−1

⊗BKιp⊗B̃ Ẽ
o
ιp+1

⊗B̃ · · ·⊗B̃ Ẽ
o
ιn⊗τW.

As we mentioned earlier, σ̃(A)E ⊆ E and σ̃(·)↾E = σ(·), so E ⊗τ↾B W is invariant under

λ̃ ◦ σ̃(A), and

∀x ∈ A ‖λ̃ ◦ σ̃(x)↾E⊗τW
‖ = ‖σ(x)‖.

Since π̃ι(Aι)Eι ⊆ Eι, it is not difficult to check that for every n ≥ 1 and for every ι1, . . . , ιn ∈ I

with ι1 6= ι2, . . . , ιn−1 6= ιn,

W̃(ι1, . . . , ιn)
def
= λ̃ ◦ σ̃(A)(Kι1 ⊗B̃ Ẽo

ι2 ⊗B̃ · · · ⊗B̃ Ẽo
ιn ⊗τ W) =

= (Kι1 ⊗B̃ Ẽo
ι2 ⊗B̃ · · · ⊗B̃ Ẽo

ιn ⊗τ W) ⊕

⊕
⊕

q≥1
ι′1,... ,ι

′

q∈I

ι′1 6=ι′2,... ,ι
′

q−1 6=ι′q
ι′q 6=ι1

Eo
ι′
1
⊗B · · · ⊗B Eo

ι′q
⊗B Kι1 ⊗B̃ Ẽo

ι2 ⊗B̃ · · · ⊗B̃ Ẽo
ιn ⊗τ W.

Thus

Ẽ ⊗τ W = (E ⊗τ↾B W)⊕
⊕

n≥1
ι1,... ,ιn∈I

ι1 6=ι2,... ,ιn−1 6=ιn

W̃(ι1, . . . , ιn);

hence in order to prove the theorem it will suffice to show that for every choice of ι1, . . . ιn,

∀x ∈ A ‖λ̃ ◦ σ̃(x)↾
W̃(ι1,... ,ιn)

‖ ≤ ‖σ(x)‖. (8)

But letting V = Kι1⊗B̃ Ẽ
o
ι2⊗B̃ · · ·⊗B̃ Ẽιn⊗τW, letting ν : Aι1 → L(V) be the ∗–homomorphism

ν(a) = (π̃ι1(a)⊗1Ẽo
ι2

⊗B ···⊗BẼo
ιn

⊗τW
)↾V, and appealing to Explication 1.2, it is straightforward

to check that

λ̃ ◦ σ̃(·)↾
W̃(ι1,... ,ιn)

= (ν ⇂A) ◦ σ,

where ν ⇂A is the representation of A induced from ν with respect to the conditional expectation

Φι1 : A→ Aι1 found in Lemma 1.1; this in turn implies (8).

�

Remark 1.4. Let us consider for a moment Theorem 1.3 when the subalgebra B over which we

amalgamate is the scalars, C. When taking the reduced free product (A, φ) = ∗
ι∈I

(Aι, φι) of
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C∗–algebras, the states φι are required to have faithful GNS representation in order that the

C∗–algebras Aι are embedded in the free product C∗–algebra A. However, upon relaxing this

condition to the case of completely general states φι and performing the reduced free product

construction, one obtains

∗
ι∈I

(Aι, φι) = ∗
ι∈I

((Aι/ kerπι),
.

φι),

where πι is the GNS representation of φι and where
.

φι is the state induced on the quotient

Aι/ kerπι by φι. Thus the canonical ∗–homomorphism αι : Aι → A has the same kernel as πι.

As a caveat, we would like to point out that with this relaxed definition of reduced

free product, the statement of Theorem 1.3 does not in general hold if one tolerates φι with

nonfaithful GNS representations. Indeed, if for some ι ∈ I Aι = C⊕C with φι non–faithful,

if Ãι =M2(C) with a unital embedding κι : Aι →֒ Ãι and if φ̃ι is a state on M2(C) such that

φ̃ι ◦ κι = φι, then αι : Aι → A is not injective, while α̃ι ◦ κι is injective. This shows that

there can be no ∗–homomorphism κ : A → Ã satisfying equation (6). However, there is no

problem allowing the φ̃ι to have nonfaithful GNS representations, as long as the restrictions

φι are taken with faithful GNS representations.

§2. Completely positive maps.

M. Choda [9] gave an argument which, when combined with an embedding result like

Property 3, proves that if θι : Aι → Dι is a unital completely positive map between unital

C∗–algebras for every ι ∈ I, if φι and ψι are states on Aι and respectively Dι, each having

faithful GNS representation, and if ψι ◦ θι = φι then letting

(A, φ) = ∗
ι∈I

(Aι, φι)

(D,ψ) = ∗
ι∈I

(Dι, ψι)

be the reduced free products of C∗–algebras and denoting by αι : Aι → A and δι : Dι → D

the injective ∗–homomorphisms arising from the free product constructions, there is a unital

completely positive map θ : A → D such that θ ◦ αι = θι ◦ δι for every ι ∈ I, and such

that θ(a1a2 · · · an) = θ(a1)θ(a2) · · · θ(an) whenever aj ∈ αιj (Aιj ) ∩ kerφ for some ιj ∈ I with

ι1 6= ι2, . . . , ιn−1 6= ιn.

In this section, we generalize this argument of Choda’s to the case of reduced amalgamated

free products of C∗–algebras. The generalization consists of, in essence, replacing Stinespring’s

dilation theorem for completely positive maps into bounded operators on a Hilbert space by
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Kasparov’s generalization [21] to the case of completely positive maps into the algebra of

bounded adjointable operators on a Hilbert B–module (see alternatively the book [22]). We

would like to point out that Theorem 2.2 is quite similar in appearance to analogous results

of F. Boca [4], [5] about completely positive maps on universal amalgamated free products

of C∗–algebras. However, the universal and reduced free products of C∗–algebras are quite

different in character, and we do not believe that Boca’s results can be used directly to prove

Theorem 2.2.

Lemma 2.1. Let A and B be C∗–algebras, let E and Ẽ be Hilbert A–modules, let F and

F̃ be Hilbert B–modules and let v ∈ L(E, Ẽ), w ∈ L(F, F̃ ). Suppose π : A → L(F ) and

π̃ : A→ L(F̃ ) are ∗–homomorphisms and suppose that

∀a ∈ A ∀ξ ∈ F w(π(a)ξ) = π̃(a)w(ξ). (9)

Let E ⊗π F and Ẽ ⊗π̃ F̃ be the interior tensor products. Then there is an element v ⊗ w ∈

L(E ⊗π F, Ẽ ⊗π̃ F̃ ) such that

∀ζ ∈ E ∀ξ ∈ F (v ⊗ w)(ζ ⊗ ξ) = (vζ)⊗ (wξ).

If, moreover, 〈v(ζ), v(ζ)〉 = 〈ζ, ζ〉 for every ζ ∈ E and 〈w(ξ), w(ξ)〉 = 〈ξ, ξ〉 for every ξ ∈ F

then 〈v ⊗ w(η), v ⊗ w(η)〉 = 〈η, η〉 for every η ∈ E ⊗π F .

Proof. That v⊗w is bounded is a standard argument (compare p. 42 of [22]). Then one sees

(v ⊗ w)∗ = v∗ ⊗ w∗. The final statement follows using the polarization identity.

�

Theorem 2.2. Let B be a unital C∗–algebra, let I be a set and for every ι ∈ I let Aι and Dι

be unital C∗–algebras containing copies of B as unital C∗–subalgebras and having conditional

expectations φι : Aι → B, respectively ψι : Dι → B, whose GNS representations are faithful.

Suppose that for each ι ∈ I there is a unital completely positive map θι : Aι → Dι that is also

a B–B bimodule map and satisfies ψι ◦ θι = φι. Let

(A, φ) = ∗
ι∈I

(Aι, φι)

(D,φ) = ∗
ι∈I

(Dι, ψι)

be the reduced amalgamated free products of C∗–algebras and denote by αι : Aι → A and

δι : Dι → D the embeddings arising from the free product constructions. Then there is a unital

completely positive map θ : A→ D satisfying

∀ι ∈ I θ ◦ αι = δι ◦ θι (10)
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and

θ(a1a2 · · · an) = θ(a1)θ(a2) · · · θ(an) (11)

whenever aj ∈ αιj (Aιj ∩ kerφιj ) and ι1 6= ι2, ι2 6= ι3, . . . , ιn−1 6= ιn.

Proof. Note first that the assumptions imply that each θι is the identity map on B. Let

(πι, Eι, ξι) = GNS(Dι, ψι), (E, ξ) = ∗
ι∈I

(Eι, ξι).

(We will usually write simply dζ instead of πι(d)ζ, when d ∈ Dι and ζ ∈ Eι.) Recall that then

Eι = ξιB ⊕ Eo
ι , that the action πι↾B leaves Eo

ι globally invariant, and that

E = ξB ⊕
⊕

n≥1
ι1,... ,ιn∈I

ι1 6=ι2,... ,ιn−1 6=ιn

Eo
ι1 ⊗B · · · ⊗B Eo

ιn .

Consider the Hilbert B–module Fι = Aι ⊗πι◦θι Eι and the specified element ηι = 1⊗ ξι ∈ Fι.

Since θι restricts to the identity map on B, in Fι we have b⊗ ζ = 1⊗ (bζ) for every b ∈ B and

ζ ∈ E. Consider the unital ∗–homomorphism σι : Aι → L(Fι) given by

∀a′, a ∈ Aι ∀ζ ∈ Eι σι(a
′)(a⊗ ζ) = (a′a)⊗ ζ,

(see for example page 48 of [22]). Consider the map ρι : L(Fι) → B given by ρι(x) = 〈ηι, xηι〉.

If x ∈ L(Fι) and if b1, b2 ∈ B then ρι
(
σι(b1)xσι(b2)

)
= b1ρι(x)b2. If we use σι to identify B

with σι(B) ⊆ L(Fι) then we have that ρι : L(Fι) → B is a conditional expectation. Clearly

L2(L(Fι), ρι) ∼= Fι and the GNS representation of ρι is faithful on L(Fι). We have that

ρι ◦ σι = φι since

ρι ◦ σι(a) = 〈1⊗ ξι, a⊗ ξι〉 = 〈ξι, θι(a)ξι〉 = ψι ◦ θι(a) = φι(a). (12)

Let

(M, ρ) = ∗
ι∈I

(L(Fι), ρι)

be the reduced amalgamated free product of C∗–algebras and let λι : L(Fι) → M be the

embedding arising from the free product construction. Note that M ⊆ L(F ) where

(F, η) = ∗
ι∈I

(Fι, ηι).

By Theorem 1.3 there is a ∗–homomorphism σ : A→ M such that

∀ι ∈ I σ ◦ αι = λι ◦ σι.
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Consider the operator vι : Eι → Fι given by ζ → 1 ⊗ ζ, and note that 〈vιζ, vιζ〉 = 〈ζ, ζ〉

for every ζ ∈ Eι, hence vι(E
o
ι ) ⊆ F o

ι . A calculation using e.g. Lemma 5.4 of [22] shows that

there is a bounded operator Fι → Eι sending a⊗ ζ to θι(a)ζ, which is then the adjoint of vι.

Hence vι ∈ L(Eι, Fι), and clearly v∗ι vι = 1. Since θι is a left B–module map, we have for every

b ∈ B and ζ ∈ Eι that vι(bζ) = 1⊗ (bζ) = b⊗ ζ = b(vι(ζ)). Therefore, taking direct sums of

operators vι1 ⊗ · · · ⊗ vιn given by Lemma 2.1, we get v ∈ L(E,F ) such that 〈vζ, vζ〉 = 〈ζ, ζ〉

for every ζ ∈ E, vξ = η and

v(ζ1 ⊗ ζ2 ⊗ · · · ⊗ ζn) = (vι1ζ1)⊗ (vι2ζ2)⊗ · · · ⊗ (vιnζn)

whenever ζj ∈ Eo
ιj , ι1, . . . , ιn ∈ I and ιj 6= ιj+1. Let θ : A → L(E) be the unital completely

positive map θ(x) = v∗σ(x)v.

We will show that (10) and (11) hold, which will furthermore imply that θ(A) ⊆ D. In

order to show (10), let wι : E → Eι ⊗B E(ι) and yι : F → Fι ⊗B F (ι) be the unitaries used

in the free product constructions to define the embeddings αι and, respectively, λι. Note that

vι
(
E(ι)

)
⊆ F (ι) and that yιv = (vι ⊗ v↾E(ι))wι. Furthermore, observe that for a ∈ Aι and

ζ ∈ Eι,
(
v∗ι σι(a)vι)ζ = v∗ι (a⊗ ζ) = θι(a)ζ.

Hence for a ∈ Aι,

θ ◦ αι(a) = v∗σ ◦ αι(a)v = v∗λι ◦ σι(a)v = v∗y∗ι
(
σι(a)⊗ 1F (ι)

)
yιv =

= w∗
ι

(
v∗ι σι(a)vι ⊗ (v↾E(ι))

∗v↾E(ι)

)
wι = w∗

ι (θι(a)⊗ 1E(ι))wι = αι ◦ θι(a).

Now to show that (11) holds, consider aj ∈ Aιj ∩ kerφιj for some ιj ∈ I (1 ≤ j ≤ n) with

ιj 6= ιj+1. Henceforth we will omit to write the inclusions αι and δι, thinking instead of each

Aι as a subalgebra of A and of each Dι as a subalgebra of D. It is easy to see that

θι1(a1) · · · θιn(an)ξ = θ̂ι1(a1)⊗ · · · ⊗ ̂θιn(an) =

= v∗
(
(a1 ⊗ ξι1)⊗ · · · ⊗ (an ⊗ ξιn)

)
= θ(a1 · · · an)ξ.

(13)

Now consider an element ζ1 ⊗ · · · ⊗ ζp ∈ E, where ζj ∈ Eo
kj

for some kj ∈ I with kj 6= kj+1.

Let P0 : E → ξB be the projection and for ℓ ∈ N let

Pℓ : E →
⊕

ι1,... ,ιℓ∈I
ι1 6=ι2,... ,ιℓ−1 6=ιℓ

Eo
ι1 ⊗ · · · ⊗ Eιℓ
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be the projection. Taking adjoints and using (13), we see that

P0θι1(a1) · · · θιn(an)(ζ1 ⊗ · · · ⊗ ζp) = P0θ(a1 · · · an)(ζ1 ⊗ · · · ⊗ ζp).

Now letting ℓ ∈ N we will use standard techniques (see, for example, [18] and [16]) to show

that

Pℓθι1(a1) · · · θιn(an)(ζ1 ⊗ · · · ⊗ ζp) = Pℓθ(a1 · · · an)(ζ1 ⊗ · · · ⊗ ζp). (14)

If ℓ > n+p or ℓ < |n−p| then it is clear that both sides of (14) are zero. If ℓ = n+p then both

sides of (14) are zero unless ιn 6= k1, in which case a calculation similar to (13) shows that (14)

holds. Let Qo
ι : Eι → Eo

ι and Ro
ι : Fι → F o

ι be the projections, and note that Ro
ι vι = vιQ

o
ι .

Consider when n+ p− ℓ = 1. Then both sides of (14) are zero unless ιn = k1, in which case

Pℓθι1(a1) · · · θιn(an)(ζ1 ⊗ · · · ⊗ ζp) =

= θ̂ι1(a1)⊗ · · · ⊗ ̂θιn−1
(an−1)⊗Qo

ιn(θιn(an)ζ1)⊗ ζ2 ⊗ · · · ⊗ ζp

= v∗ι
(
(a1 ⊗ ξι1)⊗ · · · ⊗ (an−1 ⊗ ξιn−1

)⊗Ro
ιn(an ⊗ ζ1)⊗ (1⊗ ζ2)⊗ · · · ⊗ (1⊗ ζp)

)

= Pℓθ(a1 · · · an)(ζ1 ⊗ · · · ⊗ ζp)

If p + n − ℓ = 2r + 1 for r ∈ {1, 2, . . . ,min(p, n) − 2} then both sides of (14) are zero unless

ιn = k1, ιn−1 = k2, . . . , ιn−r+1 = kr, in which case

Pℓθι1(a1) · · · θιn(an)(ζ1 ⊗ · · · ⊗ ζp) =

= θ̂ι1(a1)⊗ · · · ⊗ ̂θιn−r−1
(an−r−1)⊗

⊗Qo
ιn−r

(
θιn−r

(an−r)〈ξ, θιn−r+1
(an−r+1) · · · θιn(an)ζ1 ⊗ · · · ⊗ ζr〉ζr+1

)
⊗

⊗ ζr+2 ⊗ · · · ⊗ ζp

= θ̂ι1(a1)⊗ · · · ⊗ ̂θιn−r−1
(an−r−1)⊗

⊗Qo
ιn−r

(
θιn−r

(an−r)〈 ̂θιn(a
∗
n)⊗ · · · ⊗ ̂θιn−r+1

(a∗n−r+1), ζ1 ⊗ · · · ⊗ ζr〉ζr+1

)
⊗

⊗ ζr+2 ⊗ · · · ⊗ ζp

= v∗
(
(a1 ⊗ ξι1)⊗ · · · ⊗ (an−r−1 ⊗ ξιn−r−1

)⊗

⊗ Ro
ιn−r

(
θιn−r

(an−r) ·

·
〈
σιn(a

∗
n) · · ·σιn−r+1

(a∗n−r+1)η, (1⊗ ζ1)⊗ · · · ⊗ (1⊗ ζr)
〉
(1⊗ ζr+1)

)
⊗

⊗ (1⊗ ζr+2)⊗ · · · ⊗ (1⊗ ζp)
)
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= v∗
(
(a1 ⊗ ξι1)⊗ · · · ⊗ (an−r−1 ⊗ ξιn−r−1

)⊗

⊗ Ro
ιn−r

(
θιn−r

(an−r) ·

·
〈
η, σιn−r+1

(an−r+1) · · ·σιn(an)(1⊗ ζ1)⊗ · · · ⊗ (1⊗ ζr)
〉
(1⊗ ζr+1)

)
⊗

⊗ (1⊗ ζr+2)⊗ · · · ⊗ (1⊗ ζp)
)

= Pℓθ(a1 · · · an)(ζ1 ⊗ · · · ⊗ ζp).

A similar calculation shows that (14) holds also when n+ p− ℓ = 2min(p, n)− 1.

If n+ p− ℓ = 2r is even for r ∈ {1, 2, . . . ,min(p, n)− 1} then both sides of (14) are zero

unless ιn = k1, ιn−1 = k2, . . . , ιn−r+1 = kr and ιn−r 6= kr+1, in which case

Pℓθι1(a1) · · · θιn(an)(ζ1 ⊗ · · · ⊗ ζp) =

= θ̂ι1(a1)⊗ · · · ⊗ ̂θιn−r
(an−r)⊗

⊗ 〈ξ, θιn−r+1
(an−r+1) · · · θιn(an)ζ1 ⊗ · · · ⊗ ζr〉ζr+1⊗

⊗ ζr+2 ⊗ · · · ⊗ ζp

= θ̂ι1(a1)⊗ · · · ⊗ ̂θιn−r
(an−r)⊗

⊗ 〈 ̂θιn(a
∗
n)⊗ · · · ⊗ ̂θιn−r+1

(a∗n−r+1), ζ1 ⊗ · · · ⊗ ζr〉ζr+1⊗

⊗ ζr+2 ⊗ · · · ⊗ ζp

= v∗
(
(a1 ⊗ ξι1)⊗ · · · ⊗ (an−r ⊗ ξιn−r

)⊗

⊗
〈
η, σιn−r+1

(an−r+1) · · ·σιn(an)
(
(1⊗ ζ1)⊗ · · · ⊗ (1⊗ ζr)

)〉
(1⊗ ζr+1)⊗

⊗ (1⊗ ζr+2)⊗ · · · ⊗ (1⊗ ζp)
)

= Pℓθ(a1 · · · an)(ζ1 ⊗ · · · ⊗ ζp).

Similar calculations show that (14) holds also when p+ n− ℓ = 2min(p, n). This finishes the

proof of (11), and of the theorem.

�

§3. Reduced amalgamated free products of von Neumann algebras.

In this section we will describe results for reduced amalgamated free products of von

Neumann algebras that are analogous to those for C∗–algebras found in §1 and §2. The

(reduced) free product of von Neumann algebras with respect to given normal states was
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defined by Voiculescu in [27] and has been much studied. See also Ching’s paper [8], where

the free product of von Neumann algebras with respect to normal faithful tracial states from a

certain class was first defined. We begin this section by describing the construction of reduced

amalgamated free products of von Neumann algebras (with respect to normal conditional

expectations onto von Neumann subalgebras). This construction is only a small step beyond

what is in Voiculescu’s paper; it has been studied in [23], [24] and [12] in the case of finite von

Neumann algebras and trace–preserving conditional expectations, when there is a canonical

way to describe the amalgamated free product acting on a Hilbert space.

Following Rieffel [26, 5.1], if A and B are von Neumann algebras, if E is a Hilbert B–

module and if θ : A→ L(E) is a completely positive map, we say that θ is normal if for every

ζ1, ζ2 ∈ E, the map A ∋ a 7→ 〈ζ1, θ(a)ζ2〉 ∈ B is normal. This coincides with the usual notion

of normality when B = C (in which case E is a Hilbert space). It is clear that if B is a von

Neumann subalgebra of a von Neumann algebra A having a normal conditional expectation

φ : A→ B then the GNS representation of A as bounded adjointable operators on the Hilbert

B–module L2(A, φ) is normal.

Part (i) of the following straightforward lemma was proved in the case of a ∗–homo-

morphism by Rieffel as part of [26, 5.2].

Lemma 3.1. Let A and B be von Neumann algebras, let E be a Hilbert B–module and

suppose that θ : A → L(E) is completely positive map. Let H be a Hilbert space and let

τ : B → L(H) be a normal ∗–representation. Let θ ⊗ 1 denote the completely positive map

A ∋ a 7→ π(a)⊗ 1 ∈ L(E⊗τ H) of A into bounded operators on the Hilbert space E⊗τ H. We

have:

(i) if θ is normal then θ ⊗ 1 is normal;

(ii) if θ ⊗ 1 is normal and if τ is faithful then θ is normal.

Proof. If ζ1, ζ2 ∈ E and v1, v2 ∈ H then

〈
ζ1 ⊗ v1, (θ ⊗ 1)(x)(ζ2 ⊗ v2)

〉
=

〈
v1, τ

(
〈ζ1, θ(x)ζ2〉

)
v2
〉
. (15)

If θ is normal then (15) shows that θ ⊗ 1 is continuous from the σ(A,A∗) topology on A to

the weak–operator topology on L(E ⊗τ H), which implies θ ⊗ 1 is normal and proves (i).

If θ⊗ 1 is normal then (15) shows that x 7→ τ(〈ζ1, θ(x)ζ2〉) is normal. Assuming also τ is

faithful, it follows that θ is normal.

�

Also the following application of Lemma 3.1(i) is in [26, 5.2].
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Lemma 3.2. Let B be a unital von Neumann subalgebra of a von Neumann algebra A with

a normal conditional expectation Φ : A → B. Let τ be a normal ∗–representation of B on a

Hilbert space H. Then the induced representation, τ ⇂A, of τ to A with respect to the conditional

expectation Φ is normal.

Proof. By definition, and in the notation of Lemma 3.1, τ ⇂A = π⊗1 : A→ L(L2(A,Φ)⊗τ H),

where π is the GNS representation of A on L2(A,Φ).

�

Lemma 3.3. Let A, B1 and B2 be von Neumann algebras and let Ej be a Hilbert Bj–module

(j = 1, 2). If θ : A → L(E1) and σ : B1 → L(E2) are normal completely positive maps, then

the completely positive map θ ⊗ 1 : A→ L(E1 ⊗σ E2) is normal.

Proof. Let τ : B2 → L(H) be a faithful normal ∗–representation of B2 on a Hilbert space

H. Applying Lemma 3.1 in succession we find that σ ⊗ 1 : B1 → L(E2 ⊗τ H) is normal,

θ ⊗ 1⊗ 1 : A→ L(E1 ⊗σ E2 ⊗τ H) is normal, and thus θ ⊗ 1 : A→ L(E1 ⊗σ E2) is normal.

�

Now we can define the reduced amalgamated free product of von Neumann algebras,

based on Voiculescu’s construction of the reduced amalgamated free product of C∗–algebras.

Proposition and Definition 3.4. Let B be a von Neumann algebra, let I be a set and

for every ι ∈ I let Aι be a von Neumann algebra containing a copy of B as a unital von

Neumann subalgebra and having a normal conditional expectation φι : Aι → B whose GNS

representation is faithful. Then there is a unique von Neumann algebra A containing B as

a unital von Neumann subalgebra, having a normal conditional expectation φ : A → B and

embeddings (i.e. normal, injective ∗–homomorphisms) Aι →֒ A that restrict to the identity

map on B, and such that

(i) φ↾Aι
= φι, for every ι ∈ I,

(ii) the family (Aι)ι∈I is free with respect to φ,

(iii) A is the von Neumann algebra generated by
⋃

ι∈I Aι,

(iv) the GNS representation of φ is faithful (on A).

The resulting pair (A, φ) is called the reduced amalgamated free product of von Neumann

algebras, which we will denote by

(A, φ) = ∗
ι∈I

(Aι, φι).
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Proof. The idea is to take the free product Hilbert B–module E, on which the C∗–algebra

reduced amalgamated free product, Â, of the Aι’s is constructed, to consider a faithful normal

representation π of B on a Hilbert space H and to let A be the closure in strong–operator

topology of Â ⊗ 1 acting on the Hilbert space E ⊗π H. It is only required to show that the

von Neumann algebra A so obtained is independent of the choice of π.

As in the construction of the reduced amalgamated free product of C∗–algebras [27], let

Eι = L2(Aι, φι), ξι = 1̂Aι
∈ Eι and let (E, ξ) = ∗

ι∈I
(Eι, ξι) be the free product of Hilbert

B–modules. Then, in light of the observations made at the beginning of this section, the

∗–homomorphisms λι : Aι → L(E) are seen to be normal. Let Â = C∗
(⋃

ι∈I λι(Aι)
)
, (which

is isomorphic to the C∗–algebra reduced amalgamated free product), and let φÂ : Â → B be

φÂ(x) = 〈ξ, xξ〉, which is the conditional expectation arising in the C∗–algebra reduced free

product construction. Let π be a normal faithful unital representation of B as operators on

a Hilbert space H, consider the tensor product representation σπ : x 7→ x ⊗ 1H of L(E) as

operators on the Hilbert space E ⊗π H and let Aπ be the closure in strong–operator topology

of σπ(Â) in L(E ⊗π H). Let Pπ be the orthogonal projection from E ⊗π H onto its subspace

ξB ⊗π H = {ξ ⊗ h | h ∈ H} ⊆ E ⊗π H. Upon identifying ξB ⊗π H with H under the map

b̂⊗h 7→ π(b)h, we have Pπ(e⊗h) = π(〈ξ, e〉)h and if b ∈ B then Pπ

(
σπ(b)

)
Pπ = π(b). Consider

the normal map φπ : L(E ⊗π H) → L(H) given by φπ(y) = PπyPπ. If x ∈ Â then as is seen

by an easy calculation, φπ ◦ σπ(x) = σπ(φÂ(x)), which in turn implies that φπ(Aπ) = π(B).

We shall now show that if π1 and π2 are normal faithful representation of B as bounded

operators on Hilbert spaces H1 and respectively H2, then there is a normal isomorphism

ρ : Aπ1
→ Aπ2

such that ρ◦φπ1
= φπ2

. This will allow us to define A = Aπ and φ = π−1 ◦φπ :

A→ B. Using [11, Theorem 1.4.3] one finds a Hilbert space H
′ such that the representations

π1 ⊗ 1H′ and π2 ⊗ 1H′ are unitarily equivalent. This unitary can be used in the obvious way

to define a unitary

U : (E ⊗π1
H1)⊗H

′ = E ⊗(π1⊗1
H′ ) (H1 ⊗H

′) → E ⊗(π2⊗1
H′ ) (H2 ⊗H

′) = (E ⊗π2
H2)⊗H

′

so that U ◦(σπ1
(a)⊗1H′) = (σπ2

(a)⊗1H′)◦U for all a ∈ Â and U ◦(Pπ1
⊗1H′) = (Pπ2

⊗1H′)◦U .

Hence there is a normal ∗–isomorphism ρ : Aπ1
→ Aπ2

such that ρ(a)⊗1H′ = U ◦(a⊗1H′)◦U∗,

and ρ ◦ φπ1
= φπ2

◦ ρ. Thus the von Neumann algebra A = Aπ and the normal conditional

expectation π−1 ◦ φπ : A→ B are independent of π.

Properties (i)–(iv) follow from the corresponding facts for the reduced amalgamated free

product of C∗–algebras, and uniqueness is clear.
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�

Here are versions of results in §1 and §2 for W∗–algebras.

Lemma 3.5. Let B be a unital von Neumann algebra, let I be a set and for every ι ∈ I let Aι

be a unital von Neumann algebra containing a copy of B as a unital von Neumann subalgebra

and having a normal conditional expectation φι : Aι → B whose GNS representation is faithful.

Let

(A, φ) = ∗
ι∈I

(Aι, φι)

be the reduced amalgamated free product of von Neumann algebras. Then for every ι0 ∈ I, there

is a normal conditional expectation Φι0 : A → Aι0 such that Φι0↾Aι
= φι for every ι ∈ I\{ι0}

and Φι0(a1a2 · · · an) = 0 whenever n ≥ 2 and aj ∈ Aιj ∩ kerφ with ι1 6= ι2, . . . , ιn−1 6= ιn.

Proof. Let τ be a normal faithful representation of B on a Hilbert spaceH. The construction of

A can be realized on the Hilbert space E⊗τH. The projection Qι0 : E → Eι0 from the proof of

Lemma 1.1 gives rise to the projection Qι0 ⊗1H : E⊗τ H → Eι0 ⊗τ H, compression with which

provides a normal positive linear map Θι0 : A → L(Eι0 ⊗τ H). Let λι0 : Aι0 → L(Eι0 ⊗τ H)

be the GNS representation Aι0 →֒ L(Eι0) followed by the inclusion L(Eι0) ∋ x 7→ x ⊗ 1H ∈

L(Eι0 ⊗τ H). Then Θι0 maps a weakly dense ∗–subalgebra of A into the image of λι0 , hence

maps all of A there. Let Φι0 = λ−1
ι0 ◦Θι0 . The desired properties of Φι0 are easily verified.

�

Theorem 3.6. Let B̃ be a von Neumann algebra. Let I be a set and for every ι ∈ I let Ãι

be a von Neumann algebra containing a copy of B̃ as a unital von Neumann subalgebra and

having a normal conditional expectation φ̃ι : Ãι → B̃. Suppose that B is a (not necessarily

unital) von Neumann subalgebra of B̃ and that for every ι ∈ I Aι is a von Neumann subalgebra

of Ãι such that B ⊆ Aι and φ̃ι(Aι) = B. Let φι : Aι → B be the restriction of φ̃ι and suppose

that each of φ̃ι and φι has faithful GNS representation. Let κι : Aι → Ãι denote the inclusion.

Consider the reduced amalgamated free products of von Neumann algebras

(Ã, φ̃) = ∗
ι∈I

(Ãι, φ̃ι)

(A, φ) = ∗
ι∈I

(Aι, φι)

and denote the normal inclusions arising from the free product constructions by

α̃ι : Ãι → Ã

αι : Aι → A.
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Then there is a normal ∗–homomorphism κ : A→ Ã such that

∀ι ∈ I κ ◦ αι = α̃ι ◦ κι. (16)

Moreover, κ is necessarily injective and is the unique normal ∗–homomorphism satisfying (16).

Proof. This is very much like the proof of Theorem 1.3, to which we refer in detail. Assume

without loss of generality that B is a unital subalgebra of B̃. We now insist that τ be

a normal faithful representation of B̃, and we must show that the algebra homomorphism

λ̃ ◦ σ̃ : A → L(Ẽ ⊗τ W) extends to a normal representation of the von Neumann algebra A.

But Ẽ⊗τ W is the direct sum of E⊗τ↾B W and the various W̃(ι1, . . . , ιn). The homomorphism

λ̃ ◦ σ̃ restricted to E ⊗τ↾B W extends to the defining representation of A. Let n ≥ 1 and let

ι1, . . . , ιn ∈ I be such that ιj 6= ιj+1; we have the normal ∗-representation, µ, of Aι1 on

the Hilbert space Kι1 ⊗B̃ Eι2 ⊗B̃ · · · ⊗B̃ Eιn , obtained from the normal representation of Aι1

in L(Ẽι1); let µ ⇂A be the representation of the von Neumann algebra A on W̃(ι1, . . . , ιn)

induced from µ with respect to the normal conditional expectation Φι1 : A → Aι1 found in

Lemma 3.5; then λ̃◦ σ̃ restricted to W̃(ι1, . . . , ιn) extends to the ∗–homomorphism µ ⇂A, which

by Lemma 3.2 is normal.

�

Theorem 3.7. Let B be a von Neumann algebra, let I be a set and for every ι ∈ I let Aι and

Dι be von Neumann algebras containing copies of B as unital von Neumann subalgebras and

having normal conditional expectations φι : Aι → B, respectively ψι : Dι → B, whose GNS

representations are faithful. Suppose that for each ι ∈ I there is a normal unital completely

positive map θι : Aι → Dι that is also a B–B bimodule map and satisfies ψι ◦ θι = φι. Let

(A, φ) = ∗
ι∈I

(Aι, φι)

(D,φ) = ∗
ι∈I

(Dι, ψι)
(17)

by the reduced amalgamated free products of von Neumann algebras and denote by αι : Aι → A

and δι : Dι → D the embeddings arising from the free product constructions. Then there is a

normal unital completely positive map θ : A→ D satisfying

∀ι ∈ I θ ◦ αι = δι ◦ θι (18)

and

θ(a1a2 · · · an) = θ(a1)θ(a2) · · · θ(an) (19)
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whenever aj ∈ αιj (Aιj ∩ kerφιj ) and ι1 6= ι2, ι2 6= ι3, . . . , ιn−1 6= ιn.

Proof. In this proof, we will not denote the von Neumann algebra free products in (17) by

(A, φ) and (D,ψ). Rather, we will write (A, φ) = ∗
ι∈I

(Aι, φι) and (D,ψ) = ∗
ι∈I

(Dι, ψι) for these

reduced amalgamated free products of von Neumann algebras; we will reserve the notation

(A, φ) = ∗
ι∈I

(Aι, φι) and (D,ψ) = ∗
ι∈I

(Dι, φι) for the reduced amalgamated free products of

C∗–algebras. Thus A and D are the closures in strong–operator topology of A and respectively

D in the appropriate representations, as specified by Definition 3.4. We need only show that

the unital completely positive map θ : A → B found in Theorem 2.2 extends to a normal

completely positive map θ : A→ D.

Consider, from the proof of Theorem 2.2, the Hilbert B–modules (E, ξ) = ∗
ι∈I

(Eι, ξι),

and (F, η) = ∗
ι∈I

(Fι, ηι), the ∗–homomorphism σ : A → L(F ) and the bounded operator

v ∈ L(E,F ); denote by iA the GNS representation of A on L2(A, φ). Recall that σ is a free

product of embeddings σι : Aι → L(Fι). From the proof of Theorem 1.3, letting τ be a

normal faithful representation of B on a Hilbert space V we see that the representation σ ⊗ 1

of A on F ⊗τ H given by a 7→ σ(a) ⊗ 1 splits as a direct sum, σ ⊗ 1 =
⊕

λ∈Λ(σ ⊗ 1)↾Wλ
,

where each summand (σ ⊗ 1)↾Wλ
is either a copy of iA ⊗ 1 : A→ L(L2(A, φ)⊗τ H) or is the

induced representation ν ⇂A of a representation ν of some Aι on a Hilbert space, where ν is

the restriction to an invariant subspace of the representation σι ⊗ 1 : Aι → L(Fι ⊗τ H). The

representation iA⊗1 extends to a normal ∗–representation of A by the proof of Proposition 3.4.

Using Lemma 3.1 we see that σι ⊗ 1 is normal; hence ν is normal and by Lemma 3.2 ν ⇂A

extends to a normal ∗–representation of A. Hence σ⊗ 1 extends to a normal ∗–representation

of A, which we will denote by σ : A→ L(F ⊗τ H).

The isometry v ∈ L(E,F ) gives rise to an isometry v ⊗ 1 : E ⊗τ H → F ⊗τ H. Letting

iD : D → L(E) be the defining representation, by the proof of Proposition 3.4 the image

of iD ⊗ 1 : D → L(E ⊗τ H) is the von Neumann algebra D. Consider the normal unital

completely positive map θ : A→ L(E ⊗τ H) be given by θ(x) = (v⊗ 1)∗σ(x)(v⊗ 1). If a ∈ A

then θ(a) = iD(θ(a))⊗ 1. So θ extends the map θ : A→ D; hence θ(A) ⊆ D.

�
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