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NON-SIMPLE PURELY INFINITE C∗-ALGEBRAS:
THE HAUSDORFF CASE

ETIENNE BLANCHARD AND EBERHARD KIRCHBERG

Abstract. Local and global definitions of pure infiniteness for a C*-algebra A are
compared, and equivalence between them is obtained if the primitive ideal space of A
is Hausdorff and of finite dimension, if A has real rank zero, or if A is approximately
divisible. Sufficient criteria are given for local pure infiniteness of tensor products.
They yield that exact simple tensorially non-prime C*-algebras are purely infinite if
they have no semi-finite lower semi-continuous trace. One obtains that A is isomor-
phic to A⊗O∞ if A is (1-)purely infinite, separable, stable, nuclear and Prim(A) is
a Hausdorff space (not necessarily of finite dimension).

1. Introduction

A major problem arising in the classification program for separable nuclear C*-
algebras is to detect the refined analogue for C*-algebras of the type classification of
von Neumann algebras introduced by Murray and von Neumann. Here we study the
possible analogues of purely infinite (= type III) von Neumann algebras for C*-algebras
with Hausdorff primitive ideal space or for C*-algebras with real rank zero, and extend
some of the results of [44] and [45].

Given two non-zero positive elements a, b in a simple C*-algebra A, one can find an
integer n and a finite sequence d1, . . . , dn in A such that ‖b−(d∗1ad1+. . .+d

∗
nadn)‖ < 1 .

The simple C*-algebra A is said to be purely infinite if one can always assume n = 1
in this relation, i.e., for all a, b ∈ A+ \ {0} , there exists an operator d ∈ A verifying the
relation ‖b − d∗ad‖ < 1, and A is not equal to the complex numbers C. We remind
the reader in section 3 how he can easily see the equivalence of this definition to the
original definition of purely infinite simple C*-algebras by J. Cuntz on page 186 of [17].

Some notions of pure infiniteness for non-simple C*-algebras have been recently
introduced in [44], [45], [39] and [38] chap. 2, 3 (e.g. p.i. =pi(1), pi(n) with n =
2, 3, . . ., strong pure infiniteness). It was shown in [45] that the definitions of pure
infiniteness are equivalent in the cases of simple C*-algebras, C*-algebras of real rank
zero and approximately divisible C*-algebras. But in general it is not clear whether
they coincide. Here we study the case of C*-algebras with Hausdorff primitive ideal
space.

The generalization of the notion p.i. to non-simple C*-algebras is almost obvious:
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Definition 1.1. ([44]) A C*-algebra A is said to be purely infinite (for short p.i. ) if
and only if

(i) for every pair of positive elements a, b ∈ A+ such that b lies in the closed two-

sided ideal span(AaA) generated by a and for every ε > 0, there exists an
element d ∈ A such that ‖b− d∗ad‖ < ε , and

(ii) there is no non-zero character on A.

More natural is our notion of pi(n) for n > 1. It turns out to be equivalent to
p. i. in the case of simple algebras, cf. section 3. To exclude sub-homogeneous algebras,
we have to impose a generalization of assumption (ii) on ℓ∞(A), if A is non-simple.
It reduces to the corresponding condition on A itself if A is unital, and it is always
satisfied if A is stable.

Definition 1.2. ([38]) Given a strictly positive integer m, a C*-algebra A is said to
be m-purely infinite (abbreviated, pi(m)) if and only if

(i) for every pair of positive elements a, b in A, such that b lies in the closed two-
sided ideal of A generated by a, and for every ε > 0, there exists d1, . . . , dm ∈ A

such that ‖b−
∑

1≤i≤m

d∗i adi‖ < ε , and

(ii) there is no non-zero quotient algebra of ℓ∞(A) of dimension ≤ m2.

We say that A is weakly purely infinite (for short w.p.i.) if A is pi(m) for some m ∈ N.

The property pi(m) passes to non-zero hereditary C*-subalgebras and quotients
of A, see Proposition 4.10. We do not know if we can replace ℓ∞(A) by A in (ii), but
by Proposition 4.12 our Definition 1.2 implies the existence of n ≥ m such that A is
n-purely infinite in the sense of [45, def. 4.3], i.e., for every a ∈ A+ \ {0}, the element
a⊗ 1n ∈ Mn(A) is properly infinite (cf. [44, def. 2.3] or Remark 2.9(ii)). In particular
we work with the same notion of “weakly purely infinite” C*-algebras as defined in
[45, def. 4.3]. This implies that also the multiplier algebra M(A) of A is w.p.i., cf. [45,
prop. 4.11]. Thus, M(A) has no quotient algebra of finite dimension, if A is pi(m).
Conversely ℓ∞(M(A)) and, therefore, its ideal ℓ∞(A) can not have quotient algebras
of dimension ≤ m2, if M(A) has no quotient algebra of dimension ≤ m2. Thus, with
Proposition 4.12 and [45, prop. 4.11] in hand, we can replace (ii) equivalently by the
requirement that M(A) has no quotient algebra of dimension ≤ m2.

We characterize the C*-algebras with Hausdorff primitive ideal space which have
purely infinite simple quotients with help of the following local condition.

Definition 1.3. A C*-algebra A is said to be locally purely infinite (abbreviated, l.p.i.)
if and only if, for every primitive ideal J of A and every element b ∈ A+ with ‖b+J‖ > 0,
there is a non-zero stable C*-subalgebra D of the hereditary C*-subalgebra generated
by b, such that D is not included in J .

We say that A is traceless if every lower semi-continuous non-negative 2-quasi-trace
(cf. [27]) on A+ is trivial, i.e., takes only the values 0 and +∞. It turns out that locally
purely infinite algebras are traceless, cf. Proposition 4.1. In particular, they must be
anti-liminal.
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Since approximately divisible C*-algebras in the sense of [44, def. 5.5] are purely
infinite by [44, thm. 5.9] if they are traceless, we can conclude from [45, prop. 5.14]
that all sorts of pure infiniteness coincide on the class of approximately divisible C*-
algebras.

In section 3 we prove that locally purely infinite simple C*-algebras are purely
infinite and give some sufficient conditions under which spatial tensor products A⊗B
are locally purely infinite. Then we use this to give a simple proof that traceless exact
simple tensorially non-prime C*-algebras are purely infinite. Another corollary is that
A ⊗ C∗

r (F2) is locally purely infinite if and only if every hereditary C*-subalgebra D
of the C*-algebra A has only zero bounded (linear) traces.

Recently M. Rørdam [59] constructed an example of a simple nuclear C*-algebra
which contains both a properly infinite projection and a non-zero finite projection.
This nuclear C*-algebra is traceless and can not be purely infinite. Thus, “traceless”
C*-algebras are in general not locally purely infinite, even in the nuclear case.

A C*-algebra A of real rank zero is locally purely infinite if and only if A is strongly
purely infinite in the sense of the following Definition 1.4 (see Theorem 4.17).

Definition 1.4. ([45]) A C*-algebra A is said to be strongly purely infinite (for short
s.p.i.) if and only if for every a, b ∈ A+ , ε > 0, there exist elements s, t ∈ A such that

(1.2) ‖a2 − s∗a2s‖ < ε , ‖b2 − t∗b2t‖ < ε and ‖s∗abt‖ < ε ,

This definition is equivalent to [45, def. 5.1] by [45, rem. 5.10]. One can always
assume the operators s, t to be contractions, cf. [45, cor. 7.22]. The property of strongly
pure infiniteness for A passes to quotients A/J , hereditary C*-subalgebras D of A,
stabilizations and inductive limits, see [45, prop. 5.11], and from [45, cor. 7.22] it
follows that s.p.i. passes also to ℓ∞(A) and to ultrapowers Aω of A.

We obtain in section 5 that C*-algebras A with Hausdorff primitive ideal space
of finite topological dimension are locally purely infinite if and only if all its simple
quotients are purely infinite, and that this is the case if and only if A is strongly
purely infinite in the sense of Definition 1.4. The idea of the proof goes as follows:
if the primitive ideal space of a C*-algebra A is Hausdorff and of finite dimension,
and if A has no simple quotient of type I, then A has the global Glimm halving
property, see Definition 2.6 and [11]. A combination of this result with property (i) of
Definition 1.2 gives a reduction to the case m = 1. Thus, if the primitive ideal space
of A is a finite dimensional Hausdorff space and if A has no non-zero character, then
property (i) of Definition 1.2 implies that A is purely infinite. Then we show that
s.p.i. is implied by p.i. if the primitive ideal space is Hausdorff.

Summing up we get that for all C*-algebras with Hausdorff primitive ideal space
of finite dimension, for all C*-algebras of real rank zero, and for all approximately
divisible C*-algebras the weakest definition of pure infiniteness (l.p.i.) implies the
strongest one (s.p.i.). Moreover, in the case of C*-algebras with infinite dimensional
Hausdorff primitive ideal spaces pi(1) implies s.p.i.
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Using the main result of [45], we deduce for the purely infinite separable stable
nuclear C*-algebras A with Hausdorff primitive ideal space the tensorial absorption
property that A⊗O∞

∼= A .

If we restrict our results to separable, stable and nuclear C*-algebras A, then we
can list our results in the following theorem:

Theorem 1.5. Suppose that A is a separable, stable and nuclear C*-algebra with Haus-
dorff primitive ideal space Prim(A). Then the following properties (i), (ii) and (iii)
are equivalent:

(i) A is purely infinite(=pi(1)).
(ii) A is strongly purely infinite.
(iii) A⊗O∞ is isomorphic to A.

If, moreover, Prim(A) is of finite dimension, then (i)–(iii) are equivalent to each of
the following properties (iv)–(vii):

(iv) A is weakly purely infinite.
(v) A is locally purely infinite.
(vi) Every simple quotient of A is purely infinite.
(vii) Every simple quotient B of A absorbs a copy of O∞, i.e.,B ⊗O∞

∼= B.

It results now from [38], [39] that A as in Theorem 1.5 is classified up to isomorphisms
by its RKKG(Prim(A), ., .)-equivalence class (for trivial G).

The needed basic ingredients h0 : A → B of the theory in [38] can be constructed
simply as follows: suppose that B is also as in Theorem 1.5 and that X ∼= Prim(A) ∼=
Prim(B). We show in section 5 that there is a non-degenerate C0(X)-module and
C*-morphism from C0(X,O2 ⊗ K) into B. A non-degenerate C0(X)-module and *-
monomorphism h0 from A into B which represents the zero of RKKG(X,A,B) can
be defined as the composition h0 := ψϕ of ψ with a non-degenerate sub-trivialization
ϕ : A →֒ C0(X,O2 ⊗K), see [10] for the existence of ϕ.

Note that Theorem 1.5 and [38] imply that for every separable nuclear C*-algebra
A with Hausdorff primitive ideal space Prim(A) there is a natural isomorphism

A⊗O2 ⊗K ∼= C0(Prim(A),O2 ⊗K).

In general one has the implications s.p.i. ⇒ p.i. ⇒ w.p.i., cf. [44], [45]. We show in
section 4 that w.p.i. implies l.p.i. If the lattice of closed ideals of a C*-algebra A is
linearly ordered then A is l.p.i. if and only if it is purely infinite.

But following questions are open: does l.p.i. (respectively w.p.i., respectively p.i.)
imply w.p.i. (respectively p.i., respectively s.p.i.) in general?
Suppose that A is a unital C*-algebra with primitive ideal space Prim(A) isomorphic

to [0, 1]∞ and simple quotients isomorphic to O2 . Is A purely infinite ? This question
is also open if we assume moreover that A is pi(2).

We have the feeling that this question is related to the observation that there are
non-stable separable C*-algebras with the Hilbert cube [0, 1]∞ as primitive ideal space
and with simple quotients isomorphic to the compact operators on ℓ2(N) , cf. [11].
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Let us close this introduction with a look to von Neumann algebras or, more gen-
erally, to AW*-algebras A, where we study A as a C*-algebra. Then A has real rank
zero as a C*-algebra. Thus, A is locally purely infinite if and only if A is strongly
purely infinite by Theorem 4.17. It follows from the logical sum of [45, cor. 6.9], [44,
prop. 4.7] and [44, thm. 4.16] that a C*-algebra A of real rank zero is strongly purely
infinite if and only if every non-zero projection in A is properly infinite. This implies
that an AW*-algebra A is of type III if and only if A satisfies one of our definitions of
pure infiniteness.

Acknowledgment: The authors would like to thank the SFB 487 of the Universität
Münster and the organizers of the Operator algebra academical year 2000/2001 at
MSRI (Berkeley) for invitations and partial supports. The second-named author is
greatly indebted to Professor Joachim Cuntz (Münster) for a research position sup-
ported from the Leibnitz award of Professor Cuntz. He also likes to thank for several
invitations to the CNRS (Marseille) beginning in May 1998. There the work was initi-
ated as a part of a program on a study of non-simple purely infinite algebras (outlined
by the authors in several talks at workshops). Later work on this paper was carried
out in Marseille (IML), Münster (SFB 487), and Berkeley (MSRI).

2. Preliminaries

We recall in this section a few basic results of the theory of (not necessarily locally
trivial) continuous fields of C*-algebras, on the projectivity of C0((0, 1],Mn) and on
the semi-projectivity of O2.

2.1. C(X)-algebras and C*-bundles.

Let Y be a, not necessarily separated, topological space, for example the space of
primitive ideals or of prime ideals of a C*-algebra. By Cb(Y ) we denote the C*-algebra
of bounded continuous functions on Y with values in the complex numbers C. Given
a Hausdorff locally compact space X, let C0(X) denote the C*-algebra of continuous
functions on X with values in C and which vanish at infinity. Then we naturally
identify Cb(X) with the multiplier C*-algebra of C0(X) .

Definition 2.1. ([33]) A C(X)-algebra is a C*-algebra A endowed with a non-
degenerate *-morphism from C0(X) in the center of the multiplier C*-algebra M(A)
of A .

Here “non-degenerate” means that C0(X)A is dense in A. Thus A is nothing else but
a quotient of C0(X,A) by a closed ideal, the C0(X)-module structure is defined by this
epimorphism, and the *-morphism from C0(X) to the center of M(A) extends uniquely
to a unital strictly continuous *-morphism from Cb(X) into the center of M(A).

Cohen factorization (cf. [8, prop. 1.8]), or the description of a C(X)-algebra as
quotient of C0(X,A) shows that the set of products C0(Ω)A = {fa; f ∈ C0(Ω), a ∈ A}
is a closed ideal of A if Ω is an open subset of X. In particular A = C0(X)A.

If F ⊂ X is a closed subset we denote by A|F the quotient of A by the closed ideal
C0(X \ F )A . Note that C0(Ω)A is also a C(Ω)-algebra if Ω is an open subset of X
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and that A|F is also a C(F )-algebra, because C0(X \ F ) ⊂ C0(X) is the kernel of
the restriction map C0(X) → C0(F ) and C0(X \ F ) is contained in the kernel of the
quotient-action of C0(X) on A|F .

If y ∈ X is a point of the Hausdorff space X, we write Ay for A|{y} , and call Ay the
fiber of A at y ∈ X.

Given an element a ∈ A, let ay be the image of a in the fiber Ay (y ∈ X).

It holds (fa)y = f(y)ay for f ∈ Cb(X), a ∈ A and y ∈ X, because (f−f(y))C0(X) ⊂
C0(X \ {y}) and C0(X)A = A.
Thus, the function N(a) : y 7→ ‖ay‖ := ‖a+ C0(X \ {y})A‖ satisfies

(2.1) N(fa) = |f |N(a)

for a ∈ A and f ∈ Cb(X). In the same way one gets the the following formula of
M. Rieffel [53] for N(a):

(2.2) N(a) : y ∈ X 7→ ‖ay‖ = inf{‖[1− f(y)]a+ fa‖ ; f ∈ C0(X)sa}.

It is always upper semi-continuous, because the function y ∈ X 7→ ‖[1− f(y)]a+ fa‖
is continuous for fixed f ∈ C0(X)sa.

Let Prim(A) denote the primitive ideal space of A, cf. example 2.2.2. Since, by
the Dauns–Hofmann theorem [51, cor. 4.4.8], there is a natural isomorphism from
Cb(Prim(A)) onto the center of M(A), we can equivalently define a C(X)-algebra A
by a continuous map η from Prim(A) into the Stone-Čech compactification βX of X
such that ‖fa + J‖ = |f(η(J))| .‖a + J‖ for f ∈ C(βX), a ∈ A and every primitive
ideal J of A . The non-degeneracy condition A = C0(X)A in our definition implies
that η(Prim(A)) ⊂ X. Thus, ‖a‖ = sup{N(a)(y); y ∈ X}, and for x ∈ Im(η) (and
with the convention sup ∅ := 0),

(2.3) ‖ax‖ = sup{‖a+ J‖ ; J ∈ Prim(A), η(J) = x}.

Definition 2.2. We say that the C(X)-algebra A is a C*-bundle over X if the function
N(a) is moreover continuous for every a ∈ A ([46], [8]).

Sometimes we write continuous C*-bundle if we want to underline that the functions
N(a) are continuous.

Since we have assumed that C0(X)A is dense in A, we get A = C0(X)+.A and then
from (2.1) and C0(X)2+ = C0(X)+ that N(a) is even in C0(X)+ for a ∈ A. The reader
can see from equations (2.2) and (2.3) for N(a)(x), that a C(X)-algebra A is a C*-
bundle if and only if the above introduced continuous map η : Prim(A) → X is also
open (relatively to its image).

It is well-known that A is a C*-bundle over X if and only if A is the C*-algebra of
continuous sections vanishing at infinity of a continuous field of C*-algebras over X in
the sense of [21, def. 10.3.1], such that the fibers are the Ax and that the *-morphism
from C0(X) into M(A) coincides with the multiplication of continuous sections with
functions, [8] and the discussion in [11].

(For the difference between continuous fields and our definition of C*-bundles, let us
consider A := C0(R) as C*-bundle over the space R. Then At = C for t ∈ R and the
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corresponding continuous field is E = ((At)t∈R, C(R)) where the unbounded continuous
functions in C(R) are considered as elements of the set

∏
t∈RAt.)

Remark 2.3. The elements of a C*-bundle satisfy the following pull-back condition:
Let F and G be closed subsets of X.
The natural epimorphism A|(F∪G) → A|F and A|(F∪G) → A|G defines A|(F∪G) as the

pullback of the epimorphism A|F → A|(F∩G) and A|G → A|(F∩G).

2.2. Examples of C*-bundles.

2.2.1. If C is a C(X)-algebra and D is a C*-algebra, the spatial tensor product B =
C ⊗ D is endowed with a structure of C(X)-algebra through the map f ∈ C0(X) 7→
f ⊗ 1M(D) ∈ M(C ⊗D) . This C(X)-algebra is in general not a C*-bundle over X.

If C = C0(X), the tensor product B = C0(X) ⊗ D ≃ C0(X;D) is a “trivial”
C*-bundle over X with constant fiber Bx

∼= D . Thus, if A ⊂ B is a closed C0(X)-
submodule and A is a C*-subalgebra of B then A is a C*-bundle over X.

Let A be a separable C*-bundle over X with exact fibers Ax. If O2 is the unital
Cuntz algebra generated by two isometries s1, s2 satisfying the relation 1O2

= s1s
∗
1+s2s

∗
2

([14]), then there exists a C(X)-linear *-monomorphism A →֒ C(X)⊗O2 if and only if
A is itself exact as a C*-algebra, and this happens if and only if for every C*-algebra
D the C(X)-algebra A ⊗ D is again a C*-bundle over X ([10, thm. A.1] and [46]).
There exists a separable continuous C*-bundle A over {0} ∪ {1/n ; n ∈ N} ⊂ [0, 1]
with exact fibers such that A is not exact, [46].

2.2.2. We denote the primitive ideal space of a C*-algebra A by Prim(A) The primitive
ideals are kernels of irreducible representations of A . It is a T0-space for the Jacobson
topology (kernel-hull topology). A base of this topology is given by open sets of the form
{K ∈ Prim(A) ; ‖a+K‖ > 0} for some a ∈ A+ . Since ‖(a− t)++K‖ = (‖a+K‖− t)+
for t > 0 and a ∈ A+ , this means that the Jacobson topology is the coarsest topology
on Prim(A) such that for every a ∈ A the function K ∈ Prim(A) 7→ ‖a +K‖ is lower
semi-continuous.

On the other hand, for a ∈ A and t > 0, the Gδ-subset {K ∈ Prim(A) ; ‖a+K‖ ≥ t }
of Prim(A) is quasi-compact, [21, prop. 3.3.7].

If the space Prim(A) is in addition Hausdorff, then this yields that Prim(A) is locally
compact and that the functions N(a) : K ∈ Prim(A) 7→ ‖a+K‖ are continuous func-
tions on Prim(A) which vanish at infinity, [21, cor. 3.3.9]. Then the Dauns–Hofmann
theorem [51, cor. 4.4.8] implies that A is naturally a C*-bundle over Prim(A) with
simple fiber AK = A/K at K ∈ Prim(A) .

2.3. Projectivity of Mn(C0(0, 1]). (See also [48], [49].)
Let {ei,j}i,j∈N denote the canonical system of matrix units of the C*-algebra K :=

K(ℓ2(N)) of compact operators acting on the separable infinite dimensional Hilbert
space ℓ2(N) . These operators satisfy the relations ei,jek,l = δj,kei,l and e

∗
i,j = ej,i .

As the function h0 : t ∈ (0, 1] 7→ t ∈ C generates C0((0, 1]), one gets that for n > 1,
C0((0, 1])⊗Mn(C) is the universal C*-algebra generated by n−1 contractions f2, . . . , fn
satisfying the relations

(2.4) fifj = 0 and f ∗
i fj = δi,j f

∗
2 f2 for 2 ≤ i, j ≤ n .
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The natural C*-algebra epimorphism Φ from C0((0, 1])⊗Mn(C) onto C
∗(f2, . . . , fn) is

uniquely determined by

Ψ: h0 ⊗ ej,1 7→ fj for 1 < j ≤ n.

Note that fj := gj(g1)
∗ (1 < j ≤ n) satisfy (2.4) if g1, . . . , gn just satisfy g∗i gj = δi,j g

∗
1g1.

Moreover, the C*-algebra C0((0, 1],Mn(C)) is projective, i.e., for every closed ideal
J ⊂ A and every *-homomorphism of C*-algebras ψ : C0((0, 1],Mn(C)) → A/J there
is a *-homomorphism ϕ : C0((0, 1],Mn(C)) → A with πJϕ = ψ. (cf. [48, thm. 10.2.1],
[49] for other proofs and equivalent definitions).

Proof. Let bk = ψ(h0 ⊗ ek,1) ∈ A/J , and choose a selfadjoint contraction c ∈ A
satisfying

c+ J = (b2)
∗b2 − bn+1(bn+1)

∗ + (
n∑

k=2

bk(bk)
∗) .

There is a contraction a ∈ A with a+ J = bn+1(b
∗
n+1bn+1)

−1/3 in A/J .

By induction assumption there must be g2, . . . , gn ∈ c+Ac+ with gk+J = bk, gigk = 0
and g∗i gk = δi,kg

∗
2g2. (The condition is void if n = 1.)

Now define f ∈ A by f := (c−)a(g
∗
2g2)

1/3 and consider the polar decompositions
vk(g

∗
2g2)

1/2 of gk in A∗∗. Then vk is in pA∗∗p, where p is the support projection of
c+ in A∗∗. Thus, f 2 = 0, vkf = v∗kf = 0, the partial isometries vk satisfy vivk = 0,
v∗i vk = δikv

∗
2v2 and v∗2v2 is the support projection of g∗2g2 ≥ f ∗f .

Since f ∗f is in g∗2Ag2 = g∗kAgk, we get that

fk := vk(f
∗f)1/2 = lim

n→∞
gk(g

∗
kgk)

1/n−1/2(f ∗f)1/2

exists, is in A and fk + J = bk in A/J for k = 2, . . . , n. Then f1, . . . , fn and fn+1 := f
satisfy the defining relations for a *-homomorphism ϕ : C0((0, 1],Mn(C)) → A with
ϕ(h0 ⊗ ek,1) = fk, and πJϕ = ψ. �

The advantage of the projectivity of C0((0, 1],Mn(C)) is the following refined version
of the Glimm halving lemma:

If d : B → L(H) is an irreducible representation of a C*-algebra B of dimension
≥ n and if p ∈ L(H) is an orthogonal projection onto an n-dimensional subspace,
then we can define A := {b ∈ B; pd(b) = d(b)p} and J := {b ∈ A; pd(b)p = 0}.
The restriction of d to A defines an isomorphism from A/J onto pL(H)p ∼= Mn(C)
by a slight sharpening of the Kadison transitivity theorem, cf. [7, prop. 3.4] or [36,
thm. 1.4(iii)] or in the unital case [51, 2.7.5 and 3.11.9].

Thus, there is a morphism ϕ : C0((0, 1],Mn(C)) → A ⊂ B such that a 7→ d(ϕ(a))p
is a *-epimorphism onto pL(H)p with kernel C0((0, 1),Mn(C)).

2.4. On semi-projectivity. More generally a separable C*-algebra B is said to be
semi-projective ([3]) if for any C*-algebra A , any increasing sequence {Jk} of (closed
two-sided) ideals in A and any *-morphism ϕ : B → A/J∞ , where J∞ = ∪Jk , there
exists an index n and a *-morphism ψ from B to A/Jn such that ϕ = πn ◦ ψ , where
πn : A/Jn → A/J∞ is the natural quotient map.
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The C*-algebras C, C ⊕ C , T := C∗(s : s∗s = 1) , E2 := C∗(s1, s2 : s∗i sj = δij1) ,
O2 are semi-projective, as the reader easily can check step by step (with help of the
functional calculus), see exercises 4.7 (c)-(e) of [4]. On the other side semi-projectivity
is not invariant under stabilization: C0(0, 1]⊗K and K are not semi-projective. (We do
not know whether O2 ⊗ K is semi-projective or not.) Moreover we have the following
extension property.

If D is a separable C*-bundle over a locally compact Hausdorff space X , F is a
compact subset of X and ϕ is a *-morphism from a semi-projective C*-algebra B to
D|F , then there exist a compact subset G of X and a *-morphism ψ : B → D|G such
that F is contained in the interior of G and ψ(a)|F = ϕ(a) for all a ∈ B .

Moreover, if D has simple fibers and if B is unital and ϕ(1) generates D|F as a
closed ideal, then G can be found such that also ψ(1) generates D|G as closed ideal.

Proof. Since B is separable we find a separable C*-subalgebra C of D such that ϕ(B)
is contained in the image πF (C) of C under the canonical epimorphism πF : B → B|F .

For every compact neighborhoodG of F we let IG := C∩C0(X\G)+D. The definition
of neighborhoods implies that F is contained in the interior of G. The IG define an
upward directed family of closed ideals of C with closed union equal to C∩C0(X \F )D.
Since C is separable, there exists a countable sequence G1 ⊂ G2 ⊂ . . . such that the
closure of the union of the IGn

is the same as the closure of the union of the IG.

The semi-projectivity of B implies that there is n ∈ N and a *-homomorphism
ψn : B → C/IGn

⊂ D|Gn
with πGn,Fψn = ϕ, where πG,F (d) = d|F for d ∈ D|G, F ⊂ G.

Take G := Gn and ψ := ψn if B is non-unital.

If B is unital, then N(ψn(1))(x) = N(ϕ(1))(x) > 0 for x ∈ F and N(ψn(1)) takes
only the values 0 and 1. Thus, its support G is a compact and (relatively to Gn)
open subset of Gn. Therefore, G must contain F in its interior (relative to X), and
a ∈ B 7→ ψ(a) := ψn(a)|G defines a *-homomorphism from B into D|G, such that ψ(1)
generates D|G as a closed ideal and ψ(a)|F = ϕ(a) for a ∈ B. �

2.5. Finite dimensional Hausdorff spaces.

Recall that a compact Hausdorff space X has (covering-) dimension dim(X) ≤
n ∈ N if for every finite open covering of X there is another covering of X by open
subsets which refines the given covering and is such that the intersection of every n+2
distinct sets of this covering is always empty, i.e., a given finite open covering admits a
refinement whose nerve is a simplicial complex of dimension ≤ n.

Definition 2.4. We say that a topological space X has the decomposition-dimension ≤
m if for every finite covering O of the topological spaceX, there is a finite open covering
U = {U1, . . . , Uq} which refines O and for which there exists a map ι : {1, . . . , q} →
{1, . . . ,m+1}, such that for each 1 ≤ k ≤ m+1, the open set Zk =

⋃
j∈ι−1(k) Uj is the

disjoint union of the open sets Uj, j ∈ ι−1(k) .

Later we use the following lemma of [11].

Lemma 2.5 (([11])). Let X be a compact Hausdorff space of topological dimension
≤ n, let O = {O1, . . . , Op} be an open covering of X and let U = {U1, . . . , Uq} be an
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open covering of X which is an refinement of O such that every intersection of n + 2
different elements of U is empty.

Then there is a finite open covering V of X which is a refinement of U (and thus
of O) and is such that the set V can be partitioned into n + 1 subsets, consisting of
elements with pairwise disjoint closures.

The lemma says that a compact Hausdorff space X has covering-dimension ≤ n if
and only if it has decomposition-dimension ≤ n. It is not known if this also holds for
T0-spaces like Prim(A).

2.6. Global Glimm halving for C*-bundles.

In [11] the authors have studied a global version of the Glimm halving for non-simple
C*-algebras (Definition 2.6). There is proven that this global property holds for C*-
algebras with Hausdorff finite dimensional primitive ideal space and with no type I
quotients (Theorem 2.7).
Glimm lemma (cf. [51, lemma 6.7.1], [60, lemma 4.6.6], or subsection 2.3) can be

equivalently restated as follows: given any non-zero positive element a in a C*-algebra
A such that aAa is not a commutative algebra, there exists a non-zero element b ∈ aAa
with b2 = 0 . This property motivates the following definition.

Definition 2.6. A C*-algebra A is said to have the global Glimm halving property if
for every positive a ∈ A+ and every ε > 0 , there exists b ∈ aAa such that b2 = 0 and
(a− ε)+ belongs to the closed ideal AbA generated by b .

The global Glimm halving property of a C*-algebra A implies by induction that for
all a ∈ A+ , ε > 0 and n ≥ 2 , there exists a *-homomorphism πn : C0 ((0, 1])⊗Mn(C) →
aAa such that (a − ε)+ is in the ideal generated by the image of πn (cf. [11]). In
particular A can not have any irreducible representation which contains the compact
operators in its image, hence A is strictly anti-liminal, i.e., every non-zero quotient of
A is anti-liminal.

Theorem 2.7. ([11]) Let A be a continuous C*-bundle over a finite dimensional locally
compact Hausdorff space X and suppose that each fiber Ax is simple and not of type I .

Then the global Glimm halving property 2.6 holds for A .

Remark 2.8. In [11] it is shown: If B1, B2, . . . is a sequence of simple unital C*-
algebras 6= C, then A ⊗ B1 ⊗ B2 ⊗ . . . satisfies the global Glimm halving property.
Strictly anti-liminal AF-algebras have global Glimm halving property.

2.7. Majorization and properly infinite elements.

The positive and negative parts of a selfadjoint element a ∈ A are denoted

a+ := (|a|+ a)/2 ∈ A+ and a− := (|a| − a)/2 ∈ A+ .

Suppose now that a, b ∈ A+ and ε > 0 verify ‖a − b‖ < ε . Then the positive part
(b − ε)+ ∈ A of (b − ε.1) ∈ M(A) admits the decomposition (b − ε)+ = d∗ad for
some contraction d ∈ A ([45, lemma 2.2]). Thus, if a1, a2, . . . is a sequence of positive

10



elements in A+ converging to a or, more generally, satisfying lim sup ‖b−an‖ < ε, then
for n ∈ N large enough, there are contractions dn ∈ A such that

(2.5) (b− ε)+ = d∗nandn .

In particular, if η > 0 is small enough, there exists a contraction dη in A with
(b− ε)+ = d∗η(a− η)+dη .

We derive two other consequences of [45, lemma 2.2]:

(i) If δ ∈ [0,∞) and 0 ≤ b ≤ a + δ.1 (in M(A)), then for every ε > δ there is a
contraction f ∈ A such that (b− ε)+ = f ∗af

(ii) If c, d ∈ A+ and d is in the closed ideal generated by c, then for every ε ∈ (0, 1)
there are p ∈ N, e1, . . . , ep ∈ A and η > 0 such that (d− ε)+ =

∑
e∗j(c− η)+ej.

Proof. (i) If en := (a+ δ+1/n)−1/2b1/2, cn := (a+ δ+1/n)−1(a+ δ) and an := e∗naen,
then ‖cn‖ < 1, ene

∗
n ≤ cn and b− an = (δ+1/n)e∗nen, which implies ‖en‖ < 1 and thus

lim sup ‖b− an‖ ≤ δ < ε. Let f := endn for sufficiently large n ∈ N .

(ii) We may suppose that (d − ε)+ 6= 0, i.e., ε < ‖d‖. The element d1/2 is in the
closed linear span of Ac1/2A. Let δ := ε/(4‖d‖1/2 + 1) and γ := (δ + 2‖d‖1/2)δ. Then
ε − γ > 0, δ < ‖d‖1/2 and there are p ∈ N and non-zero columns f, g ∈ Mp,1(A)
with ‖d1/2 − v‖ < δ, where v := g∗(c1/2 ⊗ 1p)f . Let η > 0 with η(‖g‖‖f‖)2 < ε − γ.
Straightforward calculations show ‖d− v∗v‖ < γ and

v∗v ≤ ‖g‖2(f ∗((c− η)+ ⊗ 1p)f) + ε− γ .

Part (i) gives a contraction h ∈ A with

(d− γ)+ = h∗v∗vh ≤ ‖g‖2(fh)∗((c− η)+ ⊗ 1p)(fh) + ε− γ

and then e ∈Mp,1(A) with (d− ε)+ = e∗((c− η)+ ⊗ 1p)e. �

Remarks 2.9. (i) If a ∈ A+, b ∈ Mn(A)+ and there is a matrix e ∈ Mm,n(A) with
‖b− e∗(a⊗ 1m)e‖ < ε for a constant ε > 0, then

(b− ε)+ = f ∗((a− 2η)+ ⊗ 1m)f

for some matrix f ∈ Mm,n(A) with ‖f‖ ≤ ‖e‖ and some η ∈ (0, ε) : indeed we find
η > 0 such that we still have ‖b− e∗((a− 2η)+ ⊗ 1m)e‖ < ε. As shown above there is
a contraction d ∈Mn(A) such that f := ed is as desired.

(ii) A non-zero positive element a ∈ A+ in a (not necessarily purely infinite) C*-algebra
A is properly infinite if, for every ε > 0, there exists a row matrix d = (d1, d2) ∈M1,2(A)
such that ‖d∗ad− a⊗ 12‖ < ε, cf. [44, def. 3.2].

If one applies (i) with m = 1, n = 2 then one finds u, v ∈ aAa with u∗u = v∗v =
(a − ε)+ and u∗v = 0 ([44, prop. 3.3]), i.e., there exits a row w = (u, v) ∈ M1,2(aAa)
satisfying

w∗w = (a− ε)+ ⊗ 12 in A⊗M2(C) .

An element a ∈ A+ is properly infinite if for every closed ideal J of A which does not
contain a there is an element h 6= 0 in (A/J)+ such that for every δ > 0 there exists
a row matrix d = (d1, d2) ∈ M1,2(A/J) with ‖d∗πJ(a)d − (πJ(a) ⊕ h)‖ < δ, cf. [44,
prop. 3.14].
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(iii) A C*-algebra A is purely infinite if and only if every element a ∈ A+ \ {0} is
properly infinite, [44, thm. 4.16].

(iv) Purely infinite C*-algebras A have the global Glimm halving property 2.6: namely,
if a ∈ A+ \ {0} and ε > 0, then b = vu∗ ∈ aAa with u, v from (ii) verifies b2 = 0 and
[(a− ε)+]

2 = v∗bu , so that (a− ε)+ ∈ AbA .

Lemma 2.10. Given a positive element a in a C*-algebra A and 0 < ε < ‖a‖ ,
suppose that for every ν > 0 , the element (a − ν)+ is either zero or properly infinite
(cf. Remark 2.9(ii)).

Then there exists an infinite sequence w1, w2, . . . in aAa such that for all n,m ∈ N ,
one has w∗

nwm = δn,m (a− ε)+ .

The element d =
∑

n∈N 2
−nwnw

∗
n generates a stable hereditary C*-subalgebra dAd of

aAa such that (a− ε)2+ is in the ideal generated by d.

Proof. For n ∈ N , let εn := 2−n−1.ε and δn :=
∑

0≤k≤n εk = (1− 2−n−1).ε < ε . From
Remark 2.9(ii) one can see that a itself is properly infinite if (a−ν)+ is properly infinite
for every ν ∈ (0, δ) for some δ > 0, and that b∗b and (b∗b)1/2 are properly infinite if bb∗

is properly infinite.

Thus, if we let v−1 := a1/2 , then we can find inductively (by repeated use of Re-
mark 2.9(ii)) elements un, vn in vn−1Av

∗
n−1 (n ∈ N) such that

a) for every ν > 0 , the element (v∗nvn − ν)+ is either zero or properly infinite,
b) u∗nun = v∗nvn = (v∗n−1vn−1 − εn)+ = (a− δn)+ ≥ (a− ε)+ and
c) u∗nvn = 0 .

For n ∈ N , let φn : R+ → [0, 1] be the function φn(t) =

{
0 if t ≤ ε,
(t− ε)/(t− δn) if t ≥ ε .

Then the elements wn = unφn(a)
1/2 ∈ (a − ε/2)+A(a − ε/2)+, n ∈ N , satisfy the

requested relations. �

2.8. Prime ideals of tensor products.

We consider here the T0-space prime(A ⊗ B) of prime ideals of the spatial tensor
product A⊗B of C*-algebras A and B. The structure of this space is important for the
question when tensor products A ⊗ B are locally purely infinite. (The second named
author shows in [40] that the example of Rørdam [59] allows to construct an example
of a strongly purely infinite C*-algebra B such that A⊗B is not locally purely infinite
for a certain C*-algebra A.)

Remarks 2.11. Recall that a closed ideal I 6= A of a C*-algebra A is prime if J∩K ⊂ I
implies J ⊂ I or K ⊂ I for closed ideals J,K ⊳ A. Since JK = J ∩ K, this says
equivalently that aAb ⊂ I implies a ∈ I or b ∈ I.

Kernels of factorial representations are prime. The hull-kernel topology makes the
set of prime ideals I 6= A of A to a T0-space prime(A) which contains the primitive ideal
space Prim(A) as a dense subspace. Conversely, prime(A) is naturally isomorphic to
the T0-space of prime closed subsets of Prim(A). Thus, Prim(A) = prime(A) if Prim(A)
or prime(A) is Hausdorff.
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As in the case of the primitive ideal space there is a one-to-one correspondence
between open subsets ZJ of prime(A) and closed ideals of J of A given by

J 7→ ZJ := {I ∈ prime(A) : J 6⊂ I}.

We say that A is prime if 0 is a prime ideal of A. Clearly J ⊳ A is prime if and only
if A/J is prime.

It is easy to see that the Hamana envelope and the Dedekind AW*-completion of
a prime C*-algebra A are AW*-factors (which are always primitive but not simple).
Thus, prime ideals of C*-algebras are the kernels of *-homomorphisms into AW*-
factors with images which are dense in a certain AW*-sense.

A result of Dixmier ([20]) says: if A is separable then prime(A) and Prim(A) are the
same, cf. [51, prop.4.3.6].

Nik Weaver gave in 2001 an example ([63]) of a non-separable prime C*-algebra
which is not primitive.

Lemma 2.12. (i) If N is a C*-seminorm on the algebraic tensor product A ⊙ B
with N(a ⊗ b) 6= 0 for a ⊗ b 6= 0, then N majorizes the spatial C*-norm on
A⊙ B.

(ii) Every non-zero closed ideal I ⊳ A ⊗ B contains a non-zero elementary tensor
a⊗ b.

(iii) Suppose that J ⊳ A and K ⊳ B are closed ideals. Let I denote the kernel of the
epimorphism A⊗B → (A/J)⊗(B/K). Then the closure I0 of the sum of ideals
generated by elementary tensors a⊗ b ∈ I is I0 = J ⊗ B + A⊗K.
If I0 = I then the kernel of (A/J)⊗ B → (A/J)⊗ (B/K) is (A/J)⊗K.

(iv) If J1 ⊂ K1⊳A and J2 ⊂ K2⊳B, then J1⊗B+A⊗J2 = K1⊗B+A⊗K2 6= A⊗B
implies J1 = K1 and J2 = K2.

Proof. (i): It is easy to check that the restrictions of N to C ⊙ B and A ⊙ D for
commutative C*-subalgebras C ⊂ A and D ⊂ B are the (unique) C*-norm there
(i.e., check the special case of (ii) for commutative A or B). But this is the only
requirement needed in the proof of Takesaki in [61] that for every pure state ϕ of A
the set of pure states ψ of B with |(ϕ⊗ ψ)(d)| ≤ N(d) for d ∈ A⊙B is separating for
B. The latter implies that N majorizes the spatial C*-norm.

(ii): If I does not contain a non-zero elementary tensor, then the C*-seminorm N
on A ⊙ B which defined by the *-homomorphism A ⊙ B → (A ⊗ B)/I satisfies the
assumption of (i).

(iii): The kernel of A⊙B → (A/J)⊙ (B/K) ⊂ (A/J)⊗ (B/J) is equal to J ⊙B +
A⊙K. Thus, the closed ideal of A⊗ B which is generated by the elementary tensors
in the kernel of A⊗ B → (A/J)⊗ (B/K) is equal to J ⊗ B + A⊗K.

(iv): Since K1 ⊗ B + A ⊗ K2 6= A ⊗ B, there are c ∈ A, ϕ ∈ A∗, d ∈ B, ψ ∈ B∗

with ϕ(K1) = 0, ϕ(c) = 1, ψ(K2) = 0 and ψ(d) = 1. Since (idA ⊗ ψ)(A⊙ J2) = 0 and
(idA⊗ψ)(J1⊙B) ⊂ J1, we have a = (idA⊗ψ)(a⊗d) ∈ J1 for a ∈ K1, i.e.,K1 = J1. �

Lemma 2.13. Let A,B be C*-algebras and let I be a prime ideal of A⊗ B.
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(i) The sets IA := {a ∈ A : a ⊗ B ⊂ I} and IB := {b ∈ B : A ⊗ b ⊂ I} are prime
ideals of A and B respectively.

In particular J = IA and K = IB if, in addition, I = J ⊗ B + A⊗K.
(ii) If a⊗ b is in I then a ∈ IA or b ∈ IB.
(iii) The equality IA ⊗ B + A⊗ IB = 0 implies I = 0.
(iv) The ideal I is contained in the kernel of A⊗ B → (A/IA)⊗ (B/IB).
(v) If J ⊳ A and K ⊳ B are prime, then the kernel I0 of A⊗ B → (A/J)⊗ (B/K)

is prime.
If, moreover, I0 = A ⊗ L +M ⊗ B for some closed ideals L ⊳ A and M ⊳ B

then J = L = IA and K =M = IB.

Proof. (i): Clearly IA is a closed ideal of A. If J ⊳ A and K ⊳A are closed ideals such
that JK ⊂ IA then (J ⊗ B)(K ⊗ B) ⊂ I. Thus, J ⊗ B ⊂ I or K ⊗ B ⊂ I, which
implies J ⊂ IA or K ⊂ IA. Thus, IA is prime. The same happens with IB.

If J ⊗ B + A⊗K ⊂ I then J ⊂ IA and K ⊂ IB. Now apply (iv) of Lemma 2.12

(ii): Let J1 and J2 denote the closed ideals generated by a and b respectively. Then
(J1 ⊗ B)(A⊗ J2) ⊂ I.

(iii) follows from (ii) and part (ii) of Lemma 2.12.

(iv): The C*-seminorm N on the algebraic tensor product (A/IA)⊙ (B/IB) which is
given by the natural *-homomorphism from (A/IA)⊙(B/IB) into (A⊗B)/I is non-zero
on non-zero elementary tensors (a + IA) ⊗ (b + IB) = (a ⊗ b) + (IA ⊙ B) + (A ⊙ IB)
by (i) and (ii). Thus, part (i) of Lemma 2.12 applies and gives that N majorizes the
spatial norm on (A/IA) ⊙ (B/IB), which means that I is contained in the kernel of
A⊗ B → (A/IA)⊗ (B/IB).

(v): By Remarks 2.11 we may assume that J = 0 and K = 0, i.e., we have to show
that A ⊗ B is prime if A and B are prime. Suppose that P an Q are non-zero closed
ideals of A ⊗ B such that PQ = 0. By part (ii) of Lemma 2.12, there are non-zero
elements a, c ∈ A, b, d ∈ B such that a⊗ b ∈ P and c⊗ d ∈ Q. Thus, (aec)⊗ (bfd) = 0
for all e ∈ A, f ∈ B, which implies aAc = 0 or bBd = 0. This contradicts that A and
B both are prime. �

Lemma 2.14. Let ϕ be a pure state on a C*-algebra A and G ⊂ A be a separable
C*-subalgebra. Then there exist a separable C*-subalgebra B ⊂ A and b ∈ B+ with

‖b‖ = 1 such that G ⊂ B, ϕ(b) = 1 and {a ∈ B; ϕ(a) = 0} ⊂ (b− b2)B + B(b− b2).

The restriction ϕ|B is pure, {d ∈ B; ϕ(d∗d + dd∗) = 0} = (b− b2)B(b− b2) and
limn→∞ ‖bndbn − ϕ(d)b2n‖ = 0 for all d ∈ B.

Proof. By a variant of Kadison’s transitivity theorem (cf. end of subsection 2.3 with
n = 1) we find k ∈ A+ with ‖k‖ = 1 and ϕ(k) = 1. Then we have ϕ(d) = ϕ(dk) =
ϕ(kd) for all d ∈ A. The left ideal L of A defined by L = {a ∈ A; ϕ(a∗a) = 0} is closed
and ker(ϕ) = L∗ + L, because ϕ is pure (cf. [51, prop. 3.13.6]). Thus, {a− ϕ(a)k; a ∈
A} ⊂ L∗ + L and there exists a separable C*-subalgebra B1 of A with G ⊂ B1 and
Z(G) ⊂ (L∗ ∩ B1) + (L ∩ B1) where Z(G) = {a − ϕ(a)k; a ∈ G}. (Note here that
(L∗ ∩ B1) + (L ∩B1) is closed, G ∩ ker(ϕ) ⊂ Z(G) ⊂ B1 and k ∈ B1.)
If we repeat this construction with B1, B2, . . . in place of G we get a sequence of
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separable C*-subalgebras G ⊂ B1 ⊂ B2 ⊂ . . . A such that k ∈ Bn and Bn ∩ ker(ϕ) ⊂
L∗∩Bn+1+L∩Bn+1. If B denotes the closure of

⋃
nBn, then B∩ker(ϕ) = L∗∩B+L∩B,

because B ∩ ker(ϕ) is the closure of
⋃

n(Bn ∩ ker(ϕ)) and B ∩ ker(ϕ) is the image of
the bounded linear projection Z : a 7→ a−ϕ(a)k in L(B). In particular the restriction
of ϕ to B is a pure state.

Let h be a strictly positive contraction in the separable C*-algebra L∗∩B∩L. Then
h ∈ B+, ϕ(h) = 0 and B ∩ ker(ϕ) = Bh + hB. Thus, h + k is a strictly positive
element of B. If E is the separable C*-subalgebra of B generated by h and k, then the
restriction of ϕ to E is a character, because h and k are in the multiplicative domain
of the completely positive map ϕ : A → C. It follows that J := E ∩ ker(ϕ) is an ideal
with h ∈ J ⊂ hBh. Let f := ‖2h‖−1h. Then b := (1 − f)1/2(k + f)(1 − f)1/2 is a
strictly positive element in E with ϕ(b) = 1 and ‖b‖ ≤ ‖b+f 2‖ ≤ 1, because ϕ(f) = 0,
1/2 ≤ (1 − f) and (1 − f)1/2k(1 − f)1/2 ≤ 1 − f . We get that b1/2f 2b1/2 ≤ b(1 − b)
and ϕ(b(1 − b)) = 0, i.e., b(1 − b) ∈ J . Since b1/2f 2b1/2 is a strictly positive element
of J , it follows that b(1 − b) ≥ b1/2f 2b1/2 is a strictly positive element of J . Since
h ∈ J ⊂ hBh, we get that b(1 − b) is a strictly positive element of hBh. Thus,

b is a strictly positive element of B with ϕ(b) = 1, ‖b‖ = 1, Bh = Bb(1− b) and

B ∩ ker(ϕ) = b(1− b)B +Bb(1− b). Since ‖bn(1− b)‖ < 1/n (by functional calculus),
we get limn→∞ ‖bndbn − ϕ(d)b2n‖ = 0 for d ∈ B. �

Lemma 2.15. If A and B are C*-algebras and if D is a non-zero hereditary C*-
subalgebra of the minimal C*-algebra tensor product A⊗ B, then there exists 0 6= z ∈
A⊗ B with zz∗ ∈ D and z∗z = e⊗ f for some non-zero e ∈ A+ and f ∈ B+.

If d ∈ D+ and ϕ ∈ A∗ and ψ ∈ B∗ are pure states with (ϕ ⊗ ψ)(d) > 0, then z can
be taken such that, moreover, ϕ(e)ψ(f) > 0.

Proof. Let d ∈ D+ with ‖d‖ = 1, and let C := A⊗B. The minimal C*-algebra tensor
product is the spatial tensor product w.r.t. the direct sum of irreducible representations
(as follows e.g. from [60, prop. 1.22.9]). Thus, there are pure states ϕ on A and ψ on
B such that (ϕ⊗ ψ)(d) > 0.

We assume from now on that we are given a fixed contraction d ∈ D+ and fixed
pure states ϕ and ψ with (ϕ ⊗ ψ)(d) > 0 (to prove also the second part). Then
a := (ϕ⊗ idB)(d) ∈ B+ is a non-zero contraction and 0 < ψ(a) ≤ ‖a‖.

Let δ := ψ(a)/2 and f := (a − δ)2+. Thus, 0 < δ ≤ 1/2, f ∈ B+ and ψ(f) > 0,

because ψ(f)1/2 ≥ ψ(f 1/2) ≥ ψ(a)− δ > 0.

There exists a separable C*-subalgebra G of A such that d is in the closure of G⊙B,
because d is the limit of sequence in A⊙B. By Lemma 2.14, there exists b ∈ A+ such
that ‖b‖ = 1 = ϕ(b) and ‖bncbn − ϕ(c)b2n‖ tends to zero for every c ∈ G. The maps

Tn : y ∈ A⊗ B 7→ (bn ⊗ 1)y(bn ⊗ 1)− (b2n ⊗ (ϕ⊗ id)(y))

converge on G⊗B pointwise to zero, because Tn is a difference of completely positive
contractions on C and tends on G⊙ B pointwise to zero.

15



Thus, there exists n with ‖Tn(d)‖ < δ2, i.e., (b2n ⊗ a) − δ2 ≤ (bn ⊗ 1)d(bn ⊗ 1) in

the unitization of C. With g := b2n and t := d1/2(bn ⊗ 1)(g ⊗ a) − δ2)
1/2
+ , we get

((g ⊗ a)− δ2)2+ ≤ t∗t and tCt∗ ⊂ d1/2Ad1/2 ⊂ D.

Now let e := (g − δ)+
2 ∈ A+. Since ϕ(g) = ‖g‖ = 1, g ≥ 0 and 0 < δ ≤ 1/2, we get

ϕ(e) ≥ (1− δ)2 > 0.

On the other hand, e⊗ f ≤ ((g ⊗ a)− δ2)+)
2 by functional calculus.

If t = (tt∗)1/2v is the polar decomposition of t in the second conjugate of C, then
vxv∗ ∈ tCt∗ ⊂ D and vx1/2 ∈ C for every x ∈ C with 0 ≤ x ≤ t∗t, because x1/2 is in
the norm closure of t∗Ct and vt∗ = (tt∗)1/2.

Since e ⊗ f ≤ t∗t we get that z = v((g − δ)+ ⊗ (a − δ)+) is in A ⊗ B, and e, f, z
satisfy z∗z = e⊗ f , zz∗ ∈ D and ϕ(e)ψ(f) > 0. �

Proposition 2.16. Given two C*-algebras A and B, the following conditions (i)-(iv)
are equivalent:

(i) For every primitive ideal I ⊳ A⊗ B and every d ∈ (A⊗ B)+ \ I there are pure
states ϕ on A and ψ on B such that (ϕ⊗ ψ)(I) = 0 and (ϕ⊗ ψ)(d) > 0.

(ii) Every closed ideal J of A⊗B is the closure of the sum of all elementary ideals
J1 ⊗ J2 ⊂ J , where J1 ⊂ A and J2 ⊂ B are closed ideals.

(iii) The map
λ : (J1, J2) 7→ (J1 ⊗ B) + (A⊗ J2)

defines a homeomorphism from the Tychonoff product prime(A)× prime(B) of
prime(A) and prime(B) onto prime(A⊗ B).

(iv) For every closed ideals I ⊳ A and J ⊳ B the sequences

I ⊗ (B/J) → A⊗ (B/J) → (A/I)⊗ (B/J)

and
(A/I)⊗ J → (A/I)⊗ B → (A/I)⊗ (B/J)

are exact.

Clearly A must be exact if A and B satisfy (iv) for every C*-algebra B.

Proof. The implication (ii)⇒(iv) follows from part (iii) of Lemma 2.12.

(iv)⇒(i): The primitive ideal I is prime. By Lemma 2.13, IA ⊗ B + A ⊗ IB ⊂ I
and I is contained in the kernel of A⊗B → (A/IA)⊗ (B/IB). By the 3× 3-lemma it
follows from (iv) that A⊗ B → (A/IA) ⊗ (B/IB) has kernel IA ⊗ B + A⊗ IB. Thus,
I = A⊗ IB + IA⊗B is the kernel of A⊗B → (A/IA)⊗ (B/IB). Since d 6∈ I, the image
d+I is a non-zero positive element of (A/IA)⊗(B/IB). The irreducible representations
ρ1 ⊗ ρ2 for irreducible representations ρ1 of A/IA and ρ2 of B/IB are separating for
(A/IA)⊗ (B/IB). Thus, there are pure states ϕ on A and ψ on B such that ϕ(IA) = 0,
ψ(IB) = 0 and (ϕ⊗ ψ)(d) > 0.

(i)⇒(ii): Let J0 be the closure of the sum of all elementary ideals which are contained
in J .

Suppose that there exists d ∈ J+ such that d is not in J0. Then there is an irreducible
representation ρ of A ⊗ B with primitive kernel I such that J0 ⊂ I but d 6∈ I. By (i)
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there are pure states ϕ on A and ψ on B with ϕ⊗ ψ(I) = 0 and ϕ⊗ ψ(d) > 0. There
exist e ∈ A+ and f ∈ B+ such that ϕ(e)ψ(f) > 0 and e ⊗ f is in J by Lemma 2.15.
Thus, e⊗ f ∈ I, which contradicts (ϕ⊗ ψ)(I) = 0.

(ii)⇒(iii): The map λ is well-defined: the kernel I of A ⊗ B → (A/J1) ⊗ (B/J2) is
prime for prime J1 ⊳ A and prime J2 ⊳B by part (v) of Lemma 2.13. Thus, (ii) implies
I = A ⊗ J2 + J1 ⊗ B by part (iii) of Lemma 2.12,i.e.,λ is a well-defined map from
prime(A)× prime(B) into prime(A⊗ B).

If I is a given prime ideal of A⊗B then IA ⊳ A and IB ⊳ B are primitive ideals and
the the kernel K of A⊗B → (A/IA)⊗ (B/IB) is prime and contains I by Lemma 2.13.
Thus, (ii) implies I = K = IA ⊗B+A⊗ IB by part (iii) of Lemma 2.12, i.e.,λ is onto.
Part (v) of Lemma 2.13 shows that the inverse of λ is given by I 7→ (IA, IB).

Every open subset of the Tychonoff product prime(A) × prime(B) is the union of
Cartesian products ZJ × ZK of open subsets ZJ of prime(A) and ZK of prime(B)
corresponding to closed ideals J ⊳A and K ⊳B. λ maps ZJ ×ZK onto the open subset
of prime(A⊗B) which corresponds to J ⊗K. Thus, by (ii), λ maps the open subsets
of the Tychonoff product prime(A)×prime(B) onto the open subsets of prime(A⊗B).

(iii)⇒(ii): Follows from the correspondence of open sets of prime(A⊗B) and closed
ideals of A⊗ B. �

Proposition 2.17. Given two C*-algebras A and B, each of the following properties
(1)-(5) imply the equivalent properties (i)-(iv) in Proposition 2.16.

(1) For I ⊳A and J ⊳B the sequences L(H)⊗ I → L(H)⊗A→ L(H)⊗ (A/I) and
L(H)⊗ J → L(H)⊗ B → L(H)⊗ (B/J) are exact.

(2) A or B is exact
(3) A and B are locally reflexive
(4) B is simple and for every ideal I ⊳A the sequence I⊗B → A⊗B → (A/I)⊗B

is exact.
(5) A is locally reflexive and B is simple
(6) A and B are simple.

Proof. (1): The exactness of the sequence L(H) ⊗ I → L(H) ⊗ A → L(H) ⊗ (A/I)
implies that for every C*-algebra C the sequence C ⊗ I → C ⊗ A → C ⊗ (A/I) is
exact, cf. [62, prop. 2.6] or [34, lemma 3.9].

(2): If A is exact, then every quotient A/I of A is exact (cf. [35, prop. 7.1(ii)] or [62,
cor.9.3]), i.e., the sequence (A/I)⊗ J → (A/I)⊗ B → (A/I)⊗ (B/J) is exact. Every
exact C*-algebra is locally reflexive (cf. [35, rem. above thm. 7.2] or [62, prop.5.1]),
which implies the exactness of L(H)⊗ I → L(H)⊗A→ L(H)⊗ (A/I) for every I ⊳A
by [26]. Thus, I ⊗ (B/J) → A⊗ (B/J) → (A/I)⊗ (B/J) is exact for every I ⊳ A.

(3): If A is locally reflexive, then L(H) ⊗ I → L(H) ⊗ A → L(H) ⊗ (A/I) is exact
for I ⊳ A, see [26].

(5) implies (4) in the same way. (6) implies (4), and (4) implies (iv) of Proposition
2.16. �

Lemma 2.18. Suppose that the natural map from prime(A)⊗prime(B) into prime(A⊗
B) is an isomorphism, D is a hereditary C*-subalgebra of A⊗ B and I is a primitive
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ideal of A⊗ B which does not contain D.
Then there are non-zero g ∈ A+, h ∈ B+, t ∈ A⊗ B and pure states ϕ on A and ψ

on B such that

(i) (ϕ⊗ ψ)(I) = 0,
(ii) tt∗ ∈ D, t∗t = g ⊗ h,
(iii) ϕ(g) = ‖g‖ = 1 and ψ(h) = ‖h‖ = 1 .

Proof. There exists d ∈ D+ \ I. By (i) of Proposition 2.16 there are pure states ϕ0

on A and ψ0 on B such that (ϕ0 ⊗ ψ0)(I) = 0 and (ϕ0 ⊗ ψ0)(d) > 0. By Lemma 2.15

there are z ∈ A ⊗ B, e ∈ A+, f ∈ B+ with zz∗ ∈ d(A⊗ B)d, z∗z = e ⊗ f , ϕ0(e) > 0
and ψ0(f) > 0.

Let ϕ(a) := ϕ0(e
1/2ae1/2)/ϕ0(e) and ψ(b) := ψ0(f

1/2bf 1/2)/ψ0(f). Then ϕ and ψ are
pure states on A respectively B. The restrictions to eAe respectively fBf have norm
one. Thus, the restrictions are pure states on eAe respectively fBf . By Lemma 2.14
there are g ∈ eAe and h ∈ fBf which satisfy (iii). Now let z = w(e1/2 ⊗ f 1/2) be the
polar decomposition of z in the second conjugate of A⊗ B and define t by

t := w(g1/2 ⊗ h1/2) = lim
n→∞

z(((e+ 1/n)−1/2g1/2)⊗ (f + 1/n)−1/2h1/2)) ∈ A⊗ B .

�

Lemma 2.19. Let b ∈ A+ be a positive element such that, for every non-negative

function f ∈ C0((0, ‖b‖]), there is no non-zero tracial state on f(b)Af(b).
Then for every δ ∈ (0, 1) and n ∈ N there are elements d1, . . . , dn ∈ A∗∗ such that

‖b−
∑
d∗jbdj‖ ≤ δ,

∑
‖d∗jdj‖ ≤ δ−1‖b‖ and ‖

∑
djd

∗
j‖ ≤ (nδ)−1‖b‖.

Proof. We may suppose b 6= 0. For δ ∈ [0, ‖b‖) let p denote the support projection
of (b − δ)+ in A∗∗. Then ‖bp − b‖ ≤ δ. Since p is the unit element of the second

conjugate of the closure of (b− δ)+A(b− δ)+ and since (b− δ)+A(b− δ)+) has no non-
zero tracial state, p is a properly infinite projection in A∗∗, which commutes with b,
and (1 − p) + b1/2p has an inverse c ∈ A∗∗ of norm ≤ δ−1/2. Thus, ψ(1) = p for some
*-morphism ψ : O∞ → A∗∗. If s1, s2, . . . are the canonical generators of O∞ and n ∈ N

let dj := n−1/2cψ(sj)b
1/2 for j = 1, . . . , n. Then

∑
d∗jbdj = bp and

∑
djd

∗
j ≤ n−1‖b‖c2.

In particular ‖d∗jdj‖ ≤ ‖
∑
djd

∗
j‖ ≤ (nδ)−1‖b‖. �

Remark 2.20. It is likely that one can prove the following stronger result: suppose
that b is a positive element in a von Neumann algebraM such that for every projection
p in the center of M and every c ∈ C∗(b)+ the support projection of cp is zero or
infinite in M . Then for every ε > 0 there are partial isometries s, t ∈ M such that
s∗s = t∗t = ss∗ + tt∗, ‖bs − sb‖ < ε ‖bt − tb‖ < ε, ‖s∗bt‖ < ε and s∗s is the support
projection of b in M .

The following lemma is a generalization of [27, thm. 2.4]. Its assumption means that
every lower semi-continuous additive trace τ : A+ → [0,+∞] takes only the values 0
and +∞.

Lemma 2.21. Suppose that for every hereditary C*-subalgebra D of A every tracial
positive linear functional on D is zero. Then for every a ∈ A+ and µ > 0 the element
(a− µ)+ ⊗ 1 is properly infinite or zero in A⊗ C∗

red(F2) .
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Proof. Fix µ ∈ (0, ‖a‖) and let b := (a−µ)+. We consider the set X of finite sequences
d1, . . . , dn ∈ A, n ∈ N. Define κ(d1, . . .) ∈ A2 := A⊕ A by (b−

∑
d∗jbdj,

∑
djd

∗
j). The

set X can be considered in different ways as a dense subset of the standard Hilbert-A-
module HA. This allows to check that

(i) the image of κ : X → A2 is convex,
(ii) if one defines κ : Y → (A∗∗)2 ∼= (A2)∗∗ similarly for the set of finite sequences

Y in HA∗∗ , then κ(X) is weakly dense in κ(Y ), and
(iii) The norm-closure of κ(Y ) contains zero by Lemma 2.19.

Thus, we can use a Hahn-Banach separation argument, to deduce from (i)–(iii) that,
for ε ∈ (0, 1), there are n ∈ N and d1, . . . , dn ∈ A such that ‖b −

∑
d∗jbdj‖ < ε and

‖
∑
djd

∗
j‖ < ε2.

Let s1, s2, . . . be the canonical generators of O∞. Consider the elements f1 := d1 ⊗
s1 + . . . + dn ⊗ sn, f2 := d∗1 ⊗ s1 + . . . + d∗n ⊗ sn, g1 := d1 ⊗ sn+1 + . . . + dn ⊗ s2n and
g2 := d∗1 ⊗ sn+1 + . . . + d∗n ⊗ s2n of A⊗O∞. Then ‖f2‖

2 = ‖
∑
djd

∗
j‖ < ε2, ‖g2‖ < ε2,

‖b⊗1−f ∗
1 (b⊗1)f1‖ = ‖b−

∑
d∗jbdj‖ < ε, ‖b⊗1−g∗1(b⊗1)g1‖ < ε and f ∗

1 (b⊗1)g1 = 0.

This implies that ‖(b1/2 ⊗ 1)f1‖
2 < 1 + ‖b‖ and ‖(b1/2 ⊗ 1)g1‖

2 < 1 + ‖b‖.

The elements b ⊗ 1, f := f ∗
2 + f1 =

∑
dj ⊗ (s∗j + sj) and g := g∗2 + g1 are in the

C*-subalgebra A⊗ C∗(1, x1, x2, . . .) of A⊗O∞, where xn := (s∗n + sn)/2 for n ∈ N .

As pointed out in [27], C∗(1, x1, x2, . . .) is naturally isomorphic to the infinite reduced
free product V∞ of C([−1, 1]) (with respect to the semicircular state on it) and there
are unital embeddings V∞ ⊂ C∗

r (F∞) ⊂ C∗
r (F2). Thus, b⊗1, f and g can be considered

as elements of A⊗ C∗
r (F2).

The above estimates show ‖b⊗ 1− f ∗(b⊗ 1)f‖ < 3(‖b‖+1)ε, ‖b⊗ 1− g∗(b⊗ 1)g‖ <
3(‖b‖+1)ε and ‖f ∗(b⊗ 1)g‖ < (3+ 2‖b‖)ε. Since ε ∈ (0, 1) was arbitrary, the element
b⊗ 1 is properly infinite in A⊗ C∗

r (F2). �

2.9. Quasi-traces.

In order to study the different possible generalizations of pure infiniteness to the
non-simple case, let us recall some definitions of Blackadar, Cuntz, Haagerup and
Handelman ([16], [6], [27]), which we modify for our needs. Later we prefer to work
with lower semi-continuous quasi-traces (in the sense of Definition 2.22). Therefore
we outline some results concerning characterizations of 2-quasi-traces and “traceless”
algebras. Some results (e.g. of Haagerup) and open problems are mentioned.

Definition 2.22. A local quasi-trace on a C*-algebra A is a function τ : A+ → [0,∞] =
R+ ∪ {∞} which satisfies τ(d∗d) = τ(dd∗) for all d ∈ A and τ(a + b) = τ(a) + τ(b) if
there is a self-adjoint element f ∈ A such that the two positive elements a, b ∈ A+ are
in the C*-subalgebra C∗(f) of A.

The local quasi-trace τ is said to be:
– a quasi-trace if τ(a+ b) = τ(a)+ τ(b) for all commuting positive elements a, b ∈ A+ ;
– a 2-quasi-trace if it extends to a quasi-trace τ2 on M2(A) with τ2(a⊗ e1,1) = τ(a) for
all a ∈ A+ ;
– trivial if it takes only the values 0 and ∞. (We call the C*-algebra A traceless if
every lower semi-continuous 2-quasi-trace on A is trivial.);
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– semi-finite if the set Dom1/2(τ) := {a ∈ A; τ(a∗a) <∞} is dense in A;
– bounded if Dom1/2(τ) = A, i.e., τ(A+) ⊂ [0,∞);
– faithful if τ(a) > 0 for non-zero a ∈ A+, i.e., the set Iτ := {a ∈ A; τ(a∗a) = 0} is 0;
– locally lower semi-continuous if τ(a) = supt>0 τ((a− t)+) for a ∈ A+ (Then τ is order
preserving and lower semi-continuous on A+ in the norm-topology on A+ by Remarks
2.27(iii) and (iv).)

Every bounded local quasi-trace (respectively quasi-trace) τ on A+ extends uniquely
to a uniformly continuous map τe : A→ C such that τe(a) = τ(a) for a ∈ A+, τe(b

∗) =

τe(b) for b ∈ A and τe is linear on every C*-subalgebra C∗(h) of A for selfadjoint
h ∈ A (respectively τe is linear on every commutative C*-subalgebra of A). If τ is
a bounded quasi-trace τe fulfills the original definition [6, def. II.1.1] of quasi-traces
(respectively of 2-quasi-traces if τ is a 2-quasi-trace). But it follows from [1] that there
is a bounded local quasi-trace τA on C([0, 1] × [0, 1])+ which is not additive and does
not have additively closed Iτ . By Proposition 2.25, this also implies the existence of a
bounded quasi-trace which is not a 2-quasi-trace.

We introduce a function t 7→ Q(τ, t) ∈ [0,∞] for local quasi-traces τ and t ∈ (0, 1]:

(2.6) Q(τ, t) := sup{τ(a+ b); a, b ∈ A+, ‖a‖, ‖b‖ ≤ 1, τ(a) + τ(b) ≤ t}

Then Q(τ, t) is increasing in t and τ(a+b) ≤ (inftQ(τ, t)/t)max{‖a‖, ‖b‖, τ(a)+τ(b)}.

Definition 2.23. A (not necessarily bounded) local rank function on a C*-algebra A
is a function D : A+ → [0,∞] which satisfies the following conditions (1)-(5):

(1) D(a) = D(a∗a) = D(a∗) = D(ta) for a ∈ A and t > 0,
(2) D(e) ≤ D(f) = D(f + e) for 0 ≤ f , 0 ≤ e = ef ,
(3) D(b) = D(b+) +D(b−) for b = b∗,
(4) D is locally lower semi-continuous, i.e.,D(a) = supδ>0D((a− δ)+) for a ∈ A+,

and
(5) D is locally sub-additive, i.e.,D(c + d) ≤ D(c) + D(d) if there exists some

selfadjoint b ∈ A such that c, d are both in C∗(b)+ ⊂ A.

A local rank function D is said to be:
– a (lower semi-continuous, unbounded) rank function if D is weakly sub-additive,

i.e.,D(c+ d) ≤ D(c) +D(d) for all commuting c, d ∈ A+;
– sub-additive if D(c+ d) ≤ D(c) +D(d) for all c, d ∈ A+;
– bounded (respectively trivial, semi-finite, faithful) if D(A) ⊂ [0,∞) (respectively

D(A) ⊂ {0,∞}, D((a− ε)+) <∞ for a ∈ A+ and ε > 0, D(a) > 0 for a 6= 0).

A (lower semi-continuous, semi-finite) dimension function on A means a semi-finite
local rank function on A⊗K.

Our rank functions are (unbounded and lower semi-continuous) generalizations of
the bounded weakly sub-additive rank functions defined in [6], cf. Remark 2.27(ii). A
dimension function is automatically a sub-additive rank function on A⊗K, cf. Remark
2.27(viii), and is determined by its restrictions to

⋃
nMn(Amin), where Amin denotes the

Pedersen ideal, i.e., the minimal dense ideal of A. There D takes values in [0,∞). This
restriction satisfies the axioms for a dimension function in [16] except the existence of
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a full hereditary C*-subalgebra B of A where D|B is finite (B exists automatically in
the case of simple A).

We introduce here a later often needed function gδ ∈ C0((0,∞]) which is given by

(2.7) gδ(t) =





0 if 0 ≤ t ≤ δ,
(t− δ)/δ if δ ≤ t ≤ 2δ
1 if 2δ ≤ t

For every local quasi-trace τ the formula

(2.8) Dτ (a) := sup
δ>0

τ(gδ((a
∗a)1/2)) = sup

t>0
lim
n→∞

τ((a∗a)− t)
1/n
+ ) .

defines a local rank function on A, cf. Remark 2.27(iv). Conversely local rank functions
D on A+ define locally lower semi-continuous local quasi-traces τD by

(2.9) τD(a) :=

∫ ∞

0+

D((a− t)+)dt ,

where τD(a) := ∞ if D((a− t)+) = ∞ for some t > 0. Moreover τD is additive on the
positive elements in commutative C*-subalgebras C ⊂ A if D is sub-additive on C,
cf. Remark 2.27(iii). Thus, τD is a quasi-trace if D is weakly sub-additive. A look to
the related outer Caratheodory-Radon measures (on the open subsets of Spec(a)\{0})
shows that for locally l.s.c. local quasi-traces τ and for arbitrary local rank functions D
the following holds:

(2.10) τ = τDτ
and D = DτD .

In the following proposition a local AW*-algebra means a C*-algebra B of real rank
zero such that pBp is an AW*-algebra for every projection p ∈ B.

Proposition 2.24. Let τ : A+ → [0,∞] be a locally lower semi-continuous local quasi-
trace. Then the following are equivalent:

(i) τ is a lower semi-continuous 2-quasi-trace.
(ii) τ(a+ b)1/2 ≤ τ(a)1/2 + τ(b)1/2 for every a, b ∈ A+.
(iii) τ(a+ b) ≤ 2(τ(a) + τ(b)) for every a, b ∈ A+.
(iv) inft>0Q(τ, t) = 0.
(v) There are a closed ideal I of A, a *-homomorphism ϕ from I into a local AW*-

algebra B and a faithful semi-finite lower semi-continuous quasi-trace τ1 on B+

such that τ(a) = τ1(ϕ(a)) for a ∈ I+ and τ(a) = ∞ for a ∈ A+ \ I.
(vi) There is a closed ideal I of A and *-homomorphism ψ from I into a C*-algebra

C of real rank zero and a locally lower semi-continuous local quasi-trace τ1 on
C+ such that τ(a) = τ1(ψ(a)) for a ∈ I+ and τ(a) = ∞ for a ∈ A+ \ I.

(vii) The local rank function Dτ of τ is sub-additive.
(viii) There exists κ > 0 such that κDτ (a+ b) ≤ Dτ (a) +Dτ (b) for a, b ∈ A.
(ix) The closure J of Dom1/2(τ) is an ideal and there is a unique dimension function

D :
⋃
Mn(Jmin) → [0,∞), where Jmin is the Pedersen ideal of J , such that

τ(a) =
∫∞

0+
D((a− t)+ ⊗ e1,1)dt for a ∈ J+ and τ(a) = ∞ if a ∈ A+ \ J .

Clearly Proposition 2.24 implies that l.s.c. dimension functions correspond 1-1 to
l.s.c. 2-quasi-traces, that all bounded sub-additive rank functions or 2-quasi-traces on
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A come from homomorphisms from A into finite AW*-algebras, that every locally
l.s.c. local quasi-trace on a C*-algebra of real rank zero is a l.s.c. 2-quasi-trace, and
that our definition of “A is traceless” in 2.22 is equivalent to [45, def. 4.2], cf. Re-
mark 2.27(viii).

Proposition 2.25. Let C([0, 1])∗C([0, 1]) denote the unital full free C*-algebra product
and let π be the natural *-epimorphism from C([0, 1]) ∗C([0, 1]) onto C([0, 1]× [0, 1]).
Then for every bounded local quasi-trace τ on C([0, 1]× [0, 1]) the lift τπ is a bounded

quasi-trace on C([0, 1]) ∗ C([0, 1])

In particular, τAπ is a bounded quasi-trace which is not a 2-quasi-trace, and there is
a trivial l.s.c. quasi-trace which is not a trace.

(Here τA on C([0, 1]× [0, 1]) is a non-linear quasi-state as defined in [1].) A proof of
Propositions 2.24 and 2.25 will be given in [41]. But we outline in Remarks 2.28 the
non-trivial parts of the proof of 2.24.

Lemma 2.26. If c, d ∈ A+ and η ≥ 0 satisfy c − η ≤ d then for every δ > 0 and
every function f ∈ C0((0, ‖c‖])+ there is x ∈ A such that x∗x = f((c − η − 2δ)+),
xx∗gδ(d) = xx∗.

Proof. Let e := (c − η − 2δ)+, h := (d − 2δ)+e and h = v(h∗h)1/2 the polar-decom-
position of h in the second conjugate A∗∗ of A. The element x := vf(e)1/2 is as desired,

because gδ(d)h = h and so gδ(d)x = x, |h|v∗v|h| = |h|2 and f(e) is in |h|A. �

Remarks 2.27. (i) The property (1) of Definition 2.23 reduces all considerations on
local rank functions to positive elements. It says also D(za) = D(a) for complex z 6= 0.
(3) implies D(0) = 0.

Lemma 2.26 and (1)-(5) yield further properties of local rank functions:

(6) D(a) ≤ sup{D(bn); n ∈ N} if a, b1, b2, . . . ∈ A+ and for every ε > 0 there exist
n ∈ N, δ > 0 and x ∈ A such that xx∗ = (a− ε)+, gδ(bn)x = x.

(7) D(f(b)) ≤ D(b) for b ∈ A+, f ∈ C0((0, ‖b‖]).
(8) D(a) ≤ D(b) for 0 ≤ a ≤ b.
(9) D is lower semi-continuous: D(a) ≤ supn{D(an)} if an converges to a.
(10) D(a) ≤ D(b) if a is in the closure of the set {xby, x, y ∈ A}.
(11) D(a+ b) = D(a) +D(b) for a, b ∈ A with b∗a = 0 = ab∗.
(12) D(ab) ≤ min(D(a), D(b)) for a, b ∈ A.

D is a sub-additive rank function if there is a local rank function D2 on M2(A) with
D(a) = D2(a⊗ e1,1) for a ∈ A. (by (10) and [6, prop 1.1.7]).

(ii) If D(A) ⊂ [0,∞), i.e., if D is “bounded”, then ‖D‖ := sup{D(a); a ∈ A} < ∞, as
follows from (1) and (8) by an obvious indirect argument. Thus, bounded and weakly
sub-additive local rank functions are, up to normalization, just the rank functions in
the sense of [6, def. I.1.2].

(iii) A local rank function D : A+ → [0,∞] defines a local quasi-trace τD : A+ → [0,∞]
by the formula (2.9). τD is order preserving and lower semi-continuous with respect to
the norm-topology on A+ and is additive on the positive part of every commutative
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C*-subalgebra C ⊂ A on which D is sub-additive. In particular τD is a quasi-trace if
D is weakly sub-additive.

(iv) If τ is a local quasi-trace on A then τ∗(a) := supδ>0 τ((a−δ)+) is a locally l.s.c. local
quasi-trace on A+ and the formula (2.8) defines a map Dτ from A into [0,+∞] which
satisfies (1)-(5) of the Definition 2.23. It holds Dτ = Dτ∗ , τDτ

= τ∗. Thus, τ∗ is
order preserving and lower semi-continuous on A+ by Remark (iii). It is a quasi-trace
(respectively 2-quasi-trace) if τ is a quasi-trace (respectively 2-quasi-trace). In general
Dom1/2(τ) ⊂ Dom1/2(τ∗), the norm closure of Dom1/2(τ) contains Dom1/2(τ∗) and
τ((a − δ)+) < ∞ for every positive element a in the norm closure of Dom1/2(τ) and
every δ > 0.

(v) Bounded local quasi-traces τ are order preserving and lower semi-continuous, be-
cause they are automatically locally lower semi-continuous. This allows to see that
‖τ‖ := sup{τ(a); a ∈ A+, ‖a‖ ≤ 1} < ∞ , τ(a) ≤ ‖τ‖ · ‖a‖ and |τ(a) − τ(b)| ≤
‖τ‖ · ‖a − b‖ for a, b ∈ A+. Then τ extends to a uniformly continuous function on A
by τe(a+ ib) := τ(a+)− τ(a−) + iτ(b+)− iτ(b−) for selfadjoint a, b ∈ A. If A is unital
and τ(1) = 1 then τe is a (central) quasi-state in the sense of [1].

(vi) If τ is a 2-quasi-trace, then τ satisfies

τ(a+ b)1/2 ≤ τ(a)1/2 + τ(b)1/2 for a, b ∈ A+ ,

(the proof of [27, lem. 3.5(1)] works also in the unbounded case). It follows that τ is
2-additive, i.e.,

τ(a+ b) ≤ 2(τ(a) + τ(b)) for a, b ∈ A+ ,

hence the set Iτ := {a ∈ A; τ(a∗a) = 0} is a closed two-sided ideal in A , and Dom1/2(τ)
is an algebraic *-ideal of A and the Pedersen ideal Jmin of the closure J of Dom1/2(τ)
is contained in the set {a ∈ A : Dτ (a) < ∞}. In general Dom1/2(τ) is not a subset of
{a ∈ A : Dτ (a) <∞}.

(vii) The following elementary reductions to the unital case is inspired by [37] and are
easily verified. One could also use results of [6] and extensions of bounded sub-additive
rank functions.

If A is not unital, τ is a bounded quasi-trace on A+ and c is a positive contraction
in the center of A which is strictly positive for A, then τ̃(b) := supn τ(c

1/nb) is an
extension of τ to a bounded quasi-trace on M(A)+. The extension τ̃ is a 2-quasi-trace,
(respectively an additive trace) if τ is such. The extension τ2 to M2(A)+ is unique if

the extension τ̃2 to M2(M(A)) is unique. (Note that c⊗ 12 defines (̃τ2).)

This together with Remark (iv) implies the following.
Let τ be an unbounded lower semi-continuous quasi-trace on A+, then τ is a 2-quasi-
trace (respectively is an additive trace) if and only if the closure of Dom1/2(τ) is an ideal
and, for every b, c, d ∈ A+ with bc = b, cd = c, ‖d‖ ≤ 1 and τ(d) <∞, the extension to
(C1+C∗(bAb, c))+ ⊂ M(C∗(bAb, c)) of the restriction of τ to C∗(bAb, c) ⊂ A (as defined
above) is a 2-quasi-trace (respectively is an additive trace). Moreover a l.s.c. extension
τn of τ to Mn(A)+ with τ(a) = τn(a ⊗ e1,1) is unique if all the extensions of the local
restrictions have unique extensions to Mn(C1 + C∗(bAb, c))+.
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(viii) If one uses the above reduction to the unital case and [6] or the ultrapowers of
τ as in the below given Remarks 2.28(ix) and compares them with the ultrapowers of
its possible extension to Mn(A)+, then one gets the following results on extensions of
l.s.c. 2-quasi-traces and its uniqueness.

For every l.s.c. 2-quasi-trace τ on A+ and every n ∈ N there is a unique l.s.c. 2-
quasi-trace τn on Mn(A)+ with τ(a) = τn(a⊗ e1,1) for a ∈ A+.

Let J denote the closure of Dom1/2(τ) and Jmin the minimal dense ideal (Pedersen
ideal) of J . By Lemma 2.26, for every element b in the Pedersen ideal (J ⊗ K)min

of J ⊗ K there is n ∈ N, a positive contraction c ∈ J+, δ > 0 and a contraction
d ∈ J ⊗ K with dd∗(gδ(c) ⊗ 1) = dd∗ and d∗db = b = bd∗d. Since τ((a − δ)+) < ∞
and Dτ ((a − δ)+) < ∞ for a ∈ J+ one obtains that there are a unique semi-finite
l.s.c. quasi-traces τ on (J ⊗K)+ and a unique semi-finite l.s.c. dimension function D
on J ⊗K such that τ(a) := τ(a⊗ e1,1) and Dτ (a) = D(a⊗ e1,1) for a ∈ J+. Moreover,
τ(c) < ∞ and D(d) < ∞ for c, d ∈ (J ⊗ K)min, c ≥ 0, and D is determined by its
restriction D| to

⋃
nMn(Jmin), takes there finite values. D| is l.s.c. and satisfies the

requirements of a dimension function in [16] (except the existence of a full hereditary
C*-subalgebra of J where D| is bounded).

Thus, τ (respectively Dτ ) is determined by J and τ : (J⊗K)+ → [0,∞] (respectively
D : J ⊗K → [0,∞]) because τ(b) = Dτ (b) = ∞ for b ∈ A+ \ J .

Since the l.s.c. sub-additive rank functions D with finite values on the Pedersen ideal
Jmin of a given closed ideals J of A are in one-to-one correspondence to l.s.c. dimension
functions D on

⋃
nMn(Jmin), and are in one-to-one correspondence to general l.s.c. 2-

quasi-traces on A, it follows that our definition of “A is traceless” in 2.22 is equivalent
to [45, def. 4.2]. Moreover, A is traceless if and only if for every σ-unital hereditary
C*-subalgebra B ⊂ A every bounded 2-quasi-trace on B+ is zero: indeed, a l.s.c. 2-
quasi-trace τ on A+ takes a value 0 < τ(a) < ∞ at a ∈ A+ if and only if for all

sufficiently small δ ∈ (0, ‖a‖) the restriction of τ to (a− δ)+A(a− δ)+ is bounded and
non-zero.

Semi-finite lower semi-continuous 2-quasi-traces τ on A+ are in one-to-one corre-
spondence to lower semi-continuous dimension functions D on A⊗K. Every semi-finite
l.s.c. 2-quasi-trace on the positive part of a full hereditary C*-subalgebra of A extends
uniquely to a semi-finite l.s.c. 2-quasi-trace on A+. Clearly the restriction of a semi-
finite 2-quasi-trace to a hereditary C*-subalgebras is again a semi-finite 2-quasi-trace.
In conjunction with [5] it follows that a simple C*-algebra A is stably finite if and only
if there exists a faithful semi-finite l.s.c. 2-quasi-trace on A.

Remarks 2.28. Here we list the key ideas for the non-trivial parts of the proof of
Proposition 2.24. A detailed proof can be found in [41].

(i) If D is is a local rank function on A, a, b ∈ A+, and there is κ > 0 such that
κD(f + g) ≤ D(f) +D(g) for f, g ∈ C∗(a, b)+, then

κ1/2τD(a+ b)1/2 ≤ τD(a)
1/2 + τD(b)

1/2.

(Use (8) and (1) to get κD((a+ b− t)+) ≤ D((a− t/(1 + x))+) +D((b− xt/(1 + x))+)
for x, t > 0. Transformations in (2.9) show κτD(a+b) ≤ (1+x)τD(a)+(1+1/x)τD(b).)
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(ii) Local rank functions on C*-algebras A of real rank zero are determined by the
values on its projections and are sub-additive rank functions: D(a) = sup{D(p); p ∈
Proj(a∗Aa)}. Conversely every function D on the projections in A with values in [0,∞]
such that D(p) = D(q) if p ∼ q (Murray–von Neumann equivalence) and D(p + q) =
D(p) + D(q) for projections p, q ∈ A with pq = 0 determines a sub-additive rank
function D on A in the sense of Definition 2.23.

If A has moreover stable rank one then for every local rank function D on A there
is a unique sub-additive rank function Dn on Mn(A) with Dn(a ⊗ e1,1) = D(a), and
every locally lower semi-continuous local quasi-trace τ on A is a lower semi-continuous
2-quasi-trace.

(iii) For a free ultrafilter ω on N we define a lower semi-continuous local quasi-trace τω
on ℓ∞(A)+ for a = (a1, a2, . . . ) ≥ 0 by

τω(a) := sup
t>0

lim
ω
τ((an − t)+).

(iv) Let (C1, ρ1), (C2, ρ2), . . . be a sequence of commutative C*-algebras Cn with posi-
tive functionals ρn on Cn such that γ := sup ‖ρn‖ < ∞ and let ω be a free ultrafilter
on N. One defines a positive functional ρω on ℓ∞{Cn} by ρω(a1, a2, . . .) := limω ρn(an).

The ultrapower
∏

ω(Cn, ρn) of C1, C2, . . . with respect to ρ1, ρ2, . . . is defined by
ℓ∞{Cn}/I where I := {a ∈ ℓ∞{Cn}; ρω(a

∗a) = 0}. It is folklore that
∏

ω(Cn, ρn) is
a von Neumann algebra with faithful positive normal functional [ρω](a + I) := ρω(a),
e.g. it is a special case of [35, prop. 2.1].

(v) Suppose that τ is a faithful locally lower semi-continuous local quasi-trace B+ such
that for a, b ∈ B+ with ab = a and ‖b‖ ≤ 1 there is a *-monomorphism ϕ : N → B
from a commutative von Neumann algebra N into B such that a ∈ ϕ(N), τ(ϕ(1)) <∞
and τϕ : N+ → [0,∞) extends to a normal positive functional on N . Then B has real
rank zero and stable rank one, pBp is a finite AW*-algebra for every projection p ∈ B,
and τ is a faithful semi-finite lower semi-continuous 2-quasi-trace on B+.

(vi) Suppose that τ is a l.s.c. local quasi-trace on A+, that J a closed ideal of A
with J ⊂ Iτ and that p is a projection in A/J . Then τ(a) = τ(b) if a, b ∈ A+ and
a+ J = p = b+ J :
It suffices to consider the restriction of τ to C∗(a, b)+. Suppose A = C∗(a, b), then
A/J ∼= C.p and by Lemma 2.14 there is a contraction c ∈ A+ such that c+ J = p and
c− c2 is a strictly positive element of J . Since g1/2(a)−a ∈ J ∩C∗(a) and τ(g1/2(a)) =
τ(a), we can suppose that a is a contraction. It follows τ((cα − δ)+) = (1− δ)τ(c) for
δ ∈ [0, 1) and all α > 0, , lim ‖c1/nac1/n − a‖ = 0 and lim ‖cnacn − c2n‖ = 0. Thus,
τ(a) = τ(c) = τ(b).

(vii) Suppose that J is a closed ideal of A and A/J has real rank zero. If τ is a semi-finite
l.s.c. local quasi-trace on A+ with J ⊂ Iτ then there is a semi-finite l.s.c. quasi-trace ρ
on A/J such that ρ(a+ J) = τ(a) for a ∈ A+. (cf. (vi) and (ii).)

(viii) τω is always a local quasi-trace on ℓ∞(A)+. Iτω is an ideal of ℓ∞(A) if and only
if inft>0Q(τ, t) = 0. If inft>0Q(τ, t) = 0 then Iτ and Iτω are closed ideals, Dom1/2(τω)
and Dom1/2(τ) are *-ideals.
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(ix) If I := Iτω is an ideal then J := Dom1/2(τω) is a closed ideal of ℓ∞(A). B :=
J/I has real rank zero and there is a semi-finite l.s.c. quasi-trace ρ on B+ such that
ρ(a + I) = τ(a) for a ∈ A+. Thus, τω(a) = τω(b) if a, b ∈ ℓ∞(A)+ and b− a ∈ I+. For
every pair of bounded sequences a = (a1, a2, . . .), b ∈ ℓ∞(A)+ with anbn = an, ‖bn‖ ≤ 1
and supn{τ((bn − t)+)} < ∞ for every t > 0 the quotient N := C/(I ∩ C) of C :=
ℓ∞{C∗(an)} ⊂ ℓ∞(A) is a von Neumann algebra and the class map [τω] : N+ → [0,∞)
extends to a faithful normal positive linear functional f on N with f(c) = ρ(c) for
c ∈ C+. Hence pBp is a finite AW*-algebra for every projection p ∈ B.

Remarks 2.29. (i) A theorem of U. Haagerup [27] says that every bounded 2-quasi-
trace on a unital exact C*-algebra A extends to a (linear) trace on A . One gets that
all lower semi-continuous 2-quasi-traces on (not necessarily unital) exact C*-algebras
A+ are additive traces on A+ by elementary reductions to the unital case as in Remark
2.27(vii).

(ii) It follows from obvious modifications of the proofs of [27, lemma 5.7], [27, lemma
5.8] and from Remark 2.28(iii) that for every bounded 2-quasi-trace τ on A there
is a bounded 2-quasi-traces τ0, on (A ⊗ ℓ∞{M2n ; n ∈ N})+ such that τ0(a ⊗ b) =
τ(a) limω tr(bn) for a ∈ A+ and b = (b1, b2, . . .) ∈ ℓ∞{M2n}+. Thus, the kernel-ideal Iτ0
contains A ⊗ Iω and τ0 defines a bounded 2-quasi-trace [τ0] on A ⊗ ℓ∞{M2n}/A ⊗ Iω,
where Iω := {(b1, b2, . . .) ∈ ℓ∞{M2n} ; limω tr(b

∗
nbn) = 0} .

Since the CAR-algebra M2∞ is nuclear and is a C*-subalgebra of ℓ∞{M2n}/Iω , [τ0]
induces a bounded 2-quasi-trace τ1 on (A⊗M2∞)+ such that τ1(a⊗ b) = τ(a)tr(b).

By the obvious modification of [27, lemma 5.8] and in conjunction with the up-down
theorem (for weakly dense C*-subalgebras of von-Neumann algebras with separable
preduals), it follows that there is a bounded 2-quasi-trace τ2 on (A⊗R)+ with ρ1(a⊗
b) = ρ(a)tr(b) for a ∈ D+ and b ∈ R+, where R denotes the hyperfinite II1 factor with
separable predual.

(iii) Is Iτ a vector space for every “trivial” lower semi-continuous quasi-trace τ on A+

for every extension 0 → C0((0, 1],K) → A→ C([0, 1]× [0, 1]) → 0 ? It is not known if a
stably infinite simple nuclear C*-algebra A can admit a non-zero bounded quasi-trace
on A+: it can not be a 2-quasi-trace.

If τ is a l.s.c. quasi-trace then a trivial l.s.c. quasi-trace∞·τ is given by (∞·τ)(a) := 0
if τ(a) = 0 and (∞ · τ)(a) := ∞ if τ(a) 6= 0, i.e.,∞ · τ(a) = supt>0 tτ(a). The map
∞ · τ satisfies Iτ = Dom1/2(∞ · τ) = I∞·τ .

For arbitrary quasi-traces τ one can define a trivial l.s.c. quasitrace τ0 as follows: let
τ0(a) = 0 if τ((a− δ)+) <∞ for every δ > 0 and let τ0(a) = ∞ otherwise. The set Iτ0
is the closure of Dom1/2(τ) if τ is l.s.c.

If we consider ∞ · τ , then Proposition 2.24 and Remark 2.28(viii) show that every
l.s.c. quasi-trace is a 2-quasi-trace if the kernel Iτ is an ideal for every trivial l.s.c. quasi-
trace τ .

The kernels Iτ of trivial l.s.c. quasi-traces are just all closed sets X ⊂ A with aXb ⊂
X for all a, b ∈ A such that the intersections X ∩C with commutative C*-subalgebras
of A are linear subspaces of C. It was a question whether those X are ideals of A, but
the answer is negative by Proposition 2.25.
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(iv) Let An (n = 2, 3, . . . ) denote the universal unital C*-algebra with generators
a1, . . . , an, b and defining relations

∑
k ak(ak)

∗ = 2 and b∗b +
∑

k(ak)
∗ak = 1. The

logical sum of [27, lem. 2.1] and [44, prop. 5.7] implies that every bounded 2-quasi-trace
is a trace if and only if the unity of An ⊗M2 ⊗M3 ⊗M4 ⊗ . . . is properly infinite for
every n > 2. Clearly A2 = E2. The An are in a weak sense almost semi-projective.

(v) Even finite local quasi-traces on C([0, 1]× [0, 1]) are not quasi-traces: the bounded
local quasi-traces τ on commutative unital C*-algebras A ∼= C(X) (which we can
normalize such that τ(1) = 1) are restrictions to A+ of quasi-states in the sense of [1] on
A. By [1] there is a non-linear quasi-state τA on B := C([0, 1]× [0, 1]). An examination
of the ideas in Remarks 2.28 shows that for τ := τA|B+ and for the corresponding τω
the set Iτω is not an ideal of ℓ∞(B), i.e., inft>0Q(τ, t) > 0. It follows also that there is
a closed ideal J of ℓ∞(B) which is contained in the set Iτω and elements a, b ∈ ℓ∞(B)+
such that a− b ∈ J but τω(a) 6= τω(b). Similar considerations happen for the bounded
quasi-trace τAπ on C([0, 1]) ∗ C([0, 1])+ considered in Proposition 2.25.

Lemma 2.30. Suppose that a lower semi-continuous quasi-trace τ : A → [0,∞] is
finite on the positive part of a stable C*-subalgebra B of A (i.e., τ(b) ∈ [0,+∞) for
every b ∈ B+).
Then τ(a) = 0 for every a ≥ 0 in the closed ideal of A which is generated by B.

Proof. Since M(B) contains a copy of O∞
∼= C∗(s1, s2, . . . ) unitally, we have∑

1≤k≤n τ(skas
∗
k)/k ≤ τ(

∑
m smas

∗
m/m) < ∞ for every n > 0 if a ∈ B+. The

divergence of the harmonic series implies τ(a) = 0 because τ((ska
1/2)(ska

1/2)∗) = τ(a).

Let R denote the closed linear span of BA. The stability of B implies that every
positive element a of J = span(ABA) is of the form a = c∗c with c in R. By the Cohen
factorization theorem, the non-degenerate B-module R is just the set of products BA
itself; thus, cc∗ ≤ b for some b ∈ B+. A lower semi-continuous quasi-trace is monotone,
cf. Remarks 2.27(iv). Thus, τ(a) = τ(cc∗) ≤ τ(b) = 0 for a ∈ J+. �

3. Locally purely infinite tensor products and simple C*-algebras

The notion of purely infinite C*-algebra was introduced by J. Cuntz on p.186 of
[17]. He defines a (simple) C*-algebra to be purely infinite if every non-zero hereditary
C*-subalgebra contains an infinite projection, i.e., a projection which is Murray–von
Neumann equivalent to a proper subprojection of itself. This is equivalent to our
Definition 1.1 in the case of simple algebras. This is well-known, but we add here a
self-contained proof of it and show that in the case of simple C*-algebras the property
l.p.i. is equivalent to property p.i.

Further, we study the question when A⊗ B is locally purely infinite. We apply the
main result to tensorially non-prime C*-algebras and tensor products with C∗

r (F2).

Proposition 3.1. Let A be a non-zero C*-algebra. The following statements are equiv-
alent.

(i) A is simple and every non-zero hereditary C*-subalgebra of A contains an infi-
nite projection.
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(ii) A 6= C, and for a, b ∈ A+ with ‖a‖ = ‖b‖ = 1 and ε > 0, there exists c ∈ A
with ‖c‖ = 1 such that ‖b− c∗ac‖ < ε.

(iii) A is simple and locally purely infinite (i.e.,A is simple and every non-zero
hereditary C*-subalgebra of A contains a non-zero stable C*-subalgebra).

Note that the infinite projection p in (i) must also be properly infinite by (ii), i.e., if
s is a partial isometry with ss∗ < s∗s = p, then there exists t ∈ A with t∗t = p and
tt∗ ≤ p − ss∗ (which implies t∗s = 0 ). More generally every infinite projection in a
simple C*-algebra is properly infinite, cf. Cuntz [15].

For non-simple C*-algebras the equivalence of (i) and (ii) does not hold: The C*-
algebra C((0, 1];O2) is purely infinite in the sense of Definition 1.1 but it contains no
projection, whereas the unitization of O2 ⊗ K is purely infinite in the sense of Cuntz
and does not satisfy the criteria of Definition 1.1 or of Definition 1.3.

Proof. (i)⇒(iii) Let D ⊂ A be a non-zero hereditary C*-subalgebra. Then it contains
a C*-subalgebra which is isomorphic to the Toeplitz algebra C∗(s : s∗s = 1). Thus, D
also contains an isomorphic copy of K.

(iii)⇒(ii): First of all, A 6= C, because C does not contain any non-zero stable C*-
subalgebra. Let a, b ∈ A+ with ‖a‖ = ‖b‖ = 1 and 1 > ε > 0 be given. Put
η := ε/3. Then e = (a−1+η)+ ∈ A+ is non-zero and there are by assumption elements
f1, f2, . . . in the hereditary C*-subalgebra D := eAe with f ∗

i fj = δi,jd for some non-
zero d ∈ D+. Since A is simple, one can find g1, . . . , gn ∈ A with ‖b −

∑
g∗kdgk‖ < η.

Let h :=
∑

1≤k≤n fkgk. Then ‖h∗h− b‖ < η and thus 0 < 1− η < ‖h‖2 < 1+ η. On the

other hand (a− e)h = (1− η)h, because h ∈ D and (1− η)−1(a− e)e = e. Therefore
the element c := h/‖h‖ satisfies ‖c‖ = 1 and

‖c∗ac− b‖ ≤ ‖a− (1− η)−1(a− e)‖+ |1− ‖h‖2|+ ‖h∗h− b‖ < 3η = ε .

(ii)⇒(i): The compact operators on a Hilbert spaceH (of dimension > 1) do not satisfy

the criteria listed under (ii), because a one-dimensional projection is not equivalent to
a two-dimensional projection. The properties of A imply that A is simple. If p is a non-
zero projection, then the unital C*-subalgebra D := pAp contains a non-zero element
b ∈ D+ with 0 ∈ SpecD(b), because A is not isomorphic to the compact operators on a
Hilbert space. By assumption we find c ∈ A with ‖c∗b2c− p‖ < 1/2. Then bcp ∈ pAp
is left-invertible but is not right-invertible in pAp. This shows that every non-zero
projection p ∈ A is infinite.

It suffices now to prove that every non-zero hereditary C*-subalgebra E of A contains
a non-zero projection. Take a ∈ E+ with ‖a‖ = 1. Choose contractions cn ∈ A with
‖c∗na

2ncn − a1/n‖ ≤ 1/n. One can then define a contraction z in ℓ∞(E)/c0(E) by the
representing sequence zn = ancna

1/n ∈ E. If one embeds E naturally in ℓ∞(E)/c0(E)
as constant sequences, then z∗za = a, az = z. It entails that (1 − z∗z)1/2z = 0,
(a−a2)(1− z∗z)1/2 = 0 and (a−a2)z = 0. Thus, w = z+(1− z∗z)1/2 is an isometry in
the unitization of ℓ∞(E)/c0(E) with w

∗(a− a2)w = 0 and 1−ww∗ ∈ ℓ∞(E)/c0(E). It
follows that at least one of a or 1−ww∗ must be a non-zero projection in ℓ∞(E)/c0(E).
But by functional calculus, a non-zero projection in ℓ∞(E)/c0(E) can be represented by
a sequence of projections pn ∈ E, where at least one of the projections is non-zero. �
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The trick with w in the last part of the above proof is quoted to M. Rieffel, but it
was also used by B. Blackadar and J. Cuntz [5] to show that stable simple C*-algebras
without any non trivial lower semi-continuous dimension function contain a (properly)
infinite projection.

It was for a long time an open problem whether stably infinite simple C*-algebras
are purely infinite, but M. Rørdam [59] constructed a nuclear, simple and stable C*-
algebra which contains both infinite and non-zero finite projections. Thus, the absence
of non-trivial lower semi-continuous dimension functions on a stable C*-algebra A does
not imply that A is locally purely infinite.

A dichotomy between existence of non-trivial lower semi-continuous traces and pure
infiniteness is established in Corollary 3.11 for certain exact simple algebras. Before
we study the permanence of l.p.i. with respect to tensor products. This is non-trivial
because in general A ⊗ B is not locally purely infinite if B is strongly purely infinite,
cf. [40].

Remark 3.2. We say that A is strictly anti-liminal if every quotient of A is anti-
liminal. Equivalently this means that the image of every irreducible representation of
A has zero intersection with the compact operators. It follows that every non-zero
hereditary C*-subalgebra D of a strictly anti-liminal C*-algebra A is again strictly
anti-liminal.

Lemma 3.3. Let ϕ be a pure state on a strictly anti-liminal C*-algebra A and a ∈ A+

be a non-zero positive element with ϕ(a) = ‖a‖.
Then for every n ∈ N there exists a morphism λ : E := C0((0, 1],Mn) → aAa such

that for f2 := λ(h0⊗ e21) the restriction of ϕ to λ(E)Aλ(E) ∼= f ∗
2Af2⊗Mn is non-zero

and is (up to isomorphism) of form (ϕ|f ∗
2Af2)⊗ ρ0, where ρ0 : [αi,j] 7→ α1,1.

In particular, ϕ(f ∗
2 f2) > 0.

Recall that h0 was defined in subsection 2.3.
Proof. Since 0 < ‖a‖ = ϕ(a), the restriction ψ of ϕ to D := aAa is a pure state.
The irreducible cyclic representation d : D → L(H) with cyclic vector ξ corresponding
to ψ is of infinite dimension, because D is strictly anti-liminal. Let ξ1 := ξ, . . . , ξn be
n ortho-normal elements of H and let I : Cn → H the isometry defined by them. As
noted at the end of subsection 2.3 there is a morphism λ : C0((0, 1],Mn) → D such
that 〈d(λ(f))ξj, ξk〉 = f(1)jk for f ∈ C0((0, 1],Mn). Under the natural isomorphism

λ(C0((0, 1],Mn))Aλ(C0((0, 1],Mn)) ∼= f ∗
2Af2 ⊗Mn

the restriction of ϕ becomes (ϕ|f ∗
2Af2)⊗ ρ0. �

Remark 3.4. Let c = v(c∗c)1/2 = (cc∗)1/2v be the polar decomposition of c ∈ A in the
enveloping von Neumann algebra A∗∗, then the map d 7→ vdv∗ defines an isomorphism
from the hereditary C*-subalgebra generated by c∗c onto the hereditary C*-subalgebra
generated by cc∗ (cf. e.g. [44, lemma 2.4]).

Theorem 3.5. Suppose that A and B satisfy the following conditions (i)–(iii); then
the spatial C*-algebra tensor product A⊗ B is locally purely infinite.
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(i) The natural map from prime(A) × prime(B) into prime(A ⊗ B) is an isomor-
phism.

(ii) A is strictly anti-liminal, i.e., every irreducible representation of A has zero
intersection with the compact operators.

(iii) For every primitive ideal J of B and b ∈ B+ \J there exists n ∈ N such that for
every primitive ideal I of A and for every non-zero positive element a ∈ A+ \ I
there exists a stable C*-subalgebra C ⊂ aAa⊗Mn⊗ bBb which is not contained
in (I ⊗Mn ⊗ B) + (A⊗Mn ⊗ J).

Proof. LetK be a primitive ideal of A⊗B and d ∈ (A⊗B)+\K. Let D := d(A⊗ B)d.
By (i) and Lemma 2.18 there are non-zero a0 ∈ A+, b ∈ B+, t ∈ A⊗B and pure states
ϕ on A and ψ on B such that (ϕ⊗ψ)(K) = 0, tt∗ ∈ D, t∗t = a0 ⊗ b, ϕ(a0) = ‖a0‖ = 1
and ψ(b) = ‖b‖ = 1 . Let I⊳A and J⊳B be the kernels of the irreducible representations
corresponding to the irreducible representations ρ1 and ρ2 defined by the pure states ϕ
respectively ψ. The kernel of the irreducible representation ρ1 ⊗ ρ2 corresponds to the
pure state ϕ⊗ψ on A⊗B and is I⊗B+A⊗J by assumption (i) and Proposition 2.16.
Thus, K ⊂ I⊗B+A⊗J . Remark 3.4 implies that D contains a stable C*-subalgebra
which is not contained in K if there is a stable C*-subalgebra C of a0Aa0⊗ bBb which
is not contained in I ⊗ B + A⊗ J .

Let n = n(b, J) ∈ N be as in assumption (iii) and let f2 be as in Lemma 3.3.
Then for a := f ∗

2 f2 we have ϕ(a) > 0, aAa = b∗2Ab2, and there is a *-monomorphism
h : aAa⊗Mn →֒ a1Aa1 such that h(x⊗ e1,1) = x for x ∈ aAa and ϕh = (ϕ|aAa)⊗ ρ0.
It follows I ∩ h(aAa ⊗Mn) = h((I ∩ aAa) ⊗Mn). By (iii) there is a stable (w.l.o.g.)
hereditary C*-subalgebra C of aAa⊗Mn ⊗ bBb which is not contained in (I ⊗Mn ⊗
B) + (A ⊗Mn ⊗ J) because a is not in I. It follows that the stable hereditary C*-
subalgebra F := h⊗ idB(C) of a1Aa1⊗ bBb is not contained in I ⊗B+A⊗J , because
there is e ∈ aAa ⊗Mn ⊗ bBb with ee∗ ∈ C and (ϕ ⊗ ρ0 ⊗ ψ)(e∗e) > 0, i.e., ff ∗ ∈ E
and (ϕ⊗ ψ)(f ∗f) > 0 for f := (h⊗ id)(e). �

Remark 3.6. One can reformulate (iii) as follows with help of condition (i), Proposi-
tion 2.16 and Lemma 2.18:

(iii’) For every non-zero positive element b ∈ B+ and every pure state ψ on B with
ψ(b) > 0 there is an n ∈ N such that for every non-zero positive element a ∈ A+

and every pure state ϕ on A with ϕ(a) > 0 there exists a stable C*-subalgebra
C ⊂ aAa ⊗ Mn ⊗ bBb such that the restriction of ϕ ⊗ Trn ⊗ ψ to the ideal
generated by C is non-zero.

Remark 3.7. Recall that a simple C*-algebra A is stably infinite if there is an n ∈ N

such that Mn(A) contains an infinite projection.
Simple (!) A is called stably finite if A is not stably infinite.
Note that a simple C*-algebra A is stably infinite if and only if it has no faithful

semi-finite lower semi-continuous 2-quasi-trace (cf. Definition 2.22) by [5]. This is
equivalent to the absence of faithful semi-finite lower semi-continuous traces if A is
exact, cf. 2.29(i).
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Definition 3.8. We call a C*-algebra A weakly stably infinite if for every primitive
ideal I of A and for every non-zero positive a ∈ A+ \ I there exist n ∈ N and a stable
C*-subalgebra C in aAa⊗Mn which is not contained in I ⊗Mn.

(The negation of this property for a non-simple C*-algebra A is not useful and should
not be called “weakly stably finite”, but A could be called residually stably finite if
for every primitive ideal I of A the algebra (A/I)⊗M2 ⊗M3 ⊗ . . . does not contain a
non-zero stable C*-subalgebra.)

A simple C*-algebras A is weakly stably infinite if and only if A is stably infinite:

If A simple and q is an infinite projection in Mm⊗A then for every non-zero a ∈ A+

there exists n ∈ N with n ≥ m and a partial isometry u ∈ Mn ⊗ A with uu∗ = q and
u∗u ∈ Mn ⊗ aAa. The projection p := u∗u is infinite. Let v ∈ Mn ⊗ aAa be a partial
isometry with v∗v ≤ v∗v = p and p 6= v∗v. Then C∗(v) is isomorphic to the Toeplitz
algebra which contains K. Thus, A is weakly stably infinite.

Conversely if A is stably finite then there is a faithful semi-finite lower semi-
continuous 2-quasi-trace τ on A+. Let a ∈ A+ with 0 < τ(a) < ∞, t := ‖a‖/2 and let

D := (a− t)+A(a− t)+. The restriction of τ to D+ is bounded and faithful. For every
n ∈ N there is a bounded 2-quasi-trace τn on (D ⊗Mn)n with τ(d) = τn(d ⊗ e1,1) for
d ∈ D+. Since D⊗Mn is simple, there is no non-zero stable C*-subalgebra in D⊗Mn

by Lemma 2.30. Thus, A is not weakly stably infinite.

Corollary 3.9. In the following cases the spatial tensor product A⊗B is locally purely
infinite:

(i) B is weakly stably infinite (cf. Def. 3.8), prime(A)×prime(B) ∼= prime(A⊗B)
(naturally) and A is strictly anti-liminal.

(ii) B is simple and stably infinite (i.e., is not stably finite), A strictly anti-liminal
and

I ⊗ B → A⊗ B → (A/I)⊗ B

is exact for every closed ideal I of A.
(iii) A is locally reflexive and strictly anti-liminal and B is simple and stably infinite.
(iv) A or B is exact, A is strictly anti-liminal and B is simple and stably infinite.
(v) A is locally purely infinite and prime(A ⊗ B) is naturally isomorphic to

prime(A)× prime(B).
(vi) A is locally purely infinite and A or B is exact.
(vii) A is locally purely infinite and locally reflexive and B is simple.
(viii) B ∼= C∗

r (F2) and zero is the only bounded positive (linear) trace on D for every
hereditary C*-subalgebra D of A .

Proof. Part (i) is a special case of of Theorem 3.5: the condition (iii) of Theorem 3.5
is satisfied if B is locally stably infinite, because C := C∗(a)⊗D is stable and the ideal
generated by it is not contained in I ⊗Mn ⊗B+A⊗Mn ⊗ J if a ∈ A+ is not in I and
if D is a stable C*-subalgebra of Mn ⊗ bBb which not contained in Mn ⊗ J . Indeed, if
d ∈ D+ \Mn ⊗ J then a⊗ d is not in I ⊗Mn ⊗ B + A⊗Mn ⊗ J .
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In all cases (ii)-(viii) the condition (i) of Theorem 3.5 is satisfied by Proposition 2.17.
In particular, (vi) and (vii) are special cases of (v).

A satisfies assumption (ii) of Theorem 3.5, i.e.,A is strictly anti-liminal, if A is
locally purely infinite or if every hereditary C*-subalgebra D of A has only zero as
bounded (linear) trace: if I is a primitive ideal of A and b ∈ A+ such that πI(bAb) is
of finite dimension, then b ∈ I, because otherwise D := bAb can not contain a stable
C*-subalgebra which is not contained in I and D admits a non-zero bounded linear
trace.

(v): Condition (iii) of Theorem 3.5 is satisfied with n = 1, because C := D ⊗ C∗(b)
is stable and not contained in I⊗⊗B+A⊗J if b ∈ B+ is not in J and if D is a stable
C*-subalgebra of aAa which not contained in I. Above we have observed condition
(ii) of Theorem 3.5.

(ii)-(iv) are special cases of (v): If B is a simple C*-algebra which is not stably finite,
is stably infinite and thus weakly stably infinite.

(viii): As we have seen above, A and B ∼= C∗
r (F2) satisfy conditions (i) and (ii) of

Theorem 3.5. Since B is simple, for every non-zero positive b ∈ B+ there is n ∈ N such
that inMn⊗B there is a partial isometry v with v∗v = e1,1⊗1 and vv∗ ∈Mn⊗ bBb. If
a ∈ A+ and δ > 0 then the elements (a⊗vv∗−δ)+ are equivalent to (a−δ)+⊗e1,1⊗1 in
A⊗B by 1⊗v ∈ M(A⊗B). The elements (a−δ)+⊗e1,1⊗1 are zero or properly infinite

in (aAa)⊗e1,1⊗B by Lemma 2.21. Thus, the positive element a⊗vv∗ in aAa⊗Mn⊗bBb
satisfies the assumption of Lemma 2.10. It follows that for every ε > 0 there is a stable
C*-subalgebra C of aAa ⊗ Mn ⊗ bBb which contains ((a ⊗ vv∗) − ε)+ in the ideal
generated by C. This implies condition (iii) of Theorem 3.5. �

Definition 3.10. A simple C*-algebra A is tensorially non-prime if A is isomorphic
to the tensor product B ⊗ C of two simple C*-algebras B and C which are both not
isomorphic to the compact operators on a Hilbert space.

Corollary 3.11. Suppose that A and B are simple C*-algebras, which both are not
isomorphic to the compact operators on a Hilbert space.

(i) If A or B is stably infinite, then the spatial tensor product A ⊗ B is purely
infinite (and simple).

(ii) If A⊗ B is exact and stably infinite, then A⊗ B is purely infinite.
(iii) If A has no faithful semi-finite lower semi-continuous (additive) trace and B ∼=

C∗
r (F2), then A⊗ B is purely infinite.

(iv) A is (quasi-)traceless if A ⊗ B is purely infinite and B is nuclear and stably
finite.

In particular, A⊗B is p.i. if B is p.i. and A is simple, e.g. A⊗On is purely infinite
for n = 2, . . . ,∞ and every simple A. (Note that K(H) ⊗ B is purely infinite if B is
purely infinite, because pi(1) is a stable property, cf. e.g. [44, thm. 4.23].)

Part (iii) shows that (iv) holds for every exact B if and only if we could replace in
(iv) B by C∗

r (F2) then all lower semi-continuous 2-quasi-traces are (additive) traces.
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The below given proof shows also: An exact simple tensorially non-prime C*-algebra
has a faithful semi-finite lower semi-continuous trace if and only if it is not purely
infinite.

Proof. (i): A⊗ B is simple, cf. [61]. By symmetry, we can assume e.g. that B is not
stably finite. Since A is simple and not of type I, A is strictly anti-liminal. Thus, the
simple algebra A⊗B is locally purely infinite by part (ii) of Corollary 3.9 and is purely
infinite by part (iii) of Proposition 3.1.

(ii): The C*-algebras A and B are simple and exact, because A ⊗ B is simple and
e.g. for 0 6= b ∈ B+ A ⊗ C∗(b) ∼= C0(Spec(b) \ {0}, A) and hence A is exact by the
permanence properties of exactness, cf. [35].

Suppose that A⊗B is not purely infinite. Then A and B both are stably finite by part
(i). By Remarks 2.27(viii) and 2.29(i) there are faithful lower semi-continuous semi-
finite additive traces on A+ and B+. Thus, there is a faithful lower semi-continuous
trace on (A⊗ B)+, which contradicts that A⊗ B is stably infinite.

(iii): Since A is simple, A has a faithful lower semi-continuous semi-finite additive
trace if an only if there exists a hereditary C*-subalgebra D of A and a tracial state
on D. Thus, (iii) follows from part (viii) of Corollary 3.9 and part (iii) of Proposition
3.1.

(iv): Suppose that A has non-trivial lower semi-continuous 2-quasi-trace ρ. Then
there exist a ∈ A+ with 0 < ρ(a) <∞. Since ρ is lower semi-continuous, it follows that
there exists δ > 0 such that also 0 < ρ((a − δ)+). It follows that the restriction of ρ

to D := (a− δ)+A(a− δ)+ is a non-zero finite 2-quasi-trace on D. By Remark 2.29(ii)
there is a bounded 2-quasi-trace ρ1 on (D⊗R)+ with ρ1(a⊗ b) = ρ(a)tr(b) for a ∈ D+

and b ∈ R+, where R denotes the hyperfinite II1 factor with separable predual.

Since B is simple, nuclear and stably finite, there exists a faithful lower semi-
continuous semi-finite (additive) trace τ on B+ by [5] and [27], see Remarks 2.27(viii)
and 2.29(i). Thus, there exists a non-zero hereditary C*-subalgebra E of B such that
τ |E is non-zero and finite. It follows that there is an extreme point τ1 of the set of
trace states on E. Since E is again nuclear and not of type I, there corresponds a
*-monomorphism h from E into R ∼= L(E)′′ such that tr(h(a)) = τ1(a) for a ∈ E+.
(Here L : E → L(L2(E, τ1)) is given by the left-multiplication of elements of E on
L2(E, τ1).)

The map ρ2 : c 7→ ρ1(idD ⊗ h(c)) is a bounded 2-quasi-trace on (D ⊗ E)+ with
ρ2(a⊗ b) = ρ(a)τ(b) for a ∈ D+ and b ∈ E+. In particular ρ2 is non-zero and bounded
on the positive part of the hereditary C*-algebra D ⊗ E of A⊗ B, which contradicts
the pure infiniteness of A⊗ B. �

4. Locally and weakly purely infinite non-simple C*-algebras

We give an alternative characterization and some basic properties of l.p.i. algebras.

Proposition 4.1. (i) A C*-algebra A is locally purely infinite if and only if every
hereditary C*-subalgebra E of A is the closure of the union of finite sums of
closed ideals of E which are generated by stable C*-subalgebras.
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(ii) Every l.p.i. C*-algebra A is traceless (hence A is anti-liminal).
(iii) Every non-zero quotient and every non-zero hereditary C*-subalgebra of a

l.p.i. C*-algebra is l.p.i.

Proof. (i): The set of closed ideals of E which are finite direct sums of stably generated
ideals clearly is upward directed. Thus, their closed union is an ideal I of E. (Here
we consider 0 as stable algebra). Since E is hereditary in A, there is a closed ideal
K of A such that I = E ∩K, e.g. let K be the closed linear span of AIA. If I = E
then every primitive ideal J of A which does not contain E can not contain all stable
subalgebras of E. Thus, if I = E for all hereditary C*-subalgebras E of A, then A
satisfies Definition 1.3 of l.p.i.

Conversely suppose I 6= E for some hereditary C*-subalgebra E ⊂ A. Then there
exist b ∈ E+ \K and, thus, a primitive ideal J ⊃ K with ‖b+ J‖ > 0. But J contains
all stable C*-subalgebras of E, i.e.,A is not l.p.i.

(ii): Let τ : A+ → [0,∞] be a lower semi-continuous 2-quasi-trace on A. Suppose
there is a ∈ A+ with 0 < τ(a) < ∞. Since τ is lower semi-continuous there is ε > 0
such that e := (a − ε)+ satisfies τ(e) > 0. Let f := gδ(a) for δ := ε/2 and gδ as in
formula (2.7). For every positive element c in the hereditary C*-subalgebra E := eAe
we have cf = c = fc, and, thus, τ(c) ≤ ‖c‖τ(f). Since τ(f) ≤ τ(a)/ε <∞, we get that
τ is bounded on E. By Lemma 2.30, τ is zero on every stably generated closed ideal
of E. Since Iτ = {d ∈ E; τ(d∗d) = 0} is a closed ideal of E for a l.s.c. 2-quasi-trace τ ,
we get from part (i) that τ(e) = 0, a contradiction.

(iii): If I is a closed ideal, K a primitive ideal of A/I and c ∈ (A/I)+ with ‖c+K‖ >
0, then there is b ∈ A+ with b + I = c and a primitive ideal J of A with πI(J) = K,
I ⊂ J . Thus, ‖b + J‖ = ‖c + K‖ > 0, and, by Definition 1.3, there is a stable
hereditary C*-subalgebra D of bAb which is not contained in J . Then πJ(D) is stable

and hereditary, is not contained in K, but is contained in c(A/I)c.

Definition 1.3 passes to hereditary C*-subalgebras E of A, because for every primi-
tive ideal I of E there is a unique primitive ideal J of A with I = J ∩ E. �

Remarks 4.2. The property “l.p.i.” is also a stable property. as a the special case of
part (vi) of Corollary 3.9 with B = K shows.

Moreover, one can show that the class of l.p.i. C*-algebras is closed under strong
Morita equivalence and is preserved by inductive limits.

The C*-algebra A is l.p.i. if and only if for every separable subset X ⊂ A there is a
separable C*-subalgebra B ⊂ A with B l.p.i. and X ⊂ B.

The converse implication of part (ii) of Proposition 4.1 does not hold, because there
are stably infinite simple nuclear C*-algebras which are not purely infinite, cf. [59].
One only has the following reformulation of the much weaker result [45, thm. 4.8] as a
sort of “asymptotic” inverse.

Proposition 4.3. Let A be a non-zero C*-algebra and let Aω be the ultra-power of A .
Then the following assertions are equivalent.

(i) Aω is traceless, i.e., every lower semi-continuous 2-quasi-trace on Aω is trivial.
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(ii) There exists k ∈ N such that a⊗ 1k is properly infinite for all a ∈ A+ \ {0} .

Proof. It is a reformulation of the equivalence of (a) and (c) in part (i) of [45, thm. 4.8],
where one has to use [45, def. 4.2 and def. 4.3]. Definition [45, def. 4.2] is equivalent
to our definition of “traceless” by Remark 2.27(viii). �

Part (ii) of Proposition 4.1, [44, thm. 5.9] and [45, prop. 5.14] together imply the
following Corollary 4.4 immediately. But note that strongly purely infinite simple
C*-algebras are in general not approximately divisible, cf. [23].

Corollary 4.4. An approximately divisible C*-algebra A is locally purely infinite if and
only if A is strongly purely infinite.

Definition 4.5. We call a closed ideal J of a C*-algebra D stably generated if there
is a stable C*-subalgebra E of D, which generates J as a closed ideal of D. (E can be
assumed to be hereditary.)

Let I denote the ideal of D which is the is the closure of the upward directed net
of the finite sums of stably generated ideals of D. We say that the set of stably
generated closed ideals of D is approximately upward directed, if I is the closure of the
union of stably generated ideals (union of sets, do not mix it up with sums of ideals).
Equivalently this can be expressed as follows:

(4.1)





If D1 and D2 are stable hereditary C*-subalgebas of D,
dj(dj)

∗ ∈ Dj (j = 1, 2) and δ > 0 , then there exists a stable
hereditary C*-subalgebra D3 of D and d3 ∈ D , such that
d3(d3)

∗ ∈ D3 and (d3)
∗d3 = ((d1)

∗d1 + (d2)
∗d2 − δ)+.

Question 4.6. Are the stably generated closed ideals of a traceless algebra D approxi-
matively upward directed in the sense of Definition 4.5?

Corollary 4.7. Suppose that for every hereditary C*-subalgebra D of A the stably
generated closed ideals of D are approximately upward directed (in the sense of Defini-
tion 4.5).

Then A is locally purely infinite if and only if A is purely infinite (=pi(1)).

Proof. Suppose A is l.p.i. Let b ∈ A+ be a non-zero element and ε > 0. By Proposition
4.1 there are stable hereditary C*-subalgebras D1, . . . , Dn ⊂ D := bAb such that
(b− ε/8)+ belongs to the closed ideal of D generated by D1∪ . . .∪Dn. Thus, there are
d1, . . . , dn ∈ D such that dj(dj)

∗ ∈ Dj and d
∗
1d1+ · · ·+d∗ndn = (b−ε/4)+. One can find

inductively from property (4.1) of Definition 4.5 some stable hereditary C*-subalgebra
E ⊂ D and d ∈ D with dd∗ ∈ E with d∗d = (b− ε/2)+. Take isometries s1, s2 ∈ M(E)
generating a copy of O2 and let e = s1d and f = s2d. The row g := (e, f) ∈ M1,2(D)
satisfies g∗g = (b− ε/2)+ ⊗ 12. Thus, b is properly infinite and A is purely infinite by
Remark 2.9.

Conversely, if A is purely infinite then Lemma 2.10 applies to every non-zero element
a ∈ A+. �

A trivial consequence of Corollary 4.7 is the following corollary.

Corollary 4.8. If the lattice of closed ideals of A is linearly ordered then A is locally
purely infinite if and only if A is purely infinite.
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Now we are going to show that weak pure infiniteness implies local pure infiniteness.
We need Lemma 2.10 and the following lemma for the proof.

Lemma 4.9. Suppose that A satisfies part (i) of Definition 1.2 of pi(m). Then

(i) every quotient A/J and every hereditary C*-subalgebra D of A satisfy part (i)
of Definition 1.2,

(ii) ℓ∞(A) and the ultrapowers Aω satisfy part (i) of Definition 1.2,
(iii) if non-zero f2, . . . , fm+1 ∈ A satisfy the relations (2.4) for n := m+ 1, then

a := f2f
∗
2 + . . .+ fm+1f

∗
m+1

satisfies the assumption of Lemma 2.10.
(iv) every irreducible representation d : A → L(H) of dimension > m does not

contain any non-zero compact operators in its image.

Proof. (i): If b ∈ (A/J)+ is in the closed ideal generated by πJ(a) = a+J for a ∈ A+,
and if δ > 0, then there are f1, . . . , fn ∈ A such that (b − δ)+ = πJ(

∑
1≤k≤n f

∗
kafk) .

On the other hand, there are g1, . . . , gm ∈ A with
∑

1≤j≤m g
∗
jagj = (c − δ)+ for c :=∑

1≤k≤n f
∗
kafk . Thus, ‖b−

∑
d∗jπJ(a)dj‖ < 2δ for dj = gj + J , j = 1, . . . ,m.

The inequality ‖b−
∑
d∗i adi‖ < ε implies ‖b−

∑
(atdib

t)∗a(atdib
t)‖ < ε. for suitable

t > 0. This shows that property (i) of Definition 1.2 of pi(m) passes to hereditary
C*-subalgebras.

(ii): Let ε > 0, a, b ∈ ℓ∞(A)+, such that b is in the closed ideal generated by a. There
are η > 0 and e(1), . . . , e(p) ∈ ℓ∞(A) with

∑
(e(j))∗(a−η)+e

(j) = (b−ε/2)+, cf. subsection
2.7. Thus, the n-th components (bn− ε/2)+ of (b− ε/2)+ are in the ideal generated by
the n-th components (an − η)+ of (a− η)+. If we apply part (i) of Definition 1.2 and
Remark 2.7, then we get a column fn ∈Mm,1(A) with f

∗
n((an−η)+⊗1m)fn = (bn−ε)+.

Let dn := (h(an) ⊗ 1m)fn ∈ Mm,1, where h(t) = 0 for t ≤ η and h(t) = ((t − η)/t)1/2

for t > η. Then d∗n(an ⊗ 1m)dn = (bn − ε)+, ‖dn‖
2 ≤ η−1‖bn‖, and d ∈Mm,1(ℓ∞(A)) ∼=

ℓ∞(Mm,1(A)) with components dn satisfies d∗(a⊗ 1m)d = (b− ε)+.
Since Aω is a quotient of ℓ∞(A), it also satisfies condition (i) of Definition 1.2.

(iii): Let f1 := (f ∗
2 f2)

1/2 and take the polar decompositions fj = vjf1 in A∗∗ of fj
for j = 2, . . . ,m + 1. Then (a − ν)+ = g2g

∗
2 + . . . + gm+1g

∗
m+1 for gj := vj(f

2
1 − ν)1/2,

g2, . . . , gm+1 are in A and satisfy the relations (2.4). Thus, it suffices to show that a is
properly infinite.

Let J be a closed ideal of A which does not contain a. Let b := a+J and hj := fj+J .
Then h1 is non-zero in A/J , and b + h1 is contained in the closed ideal generated by
h21. Since A/J satisfies again the property (i) of Definition 1.2, we find for every δ > 0
elements d1, . . . , dm ∈ A/J with ‖b + h1 −

∑
d∗jh

2
1dj‖ < δ. Since h1b = 0, there is

a row-contraction c = (c1, c2) ∈ M1,2(A) with ‖c∗(b + h1)c − (b ⊕ h1)‖ < δ. Hence
ei :=

∑
1≤j≤m fj+1djci defines a row e = (e1, e2) ∈M1,2(A) with ‖e∗be− (b⊕h1)‖ < 2δ.

This shows that a is properly infinite by [44, prop. 3.14].

(iv): Since d : A → L(H) is irreducible, K(H) ⊂ d(A) or K(H) ∩ d(A) = 0, i.e., the
image of an irreducible representation d of A has non-zero intersection with the compact
operators if and only if K(H) is a quotient of an ideal of A. Thus, K(H) must satisfy
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pi(m)(i) by part(i). But this means that K(H) can not contain a projection of rank
m+1, because such a projection must be properly infinite in K(H) by (iii). Therefore
H has dimension ≤ m. �

Proposition 4.10. If A is pi(m), then ℓ∞(A), every quotient of A, every hereditary
C*-subalgebra of A and the ultrapowers Aω are pi(m).

Proof. Parts (i) and (ii) of Lemma 4.9 say that property (i) of the Definition 1.2 of
pi(m) passes to ℓ∞(A), Aω and to hereditary C*-subalgebras D of quotients A/J .
Since ℓ∞(ℓ∞(A)) ∼= ℓ∞(A) , we have that ℓ∞(A) also satisfies (ii) of Definition 1.2

and is pi(m).
Part (iv) of Lemma 4.9 implies that the images of irreducible representations of ℓ∞(A)

have zero intersection with the compact operators, i.e., every quotient of ℓ∞(A) is anti-
liminal. ℓ∞(Aω) is a quotient of ℓ∞(ℓ∞(A)). It follows that the quotients ℓ∞(A/J) and
ℓ∞(Aω) and the hereditary C*-subalgebra ℓ∞(D) of ℓ∞(A) can not have a quotient of
finite dimension. Thus, D, A/J and Aω also satisfy condition (ii) of Definition 1.2. �

Proposition 4.11. Let A be a C*-algebra which satisfies condition (i) of the Definition
1.2 of pi(m) and which has no irreducible representation of dimension ≤ m . Then A
is locally purely infinite.

In particular, every weakly purely infinite C*-algebra is locally purely infinite.

Proof. Let J be a primitive ideal in A and let b ∈ A+ \ {0} be a positive element
with ‖b + J‖ > 0 . Let us construct a non zero stable C*-algebra D in the hereditary
C*-subalgebra B := bAb such that D 6⊂ J .

Let d : A → L(H) be an irreducible representation with kernel equal to J . By (iii)
of Lemma 4.9, we have d(A) ∩ K(H) = {0} because the dimension of H is > m. In
particular, bH has infinite dimension. Since B is hereditary in A d1 : c ∈ B 7→ d(c)|bH
is also an irreducible representation of B of infinite dimension. There is a non-zero
*-homomorphism h from C0(0, 1] ⊗Mm+1(C) to B with d1h 6= 0, thanks to a variant
of Glimm’s classical lemma, see end of subsection 2.3. Therefore we find contractions
f2, . . . , fm+1 in B \ J which satisfy the relations (2.4) for n = m + 1. By part (iii)
of Lemma 4.9, the sum a := f2f

∗
2 + . . . + fm+1f

∗
m+1 satisfies that (a − ν)+ is properly

infinite for all ν ∈ (0, ‖a‖ ) . Take ε ∈ (0, ‖a + J‖), then (a − ε)+ 6∈ J and Lemma
2.10 defines a stable hereditary C*-subalgebra dAd of B ⊂ A whose image in A/J is
non-zero. �

The notion of pi(n) was introduced in [38] for a study of ultra-powers of approxi-
mately inner completely positive contractions on C*-algebras, cf. [38]. The next propo-
sition shows that our definition of pi(n) is formally weaker than [45, def. 4.3] but it
shows also that the corresponding definitions of weakly purely infinite algebras are
equivalent.

Proposition 4.12. Let A be a weakly purely infinite C*-algebra. Then there exists an
integer n > 0 such that for every a ∈ A+ \{0} , the element a⊗1n ∈Mn(A) is properly
infinite.
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By [45, lemma 4.7] one has m ≤ n if m is the smallest m ∈ N such that A is pi(m)
in the sense of our Definition 1.2.

Proof. Suppose that A is pi(m) and take a free ultrafilter ω . By Proposition 4.10, the
C*-algebra Aω also is pi(m). Proposition 4.11 implies that Aω is l.p.i. Therefore there is
no non-trivial lower semi-continuous 2-quasi-trace on Aω by part (ii) of Proposition 4.1.
But this means by Proposition 4.3 that A is weakly purely infinite in the sense of [45,
def. 4.3]. �

Remarks 4.13. Summing up, we have also shown that for the ultrapowers Aω of A
holds: Aω is traceless ⇐⇒ Aω is l.p.i. ⇐⇒ Aω is w.p.i.

If A is w.p.i. and C is a finitely generated commutative C*-subalgebra of Aω then
the he relative commutant C ′ ∩ Aω is w.p.i. : it is application of Lemma 2.5 and of
ideas from [45], see [40].

If one could show, that a ⊗ 1m2 is properly infinite for every non-zero element a
in a stable C*-algebra B, provided this happens for every non-zero a in a closed
ideal J of B and for every non-zero element a of B/J , then one would get (by part
(iii) of Lemma 4.9, [45] and the local Glimm halving lemma) that, conversely, every
element a in a C*-algebra A with property (i) of Definition 1.2 and without irreducible
representations of dimension ≤ m satisfies that a⊗ 1m2 is purely infinite.
Thus, ℓ∞(A) could be replaced by A itself in part (ii) of Definition 1.2.

It is still unknown (in 2003) whether any pi(n) C*-algebra (in the sense of Def-
inition 1.2) is automatically pi(1), i.e., purely infinite. However the Glimm halving
property 2.6 yields the following.

Proposition 4.14. Suppose that a C*-algebra A satisfies property (i) of Definition 1.2
of pi(m). Then A is pi(1) if and only if A has the global Glimm halving property 2.6.

Proof. As we have noticed in part (iv) of Remark 2.9, every p.i. algebra has the global
Glimm halving property. C*-algebras A with the global Glimm halving property have
only anti-liminal (non-zero) quotients, in particular A has no character.

Given two positive elements a, b ∈ A+ such that b is in the closed ideal generated by
a and ε > 0, let us construct d ∈ A with ‖d∗ad − b‖ < 2 ε : by Remark 2.9(ii), there
exist δ > 0 and c1, . . . , cm ∈ A, such that

∑

1≤k≤m

c∗k(a− 3δ)+ck = (b− ε)+.

The global Glimm halving property yields the existence of f1, . . . , fm in the closure of
(a− 2δ)+A(a− 2δ)+ , such that f ∗

i fj = δijf
∗
1 f1 and (a− 3δ)+ belongs to the ideal of A

generated by f0 := f ∗
1 f1 (cf. the remark following Definition 2.6). Thus, (b− ε)+ is in

the ideal generated by f0 . As A is pi(m), there exist d1, . . . , dm ∈ A such that

‖
∑

1≤j≤m

d∗jf0dj − (b− ε)+‖ < ε.

Let gδ ∈ C0((0,∞]) be as in (2.7) and let hδ(t) := (gδ(t)/t)
1/2 . Then gδ(a)fi = fi, and

d := hδ(a)
∑

1≤j≤m fjdj satisfies ‖d
∗ad− b‖ = ‖

∑
i,j d

∗
i f

∗
i gδ(a)fjdj − b‖ < 2 ε . �
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A projections q in a C*-algebra A is properly infinite (respectively infinite) if there
are partial isometries u, v ∈ A with u∗u = v∗v = q and vv∗ + uu∗ ≤ q (respectively
there is a partial isometry v ∈ A with v∗v = q, vv∗ ≤ q and vv∗ 6= q). q is full if
A is the closed two-sided ideal of A generated by q. A result of Cuntz in [17] can be
expressed equivalently as follows:

Lemma 4.15. If a C*-algebra C contains a properly infinite full projection, then every
element z ∈ K0(C) is represented by a full and properly infinite projection q in C,
i.e., z = [q], and two properly infinite full projections q, q′ ∈ C define the same element
[q] = [q′] of K0(C) if an only if q and q′ are Murray–von Neumann equivalent, i.e., there
is a partial isometry v ∈ C with v∗v = q and vv∗ = q′, denoted: q ∼v q

′.

If q, r are properly infinite full projections in C, then one can find properly infinite
full projections q′ ∼ q and r′ ∼ r in C which are orthogonal, i.e., r′q′ = 0. The sum
y := [q] + [r] ∈ K0(C) is represented by y = [q′ + r′].

In particular, the neutral element 0 ∈ K0(C) is represented by a full projection p ∈ C,
such that there is a *-monomorphism ψ : O2 → C with ψ(1) = p.

Lemma 4.16. Suppose that B is stably isomorphic to a unital C*-algebra A. Then
the following are equivalent:

(i) Every semi-finite lower semi-continuous 2-quasi-trace on B is zero.
(ii) There is a *-monomorphism ψ : O2 → B ⊗K such that ψ(1) generates B ⊗K

as a two-sided ideal.

The assumption that B is stably isomorphic to a unital C*-algebra is implied by (i)
alone if B is simple and σ-unital, cf. [5].

Proof. (i)⇒(ii): Let C := B ⊗ K. Then B is isomorphic to a “full” corner D of
A⊗K, because C ∼= A⊗K. Every finite lower semi-continuous 2-quasi-trace τ on A+

extends uniquely to a semi-finite lower semi-continuous 2-quasi-trace ρ on (A ⊗ K)+
with τ(a) = ρ(a ⊗ e1,1) for a ∈ A+. The restriction ρ|D of ρ to D is again a semi-
finite lower semi-continuous 2-quasi-trace with D ∩ Iρ = I(ρ|D), cf. Definition 2.22 and
Remarks 2.27(viii). Thus, our assumption (i) implies ρ|D = 0, D ⊂ Iρ. Since D is full
and Iρ is a closed ideal, it follows ρ = 0 and τ = 0. Thus, every finite 2-quasi-trace
on A is equal to zero. Let 1A be the unity element of A. By [44, prop. 5.7] we find
k ∈ N such that (1A ⊗ 1k) ⊕ (1A ⊗ 1k) is equivalent to a sub-projection of 1A ⊗ 1k in
A ⊗M2k. Thus, 1A ⊗ 1k defines a properly infinite projection r of C which is a full
projection in C, i.e., the ideal generated by r is dense in C. By Lemma 4.15 there is a
*-homomorphism ψ : O2 → C = B ⊗K such that ψ(1) is full in C.

(ii)⇒(i): For every semi-finite lower semi-continuous 2-quasi-trace τ on B+ there is
a unique semi-finite lower semi-continuous 2-quasi-trace ρ on (B ⊗ K)+ with τ(b) =
ρ(b⊗ e1,1). Since ψ(1) is in the positive part of the Pedersen ideal of B ⊗K, we must
have ρ(ψ(1)) < ∞. Thus, the quasi-trace ρψ on O2 must be zero, and therefore ρ is
zero on the closed ideal generated by ψ(1) (which is contained in Iρ). �

Theorem 4.17. Let A be C*-algebra of real rank zero.

Then A is locally purely infinite if and only if A is strongly purely infinite.
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Proof. Since s.p.i. implies p.i., it implies also l.p.i. by Proposition 4.11. Conversely, A
is s.p.i. if A is p.i. by [45, cor. 6.9], and it suffices to show that A is p.i. if A is l.p.i.

By [44, prop. 4.7], A is purely infinite if every non-zero hereditary C*-subalgebra D
in every quotient A/I of A contains an infinite projection.

A/I and D are again l.p.i. by part (iii) of Proposition 4.1. D contains a (non-zero)
stable C*-subalgebra E by Proposition 4.1 (i). Upon replacing E by EDE, we may
assume that E also is hereditary in A/I and, thus, E is l.p.i. by Proposition 4.1 (iii).

A/I and E have real rank zero if A has real rank zero, and E contains an approximate
unity consisting of projections, see [13].

If 0 6= q ∈ E is a projection, then qEq is a unital l.p.i. C*-algebra by Proposi-
tion 4.1 (iii) and qEq is traceless by Proposition4.1 (ii).

By Lemma 4.16, qEq⊗K ⊂ E⊗K ∼= E ⊂ D contains a properly infinite projection.
�

5. Infiniteness and Hausdorff primitive ideal spaces

Proposition 5.1. Let A be a C*-algebras with Hausdorff primitive ideal space.

Then A is l.p.i. if and only if every simple quotient of A is p.i.

Proof. Let J be a primitive ideal of A . Then the quotient A/J is simple, because
Prim(A) is Hausdorff. If A is l.p.i. then every simple quotient is l.p.i., hence p.i. by
Proposition 3.1.

Suppose conversely that A/J is p.i. for every primitive ideal J of A. Let b ∈ A+\{0}
and J a primitive ideal of A which does not contain b. We construct a stable hereditary
C*-algebra contained in D := bAb but which is not contained in J : by (i) and (ii) of
Proposition 3.1, there exists a properly infinite projection, whence (by Lemma 4.15) a
copy of O2, in the quotient B := D/(J∩D) = πJ(D) . But O2 is semi-projective and so,
by Remark 2.4 there exist a closed neighborhood F of J in X := Prim(D) ⊂ Prim(A)
and a *-homomorphism ψ : O2 → D|F such that ψ(1) generates D|F as two-sided ideal.
Since the interior of Z contains J , we find a function h ∈ C0(X) with 0 ≤ h(I) ≤
h(J) = 1 for all primitive ideals I ∈ X, such that the support of h is contained in F .
Then f ⊗ c 7→ f(h)ψ(c) ∈ D extends to a monomorphism ϕ : C0(Y )⊗O2 → D where
Y = h(X) \ {0}. The image of this monomorphism is not contained in J , because πJϕ
has kernel C0(Y \ {1})⊗O2. The image of ϕ contains a stable C*-subalgebra which is
also not contained in J , because O2 contains a copy of K. �

Proposition 5.2. Let A be a C*-bundle over a Hausdorff locally compact space X
with finite topological dimension n and suppose there is an integer k > 0 such that
every fiber Ax (x ∈ X) satisfies condition (i) of Definition 1.2 for m = k.

Then A satisfies condition (i) of Definition 1.2 for m = k(1 + n).

If, moreover, the C*-algebra A has the global Glimm halving property 2.6, then A is
purely infinite (= pi(1)).

Proof. Let a, b ∈ A+ be positive elements with b in the closed ideal generated by a, and
ε > 0. The function h(x) := gδ(‖bx‖)

1/2 (with gδ as in (2.7) and δ = ε/2) is a continuous
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function on X with compact support and satisfies ‖h2b− b‖ = supX(1− h2)N(b) < ε,
because the fiber norm function x 7→ N(b)(x) := ‖bx‖ is in C0(X)+. One can find
for each point x in the compact closure F of {x ∈ X ; h(x) > 0} a column-matrix
d(x) ∈ Mk,1(A) such that ‖[b − d(x)∗(a ⊗ 1k)d(x)]x‖ < ε/2 , whence by upper semi-
continuity of the norm-functions there is an open neighborhood Ux ∋ x on which
‖[b− d(x)∗(a⊗ 1k)d(x)]y‖ < ε for all y in Ux .

There is a finite open covering U = {U1, . . . , Up} of F and elements dj ∈ Mk,1(A)
satisfying ‖[b− (dj)

∗(a⊗ 1k)dj]y‖ < ε for all y in Uj , where 1 ≤ j ≤ p. By Lemma 2.5,
one can moreover assume, up to taking a suitable refinement of U , that there exits a
map ι : {1, . . . , p} → {1, . . . , n+ 1} such that for each 1 ≤ i ≤ n+ 1 , the open set

Yi =
⋃

j∈ι−1(i) Uj

is the disjoint union of the open sets Uj, j ∈ ι−1(i) , because F has dimension ≤ n.
Now take ej ∈ C0(Uj)+ ⊂ C0(X) with

∑
1≤j≤p ej ≤ 1 and (

∑
ej)|F = 1 , and define,

for i ∈ {1, . . . , n+ 1}, ηi :=
∑

j∈ι−1(i) ej and

d(i) :=
∑

j∈ι−1(i)

(ej)
1/2 dj ∈ Mk,1(A).

Then ‖ [ηib− (d(i))∗(a⊗ 1k)d
(i)]y‖ < ηi(y)ε if ηi(y) > 0 and 1 ≤ i ≤ n+ 1.

Thus, ‖ b − f ∗(a ⊗ 1k(n+1))f‖ ≤ 2ε for the column f ∈ Mk(n+1),1(A) with fik+j,1 :=

h.(d(i))j , because h
2
∑
ηi = h2.

If A satisfies, in addition, the global Glimm halving property then Proposition 4.14
applies. �

Corollary 5.3. A C*-algebra A with Hausdorff finite dimensional primitive ideal space
X is purely infinite if and only if it is locally purely infinite.

Proof. ⇒: The property pi(1) always implies l.p.i. by Proposition 4.11.

⇐: Conversely, by Proposition 5.1, the simple quotients A/J are purely infinite if A
is locally purely infinite. In particular A/J is anti-liminal.

Since, by assumption, X := Prim(A) is Hausdorff, every primitive quotient of A is
simple and A is a C*-bundle over X.

Since X has finite dimension and the fibers A/J are pi(1), we get from Proposition
5.2 and from Theorem 2.7 that A satisfies condition (i) of Definition 1.2 of pi(m) for
m = 1 + Dim(X) and that A has the global Glimm halving property.

Thus, Proposition 4.14 implies that A is purely infinite. �

It is unknown (2003) whether any purely infinite C*-algebra A is strongly purely
infinite, but we provide below a positive answer in the case when the primitive ideal
space Prim(A) is Hausdorff (Theorem 5.8).

Before that we show a result of independent interest, Proposition 5.6. It is an
appropriate generalization for σ-unital C*-algebras A with Hausdorff Prim(A) of a
theorem of Blackadar and Cuntz [5] which says that stable simple C*-algebras without
any non-trivial lower semi-continuous quasi-trace contain a properly infinite projection.
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Lemma 5.4. Let h and k be unital *-homomorphisms from the Cuntz algebra O2 into
a unital C*-algebra B. Then there is a norm-continuous map U : t ∈ [0,+∞) 7→ U(t)
into the unitary group of B, such that, for a ∈ O2,

k(a) = lim
t→∞

U(t)∗h(a)U(t).

In particular, there exists a unitary U ∈ B and a selfadjoint element b ∈ B, such
that U∗h(si)U = eibk(si), i = 1, 2 for the canonical generators s1, s2 of O2.

Note that in general U can not be found in the connected component of 1B (Consider
the Calkin algebra B = L(ℓ2)/K(ℓ2) and examine the indices of the unitary operators of
form h(s1)k(s1)

∗+h(s2)k(s2)
∗). A part of Lemma 5.4 has been proven by Rørdam [55,

thm. 3.6] in the case where the logarithmic length of the connected component of the
unitary group of B is finite (which is not the case for general C*-algebras). We deduce
the general result from the independent result [38, thm. B]:

Proof. Denote by h0 := h⊗ idK, h1 := k ⊗ idK and h2 := idO2
⊗ idK the stabilization

of h, k and idO2
, respectively. Since KK(O2, B) = 0, it follows from [38, thm. B(ii)]

that hi ⊕ hi is unitarily homotopic to hi ⊕ hj, i, j = 0, 1. By [38, thm. B(iii)], h2 is
unitarily homotopic to h2 ⊕ h2. This implies that hi is unitarily homotopic to hi ⊕ hi,
i = 0, 1. It means h1(d) = limV (t)∗h0(d)V (t) for a norm-continuous map V from R+

into the unitary group of the multiplier algebra of B ⊗ K. In particular, 1B ⊗ e1,1 =
limV (t)∗(1B ⊗ e1,1)V (t). Thus, for large t ∈ R+ we can take a small correction of V (t),
such that our new V (t) commutes with 1⊗ e1,1. Thus, after a re-parameterization and
a small perturbation, we may assume that V (t) = U(t)⊗e1,1+W (t) withW (t)∗W (t) =
W (t)W (t)∗ = 1⊗ (1− e1,1). Then t 7→ U(t) ∈ B has the desired property.

In the second statement we can take U := U(t) for some large t ∈ R+ such that
Z := U∗h(s1)Uk(s1)

∗ + U∗h(s2)Uk(s2)
∗ is a unitary with distance < 1 from 1B. Let

b := −i logZ. �

Proposition 5.5. (i) Suppose that B is a stable C*-algebra, J is a closed ideal of
B, and that ψ : O2 → B and λ : O2 → B/J are *-homomorphisms.

If πJψ(1) and λ(1) generate the same closed ideal of B/J , then there is a
*-homomorphism ϕ : O2 → B, such that πJϕ = λ, and that ϕ(1) and ψ(1)
generate the same closed ideal of B.

(ii) Suppose that the *-morphisms ηk : A→ Bk (k = 1, 2) define A as a pullback of
the epimorphism πk : Bk → C, (k = 1, 2), and that B1, B2 are stable.
If ϕk : O2 → Bk are *-morphisms such that π1ϕ1(1) and π2ϕ2(1) generate

the same ideal of C, then there exists a *-morphism ψ : O2 → A such that
η1ψ = ϕ1 and that η2ψ(1) and ϕ2(1) generate the same ideal of B2.

Proof. (i): p := πJψ(1) and q := λ(1) are properly infinite projections which generate
the same closed ideal C of B/J , i.e., p and q are full properly infinite projections. Since
[p] = [q] = 0 in K0(C), p and q are Murray–von Neumann equivalent by Lemma 4.15,
i.e., there is a partial isometry w ∈ C ⊂ B/J with w∗w = p and ww∗ = q.

We can find a, b, c,∈ B with πJ(a) = w, πJ(b) = λ(s1) and πJ(c) = λ(s2), where s1
and s2 denote the canonical generators of O2. Let d := ψ(s1), e := ψ(s2).

42



Since B is stable, the separable C*-subalgebra of B which is generated by
{a, b, c, d, e} is contained in a separable and stable C*-subalgebra B1 of B. The
C*-algebra B1 contains ψ(O2), and the image of B1 in B/J contains w and λ(O2),
and is naturally isomorphic to B1/J1, where J1 := B1 ∩ J .

Thus, to prove (i), we can in addition assume, that B itself is separable (and stable
by assumption).

Then B/J must be stable and separable, and the Murray–von Neumann equivalence
of p and q implies the existence of a unitary W ∈ M(B/J) with W ∗pW = q. An
elementary matrix construction argument (which the the reader can find in K-theory
textbooks) shows that the unitary W can be chosen in the connected component of
the identity element of U(M(B/J)). (Here one could also use the generalized Kuiper
theorems of Cuntz–Higson [19] or Mingo [50], which say that the unitary group of
M(D) for a stable σ-unital C*-algebra D is norm-contractible.)

The separability of B implies that the natural strictly continuous *-homomorphism
M(πJ) fromM(B) intoM(B/J) is an epimorphism, [51, prop. 3.12.10]. Thus, we find
a unitary V in M(B) with M(πJ)(V ) = W . Let r := V ∗ψ(1)V , ψ1(d) := V ∗ψ(d)V .
Then, r = ψ1(1) is Murray–von Neumann equivalent to ψ(1), and πJ(r) = q = λ(1).
We find a partial isometry d ∈ B such that d∗d = r and rd = 0, because B is stable.

By Lemma 5.4 we can find in the unital C*-algebra q(B/J)q a unitary u and a
selfadjoint b with u∗λ(sj)u = eibπJψ1(sj) for j = 1, 2. Let z ∈ rBr be a contractive lift
of u and let c ∈ rBr be a selfadjoint lift of b. We obtain a new unital *-homomorphism
ψ2 : O2 → rBr by ψ2(sj) := eicψ1(sj) for j = 1, 2.

U0 := z + (r − zz∗)1/2d∗ − d(r − z∗z)1/2 + dz∗d∗

is a unitary in (r+ dd∗)B(r+ dd∗). We define ϕ(d) := U0ψ2(d)U
∗
0 . Then πJϕ = λ, and

ϕ(1) is Murray–von Neumann equivalent to r.

(ii): The pullback condition says that η : a 7→ (η1(a), η2(a)) is an isomorphism from
A onto the C*-subalgebra {(b1, b2); bj ∈ Bj, π1(b1) = π2(b2)} of B1 ⊕ B2. By (i) there
exist ϕ3 : O2 → B2 such that π2ϕ3 = π1ϕ1 and that ϕ3(1) and ϕ2(1) generate the same
ideal of B2. ψ(d) := η−1(ϕ1(d), ϕ3(d)) for d ∈ O2 is as desired. �

Proposition 5.6. Assume that A is a σ-unital C*-bundle over a Hausdorff space X
and that for every y ∈ X, there is a properly infinite and full projection qy in Ay ⊗K.

Then there exists a non-degenerate C0(X)-linear monomorphism

h0 : C0(X)⊗O2 ⊗K →֒ A⊗K .

Recall that a projection p in a C*-algebra B is full if the span of BpB is dense in B.
Proof. The positive part A+ contains a strictly positive element e, because A is σ-
unital. We can assume ‖e‖ > 1. The functionN(e) ∈ C0(X)+ must satisfyN(e)(y) > 0
for every y ∈ X. Let Yn := {y ∈ X; N(e)(y) ≥ 1/n}. Then Yn is compact, is contained
in the interior of Yn+1, and

⋃
Yn = X.

Since K is exact and simple, A⊗K is again a C*-bundle over X with fibers Ax⊗K,
by [46], and A⊗K is again σ-unital.
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Thus, we can replace A by A⊗K and can assume from now that A is moreover stable
and therefore has stable fibers Ay for y ∈ X. It follows that Ay contains a properly
infinite full projection qy. (We have even AyqyAy = Ay because qy is properly infinite.)

Note that properly infinite projections must be non-zero. The existence of qy 6= 0 in
Ay ⊗K implies that Ay 6= 0 for every y ∈ X.

By Lemma 4.15 the class of the zero-element of K0(Ay) can be represented by py =
ψy(1), where ψy : O2 → Ay a *-monomorphism and py is a full projection of Ay.

Since O2 is semi-projective, by Remark 2.4 there is for every point y ∈ X a compact
neighborhood F ⊂ X of y (i.e., in particular y is contained in the interior of F ) and
a *-homomorphism ψ : O2 → A|F such that ψ(1) generates A|F as a closed ideal,
cf. subsection 2.4.

Now let F and G two compact subsets of X and ψ1 : O2 → A|F , ψ2 : O2 → A|G

*-homomorphisms, such that ψ1(1) generates A|F and ψ2(1) generates A|G as closed
ideals. By Remark 2.3, A|F∪G is the pull-back of A|F and A|G along A|F∩G. Thus, by
(ii) of Proposition 5.5, there is a *-homomorphism ψ : O2 → A|F∪G such that ψ(1)
generates A|F∪G as a closed ideal.

This shows that for every compact subset Y ⊂ X there is a *-homomorphism
ψ : O2 → A|Y such that ψ(1) generates A|Y as a closed ideal. Thus, we find monomor-
phisms ψn : O2 → An := A|Yn

, such that ψn(1) generates An as a closed ideal.

Let now ϕ1 := ψ1 and assume that we have found ϕj : O2 → Aj, j = 1, . . . , n
such that ϕj(1) generates Aj as a closed ideal and that ϕj(d) = ϕj+1(d)|Yj

for d ∈ O2

and j = 1, . . . , n − 1. Since An+1 is stable, we can apply (i) of Proposition 5.5 to
ϕn : O2 → An, ψn+1 : O2 → An+1 and the natural epimorphism from An+1 onto An,
and get ϕn+1 : O2 → An+1 such that ϕn(d) = ϕn+1(d)|Yn

for d ∈ O2 and ϕn+1(1) is full
in An+1.

For every f ∈ Cc(X) there is n ∈ N such that the closure of the support of f is
contained in the interior of Yn. Thus, we get a well-defined algebra *-homomorphism
γ0 from the algebraic tensor product Cc(X)⊙O2 into A which is given on elementary
tensors f ⊗ d by γ0(f ⊗ d) := fϕn(d) for n sufficiently large. By construction it
is a Cc(X)-linear map. It is well-known (and can easily be seen from [61] or [60,
prop. 1.22.3]), that the universal C*-hull of Cc(X) ⊙ O2 is naturally isomorphic to
C0(X,O2). Thus, γ0 extends to a *-homomorphism γ1 from C0(X,O2) into A. The
map γ1 is C0(X)-linear, and for every fiber Ax, x ∈ Yn, the fiber *-homomorphism
(γ1)x = (ϕn)x : O2 → Ax is a monomorphism, because ϕn(1) generates A|Yn

as a closed
ideal. It follows that γ1 is a C0(X)-linear *-monomorphism from C0(X,O2) into A such
that the image B of γ1 generates A as a closed ideal.

Let D1 be the hereditary C*-subalgebra of A ⊗ K which is generated by B ⊗ K.
Then D1 is stable, σ-unital and generates A⊗K as an ideal. The same happens with
D2 := A⊗ p11. A closer look to the proof of the stable isomorphism theorem of Brown
[12] shows that it gives an element a ∈ A ⊗ K, such that a∗a is a strictly positive
element of D1 and aa∗ is a strictly positive element of D2. The polar decomposition
a = v(a∗a)1/2 in the second conjugate of A⊗K induces a C0(X)-linear isomorphism λ
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from D1 onto D2 by λ : a 7→ vav∗, see Remark 3.4. The C0(X)-linear *-monomorphism
h0 := λ ◦ (γ ⊗ idK) from C0(X,O2 ⊗K) into A is non-degenerate by construction. �

Corollary 5.7. Suppose that A is a σ-unital C*-algebra with Hausdorff primitive ideal
space X and that A admits no non-zero semi-finite lower semi-continuous 2-quasi-trace.

Then there exists a non-degenerate C0(X)-linear monomorphism

h0 : C0(X)⊗O2 ⊗K →֒ A⊗K .

Proof. The assumptions imply that for every point x ∈ X, the primitive quotient Ax

must be simple and can not have a non-zero semi-finite lower semi-continuous quasi-
trace. Thus, there is no non-zero semi-finite lower semi-continuous dimension function
on Ax ⊗ K. Therefore Ax ⊗ K contains a properly infinite projection qx by [5]. Now
Proposition 5.6 applies. �

Theorem 5.8. Every purely infinite C*-algebra A with Hausdorff primitive ideal space
X is strongly purely infinite.

Proof. By the permanence properties of p.i. and s.p.i. shown in [44] and [45] we can
moreover assume that the p.i. C*-algebra A is stable and σ-unital (and hence that X
is σ-compact).

Then by [45, thm. 6.8], it is enough to prove that the C*-algebra A has the locally
central decomposition property, i.e., for every a ∈ A+ and ε > 0, there exist a1, . . . , an
in A+ such that

(i) each ai is in the center of aiAai (1 ≤ i ≤ n),

(ii) ai ∈ span(AaA) (1 ≤ i ≤ n),

(iii) (a− ε)+ belongs to A(
∑

i ai)A .

By Corollary 5.7 there is a non-degenerate monomorphism π : C0(X)⊗O2⊗K →֒ A .
Then for each positive element a ∈ A+, the operator a1 = π(N(a)⊗ 1O2

⊗ e1,1) has the
expected properties since N(a) = N(a1) . �

Remark 5.9. One can also directly prove that any locally purely infinite C*-algebra A
with Hausdorff primitive ideal space X has the locally central decomposition property
thanks to Proposition 5.1: more generally, the locally central decomposition property
holds for every C*-bundle A over a locally compact space X with fibers Ax, such
that every closed ideal J of Ax is generated by projections p ∈ J (as a closed ideal
of Ax). Because then the semi-projectivity of C, exploited in the same way as the
semi-projectivity of O2 in the proof of Proposition 5.6, gives that every ideal of A is
generated by elements b ∈ A+ of the form b = fq where q is a projection in A|F for
some compact subset F ⊂ X with open interior and f ∈ C0(X) has support in F .
Those elements b are trivially in the center of bAb ⊂ qA|F q.

Corollary 5.10. Suppose that A and B are exact, have Hausdorff primitive ideal spaces
of finite dimension, and that every simple quotient of A or of B is not isomorphic to
the compact operators.

Then A ⊗ B is s.p.i. if and only if A ⊗ B has no non-zero semi-finite lower semi-
continuous trace.
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Proof. We have seen the general implications s.p.i. ⇒ p.i. ⇒ traceless.

Since A and B are exact the primitive ideal space of A ⊗ B is natural isomorphic
to the Tychonoff product of its primitive ideal spaces by part (2) of Proposition 2.17.
Thus, Prim(A ⊗ B) is Hausdorff of finite dimension. The simple quotients are the
tensor products (A/I) ⊗ (B/J) of the simple quotients of A and B. As shown in the
proof of part (ii) of Corollary 3.11, (A/I)⊗(B/J) is purely infinite if it has no non-zero
semi-finite lower semi-continuous trace.

Thus, if A ⊗ B has no non-zero lower semi-continuous trace, then Proposition 5.1,
Corollary 5.3 and Theorem 5.8 apply all to A⊗ B. �

Let us finish with a local characterization of pure infiniteness for nuclear C*-algebras.

Corollary 5.11. Let A be a separable stable nuclear C*-algebra whose primitive ideal
space X is Hausdorff and of finite dimension.

Then A ∼= A⊗O∞ if and only if Ax
∼= Ax ⊗O∞ for every x ∈ X .

Proof. ⇐: The primitive quotients Ax of A are simple if Prim(A) is Hausdorff. Thus,
Ax

∼= Ax ⊗ O∞ is purely infinite by Corollary 3.11, because O∞ is purely infinite by
[17]. Since Prim(A) is a Hausdorff space of finite dimension and Ax is purely infinite,
we get from Corollary 5.3 that A is purely infinite, hence is strongly purely infinite by
Theorem 5.8.
If A is moreover stable and nuclear, then [45, thm. 8.6] gives that A tensorially

absorbs O∞ .

⇒: Conversely the isomorphism A ∼= A⊗O∞, the exactness and the simplicity of O∞

imply that every primitive quotient Ax of A must be isomorphic to Ay ⊗O∞ for some
y ∈ Prim(A).

SinceO∞
∼= O∞⊗O∞ by [38, cor. H] (or by [47], [42], [45], or by a simple modification

of [57]), this implies that Ax
∼= Ax ⊗O∞. �

Remark 5.12. We do not known whether any continuous C*-bundleA over the Hilbert
cube [0, 1]∞ with fibers isomorphic to O2 is necessarily purely infinite. (This question
is open even if we suppose in addition that A is pi(2).) A negative answer would imply
that l.p.i. algebras in general are not p.i. Then Question 4.6 also would have a negative
answer.
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