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EXACT C*-BUNDLES

ETIENNE BLANCHARD AND SIMON WASSERMANN

Abstract. Kirchberg and Wassermann showed that if A = {A,X, πx : A→
Ax} is a continuous C*-bundle on a locally compact Hausdorff space X with

exact bundle C*-algebra A, then for any other continuous C*-bundle B =

{B,X, πx : A→ Bx} on X the minimal C0(X)-amalgamated tensor product

bundle A⊗min
C0(X)

B is again continuous. In this paper it is shown conversely

that this property characterises the continuous C*-bundles which have exact

bundle C*-algebras when the base space X has no isolated points. For

such X a corresponding result for the maximal C0(X)-amalgamated tensor

product of C*-bundles on X is also shown to hold, namely that A⊗max
C0(X)

B
is continuous for all continuous C*-bundles B on X if and only if A has

nuclear bundle C*-algebra.

1. Introduction

Recall that a C*-bundle is a triple A = {A,X, πx : A → Ax} consisting of a
C*-algebra A (the bundle algebra), a locally compact Hausdorff space X, fibre
C*-algebras Ax together with ∗-epimorphisms πx : A → Ax for x ∈ X such that
the family {πx : x ∈ X} is faithful, and an action f × a → f.a on A of the
C∗-algebra C0(X) of continuous functions on X vanishing at infinity such that
πx(f.a) = f(x)πx(a) for f ∈ C0(X), a ∈ A, x ∈ X. If the functions x 7→ ‖πx(a)‖
are in C0(X) for all a ∈ A, the bundle A is said to be continuous. We shall
usually denote A simply by {A,X,Ax} when there is no risk of confusion. The
study of continuous C*-bundles in one form or another goes back several decades;
they were, for example, considered in [4] in the guise of continuous fields of C*-
algebras.

More recently the closely related idea of a C0(X)-algebra has been the focus of
much attention. If X is a locally compact Hausdorff space and A is a C*-algebra,
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2 BLANCHARD AND WASSERMANN

A is a C0(X)-algebra if there is a non-degenerate ∗-homomorphism ι of C0(X)
into the centre of the multiplier algebra M(A). It is clear that if {A,X,Ax} is
a C*-bundle, then A is a C0(X)-algebra. If conversely A is a C0(X)-algebra, let
Ax = A/C0,x(X)A and let πx : A → Ax be the quotient map for x ∈ X, where
C0,x(X) = {f ∈ C0(X) : f(x) = 0}. (Note that C0,x(X)A coincides with its
closed linear span by Cohen’s factorisation theorem.) Then { ¯C0(X)A,X,Ax} is
a C*-bundle and moreover the functions x 7→ ‖πx(a)‖ are upper semicontinuous
for a ∈ ¯C0(X)A.

There are various ways that continuous C*-bundles arise in practice, the sim-
plest examples being the trivial bundles, those C*-bundles which, for a given base
space X, have bundle algebra C0(X,A) for some fixed C*-algebra A, fibre A at
each point of X and the obvious C0(X)-algebra structure. Two related classes of
continuous C*-bundles are the locally trivial and subtrivial C*-bundles, the defi-
nitions of which we recall for later reference. A C*-bundle A = {A,X,Ax} is locally
trivial if, for each x ∈ X, there is a compact neighbourhood K of x such that the
restriction A|K = {A|K ,K,Ax} of A to K is trivial, where A|K is the image of A
under the ∗-homomorphism ⊕x∈Kπx. If A = {A,X,Ax} is a C*-bundle on X, a
C*-bundle B = {B,X,Bx} is a C*-subbundle of A if B is a C0(X)-subalgebra of
A, that is B is a C*-subalgebra of A with C0(X).B ⊆ B, Bx is a C*-subalgebra
of Ax for x ∈ X and each morphism B → Bx is the restriction to B of the corre-
sponding morphism A → Ax. It is immediate that C*-subbundles of continuous
C*-bundles are continuous. A C*-bundle is subtrivial if it is a C*-subbundle of a
trivial bundle. There is also a notion of local subtriviality. A C*-bundle A on X

is locally subtrivial if for x ∈ X there is a compact neighbourhood K of x such
that A|K is subtrivial. There exist continuous C*-bundles on any infinite com-
pact Hausdorff space which are not locally subtrivial [5]. However a C*-bundle
A = {A,X,Ax} on a compact metric space X with A separable such that all
the Ax are nuclear or such that A is exact is always subtrivial, and is in fact
C0(X)-isomorphic to a C*-subalgebra of the trivial C0(X)-algebra C0(X,O2) [2].

One way that discontinuous C*-bundles can arise and which is the main concern
of this paper is as tensor products. Given C*-bundles A = {A,X, πAx : A→ Ax}
and B = {B,X, πBx : B → Bx} on a locally compact Hausdorff space X, minimal
and maximal C0(X)-tensor product bundles A ⊗minC0(X) B and A ⊗maxC0(X) B can
be defined. The minimal amalgamated tensor product C*-algebra A⊗minC0(X) B is
(⊕x∈XπAx ⊗πBx )(A⊗minB) and A⊗minC0(X)B is the C*-bundle {A⊗minC0(X)B,X, π

A
x ⊗

πBx : A ⊗min B → Ax ⊗min Bx}. Even if A and B are continuous, A ⊗minC0(X) B
need not be (see [5]). If A ⊗minC0(X) B is not continuous, the C*-bundles A and B
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cannot both be trivial. If A is a C*-algebra and B = {B,X,Bx} is a continuous
C*-bundle on the locally compact Hausdorff space X, it was shown in [5] that the
minimal tensor product bundle A⊗B = {A⊗B,X,A⊗Bx} is continuous for all
continuous B if and only A is an exact C*-algebra. Moreover it was shown that
for a continuous C*-bundle A = {A,X,Ax} on X with A exact, A ⊗minC0(X) B is
continuous for all continuous B on X; and if all the Ax are exact and A⊗minC0(X) B
is continuous for all continuous B on X, then A is exact [5]. One of the main
result of this paper is the following strengthening of this last result in the case
when the base space has no isolated points. Combined with the earlier results
just cited, this yields a satisfying characterisation of the continuous C*-bundles
on such base spaces which have exact bundle C*-algebras and completes the circle
of ideas initiated in [5].

Theorem 1.1. Let X be a locally compact Hausdorff space with no isolated points
and let A = {A,X,Ax} be a continuous C*-bundle on X such that for any con-
tinuous C*-bundle B on X, the minimal C0(X)-tensor product A ⊗minC0(X) B is
continuous. Then A is exact.

We prove this in stages, considering successively the cases (i) X = N̂, the one-
point compactification of the natural numbers N with added limit point ∞ , (ii)
X a compact metric space and (iii) X a compact Hausdorff space. In the case
X = N̂ we show that if the hypotheses of the theorem hold, then A∞ is exact.

For C*-bundles A = {A,X, πAx : A → Ax} and B = {B,X, πBx : B → Bx} on
X, the maximal amalgamated tensor product C*-algebra A⊗maxC0(X) B is the C*-
algebra (⊕x∈XπAx ⊗maxπBx )(A⊗maxB) and the maximal tensor product C*-bundle
A⊗maxC0(X)B is defined to be {A⊗maxC0(X)B,X, π

A
x ⊗maxπBx : A⊗maxB → Ax⊗maxBx}

(see [1]). When A is the trivial bundle on X with fibre A, A⊗maxC0(X) B is denoted
by A⊗max B. It was shown in [5, section 3] that a C*-algebra A is nuclear if and
only its maximal tensor product A⊗max B is continuous for any continuous C*-
bundle B on [0, 1]. If A is a continuous C*-bundle on a locally compact Hausdorff
space X with nuclear bundle algebra A, then each of the fibre algebras Ax is
nuclear, and the maximal and minimal C0(X)-tensor products A ⊗maxC0(X) B and
A ⊗minC0(X) B are naturally C0(X)-isomorphic for any continuous C*-bundle B on
X. Since A is exact, [5, Theorem 4.6] implies that A⊗maxC0(X) B is continuous for
any continuous C*-bundle B. Our second main result is the following converse of
this in the case when the base space has no isolated points.

Theorem 1.2. Let X be a locally compact Hausdorff space with no isolated points
and let A be a continuous C*-bundle on X such that for any continuous C*-bundle
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B on X, the maximal C0(X)-tensor product A ⊗maxC0(X) B is continuous. Then A

is nuclear.

2. Preliminaries

To simplify the notation, the minimal C*-tensor product of C*-algebras A and
B will be denoted by A⊗B. If B = {B,X,Bx} is a C*-bundle on a locally compact
Hausdorff space X, then the minimal C*-tensor product of A and B, the C*-
bundle {A⊗B,X,A⊗Bx}, will be denoted by A⊗B, and if A = {A,X, πx : A→
Ax} is another continuous C*-bundle on X, the minimal amalgamated C*-tensor
product A⊗minC0(X) B will be written A⊗C0(X) B. For a ∈ A and x ∈ X we shall
denote πx(a) by ax. If Y is another locally compact Hausdorff space, let χy be
the evaluation map at y ∈ Y , and for a ∈ C0(Y,A) let a(y) = (χy ⊗ idA)(a) ∈ A.
By [5, Theorem 4.5] C0(Y ) ⊗ A is a continuous C*-bundle on X with bundle
algebra C0(Y )⊗A ∼= C0(Y,A) and fibre C0(Y )⊗Ax at x ∈ X. For a ∈ C0(Y,A),
ax ∈ C0(Y,Ax) and

ax(y) = χy(ax) = (χy ⊗ πx)(a) = πx(a(y)).

For each x ∈ X the function N(ax) : y 7→ ‖ax(y)‖ is in C0(Y ). Since C0(Y ) is
nuclear, the following result, which will be required in the proof of Proposition
3.2, is a simple consequence of [5, Theorem 4.6 (v)].

Lemma 2.1. With A and Y as above, if a ∈ C0(Y ) ⊗ A then the C0(Y )-valued
function x 7→ N(ax) on X is continuous.

3. Minimal C0(X)-tensor products

Proposition 3.1. Let A = {A, N̂, An} be a continuous C*-bundle on N̂ such that
for any unital separable continuous C*-bundle B on N̂, the minimal C(N̂)-tensor
product A⊗C(bN) B is continuous. Then A∞ is exact.

Proof. If n1 < n2 < . . . is a sequence in N, let A{ni} be the continuous C*-
bundle A|{n1,n2,...}∪{∞} on N̂, where {n1, n2, . . .} is identified with N via the
bijective correspondence i ↔ ni. Thus A{ni} = {A{ni}, N̂, Āi}, where Āi = Ani

and A{ni} is the bundle algebra of A{ni}. Let φ : N̂→ N̂ be given by

φ(i) = j (nj−1 < i ≤ nj); ϕ(∞) =∞,

where n0 is taken to be 0. If B = {B, N̂, Bi} is a separable continuous C*-bundle
on N̂, let φB be the pull-back of B along φ. Thus φB is the continuous C*-bundle
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{B̄, N̂, B̄i}, where

B̄i = Bj (nj−1 < i ≤ nj), B̄∞ = B∞

and B̄ is the C*-algebra generated by the canonical images of B and C(N̂) in
Πi∈bNB̄i. Since

φB|{n1,n2,...}∪{∞}
∼= B

via the correspondence i↔ ni,

(A⊗C(bN) φB)|{n1,n2,...}∪{∞}
∼= A{ni} ⊗C(bN) B.

Since A ⊗C(bN) φB is continuous by hypothesis, it follows that A{ni} ⊗C(bN) B is

continuous for any separable continuous C*-bundle B on N̂.

2. Let B be a unital separable continuous C*-bundle on N̂, let x =
∑n
k=1 ak ⊗ bk

be in the algebraic tensor product A∞ �B and let ε > 0. For each k there is an
āk ∈ A such that π∞(āk) = ak. Since A⊗Bl is continuous for l ∈ N,

lim
i→∞

‖(πi ⊗ πl)(
∑
k

āk ⊗ bk)‖ = ‖
∑
k

ak ⊗ πl(bk)‖.

It follows that we can find by induction a sequence n1 < n2 . . . in N such that for
each l and i ≥ nl,∣∣ ‖∑

k

ak ⊗ πl(bk)‖ − ‖(πi ⊗ πl)(
∑
k

āk ⊗ bk)‖
∣∣ < ε/2. (1)

Since by part 1 of the proof A{ni} ⊗C(bN) B is continuous,

lim
l→∞

‖(πnl
⊗ πl)(

∑
k

āk ⊗ bk)‖ = ‖
∑
k

ak ⊗ π∞(bk)‖,

which implies that there is an N ∈ N such that for l ≥ N ,∣∣ ‖(πnl
⊗ πl)(

∑
k

āk ⊗ bk)‖ − ‖
∑
k

ak ⊗ π∞(bk)‖
∣∣ < ε/2 (2)

Combining (1) and (2),∣∣ ‖∑
k

ak ⊗ πl(bk)‖ − ‖
∑
k

ak ⊗ π∞(bk)‖
∣∣ < ε.

for l ≥ N . Since ε is arbitrary, the function

l→ ‖
∑
k

ak ⊗ πl(bk)‖

is continuous on N̂. This implies that A∞⊗B is continuous, since A∞�B is dense
in A∞ ⊗B, which implies in turn that A∞ is exact, by [5, Theorem 4.5]. �
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In what follows CA will denote the cone A ⊗ C0((0, 1]) of the C*-algebra A.
If A is a continuous C*-bundle on a compact Hausdorff space X, the cone CA of
A is the C*-bundle A⊗ C0((0, 1]) on X. By [5, Theorem 4.5], CA is necessarily
continuous, since C0((0, 1]) is nuclear.

Proposition 3.2. Let X be a compact metric space, Y a nonempty compact
subset of X and A = {A, Y,Ay} a continuous C*-bundle on Y . There exists a
continuous C*-bundle Ā = {Ā,X, Āx} on X such that

Ā|Y ∼= CA.

If A is separable, Ā can be chosen separable.

Proof. 1. Construction. Let d(., .) be the metric on X and let φ be the real
function on (0,∞) given by

φ(t) =


1 (t ≤ 1)

2− t (1 < t ≤ 2)
0 (t > 2).

For x ∈ X \ Y let gx be the real function on Y given by gx(y) = d(x, y)/d(x, Y )
and let φx = φ ◦ gx. Let πy,t : CA→ CAy be the ∗-homomorphism given by

πy,t(f ⊗ a) = ft ⊗ πy(a) (f ∈ C0((0, 1]), a ∈ A),

where ft(s) = f(st) for f ∈ C0((0, 1]), s, t ∈ [0, 1], and C0((0, 1]) is identified with
the ideal {f ∈ C([0, 1]) : f(0) = 0} of C([0, 1]), so that f(0) is defined and equal
to 0. For x ∈ X \ Y let π̄x : CA→ ⊕y∈Y CAy be the ∗-homomorphism given by

π̄x(c) = ⊕y∈Y πy,φx(y)(c).

For y ∈ Y let π̄y : CA→ CAy be the ∗-homomorphism

idC((0,1]) ⊗ πy : f ⊗ a 7→ f ⊗ πy(a).

The fibre algebras Āx of the bundle Ā are given by

Āx =
{

CAx (x ∈ Y )
π̄x(CA) (x ∈ X \ Y ).

The bundle C*-algebra Ā is the C(X)-subalgebra of Πx∈XĀx generated by the
image of CA under the embedding a 7→ (π̄x(a))x∈X , where the action of C(X) is
given by

f.(π̄x(a))x∈X = (f(x)π̄x(a))x∈X .

Thus Ā is the closed linear span of C(X).CA (and actually coincides with the
set C(X).CA since 1 ∈ C(X)). The natural extension of π̄x to Ā will again be
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denoted by π̄x. It is immediate that π̄x : Ā→ Āx is surjective for x ∈ X, and that
Ā is a C(X)-algebra, so that {Ā,X, Āx} is a C*-bundle. Moreover the restriction
of Ā to Y is CA.

2. Continuity. 1. Let x ∈ X \ Y . If x′ ∈ X \ Y then

d(x, Y ) ≤ d(x, x′) + d(x′, Y ),

so that d(x′, Y ) > d(x, Y )/2 if d(x, x′) < d(x, Y )/2 and for y ∈ Y ,

gx′(y)− gx(y) =
d(x′, y)
d(x′, Y )

− d(x, y)
d(x, Y )

= d(x′, y)(d(x, Y )− d(x′, Y )) + d(x′, Y )(d(x′, y)− d(x, y))
d(x′, Y )d(x, Y )

≤ d(x′, x)(d(x′, y) +
d(x′, Y ))

d(x′, Y )d(x, Y )

≤ 3d(x′, x)d(X)/d(x, Y )2,

where d(X) = supx1,x2∈X d(x1, x2). Thus gx′ → gx uniformly on Y as x′ → x

and, since φ is uniformly continuous, φx′ → φx uniformly on Y as x′ → x. It
follows that for a ∈ Ā, ‖π̄x′(a)−π̄x(a)‖ → 0 as x′ → x, where π̄x′(a) and π̄x(a) are
both regarded as elements of ⊕y∈Y CAy. This shows that Ā is continuous at x.

2. Let y0 ∈ Y . If a ∈ CA and ε > 0, since CA is continuous on Y there is by
Lemma 2.1 a δ > 0 such that for y ∈ Y ,

d(y, y0) < δ ⇒ ‖N(ay)−N(ay0) ‖∞ < ε,

where ax = π̄x(a) for x ∈ X. Suppose that x ∈ X \ Y satisfies d(x, y0) < δ/4.
Then

gx(y) ≤ 2 ⇒ d(x, y) ≤ 2d(x, Y ) ≤ δ/2
⇒ d(y, y0) ≤ d(y, x) + d(x, y0) < δ (3)

⇒ ‖N(ay)−N(ay0) ‖∞ < ε

⇒
∣∣‖πy,φx(y)(a)‖ − ‖πy0,φx(y)(a)‖

∣∣ < ε.

Now

‖ax‖ = sup
d(y,y0)<δ

‖πy,φx(y)(a)‖ by (3)

and
‖ay0‖ = ‖πy0,1(a)‖ = sup

d(y,y0)<δ

‖πy0,φx(y)(a)‖,
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from which it follows that

| ‖ax‖ − ‖ay0‖ | < ε.

If y ∈ Y satisfies d(y, y0) < δ/4, then

‖N(ay)−N(ay0) ‖∞ < ε,

which implies that | ‖ay‖ − ‖ay0‖ | < ε. Thus for any x ∈ X satisfying d(x, y0) <
δ/4,

| ‖ax‖ − ‖ay0‖ | < ε,

which establishes the continuity of ‖ax‖ at y0. The continuity of Ā now follows
straightforwardly, since, by construction, for arbitrary a ∈ Ā, x0 ∈ X and ε > 0
there exist an open neighbourhood U of x and an a′ ∈ CA such that ‖ax−a′x‖ < ε

for x ∈ U . �

Proposition 3.3. Let X be a compact metric space. If A = {A,X,Ax} is a
continuous C*-bundle on X such that A⊗C(X)B is continuous for any continuous
C*-bundle B on X, then Ax is exact for any limit point x ∈ X.

Proof. If x0 ∈ X is a limit point, let {xi} be a sequence of distinct points
in X \ {x0} with limit x0 and let B = {B, N̂, Bn} be a separable continuous
C*-bundle on N̂. Identifying the topological spaces N̂ and {x1, x2, . . .} ∪ {x0}
in the obvious way, there is a separable continuous bundle B̄ on X such that
B̄|{x1,x2,...}∪{x0}

∼= CB by Proposition 3.2. Since

(A⊗C(X)B̄)|{x1,x2,...}∪{x0}
∼= A|{x1,x2,...}∪{x0}⊗C(N̂)CB ∼= C(A|{x1,x2,...}∪{x0}⊗C(N̂)B),

the continuity of A ⊗C(X) B̄ implies that of C(A|{x1,x2,...}∪{x0} ⊗C(bN) B). Let-
ting z ∈ C((0, 1]) be the function given by z(t) = t, the map a 7→ a ⊗ z from
A|{x1,x2,...}∪{x0}⊗C(N̂) B to C((A|{x1,x2,...}∪{x0}⊗C(N̂) B) is a completely positive

C(N̂)-isometry. This implies that A|{x1,x2,...}∪{x0} ⊗C(bN) B is continuous. Since
B is arbitrary, Ax0 is exact, by Proposition 3.1. �

Proof of Theorem 1.1. We first consider the case X compact. Let x0 ∈ X. If
Ax0 is finite dimensional, it is trivially exact. If on the other hand Ax0 is infinite
dimensional, let C be a separable infinite dimensional C*-subalgebra of Ax0 . We
show that C is exact.

For a ∈ A let N(a) denote the continuous real function x 7→ ‖πx(a)‖ on X.
Let D be a separable C*-subalgebra of A such that πx0(D) = C. Then the unital
abelian C*-algebra C∗(N(D), 1) is separable and its spectrum is compact and
second countable, hence metrizable, and a quotient of X. To make this explicit,
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let {f1, f2, . . .} be a dense sequence in C∗(N(D), 1) \ {0} and let an equivalence
relation ∼ on X be defined by x ∼ y ⇔ fn(x) = fn(y) for all n. Writing x̄ for
the equivalence class of x and X̄ for the set {x̄ : x ∈ X} of equivalence classes, a
metric on X̄ is defined by

d(x̄, ȳ) =
∞∑
n=1

2−n‖fn‖−1|fn(x)− fn(y)|.

It is routine to verify that with the obvious identifications, the spectrum of
C∗(N(D)) is X̄ with the topology coming from this metric. Moreover the map
φ : x 7→ x̄ from X to X̄ is continuous and surjective. There are two cases to
distinguish, according to whether x̄0 is an isolated point of X̄ or not.

(a) x̄0 isolated. In this case the subset X0 = φ−1(x̄0) of X is open, compact and
infinite, since x0 is not an isolated point of X. Let B be a continuous C*-bundle
on X0, let X2 be the compact set X \X0 and let B′ = B ⊕ C(X2), where C(X2)
is the trivial C*-bundle on X2 with fibre C. Then B′ is a continuous C*-bundle
on X and by hypothesis A ⊗C(X) B′ is continuous. Hence (A|X0) ⊗C(X0) B =
(A⊗C(X) B′)|X0 is continuous. This implies in particular that N(b) is continuous
on X0 for b ∈ D ⊗C(X) B

′. However for d ∈ D, ‖πx(d)‖ = ‖πx0(d)‖ for x ∈ X0,
which implies that πx(D) ∼= C for x ∈ X0 via the isomorphism πx(d) 7→ πx0(d),
so that the restrictions of the sections of D to X0 are identified with the constant
C-valued functions on X0. Thus the algebra of sections of (A|X0)⊗C(X0)B coming
from D⊗C0(X) B

′ is isomorphic to C ⊗B and is continuous. Since B is arbitrary
and X0 is infinite, X0 has a limit point and C is exact by [3, Corollary 4].

(b) x̄0 is a limit point. If x ∼ x′, so that x̄ = x̄′, then ‖πx(d)‖ = ‖πx′(d)‖ for
d ∈ D. Thus πx(D) ∼= πx′(D), and we can identify πx(D) and πx′(D), and also
πx and πx′ . With these identifications, for x̄ ∈ X̄ let D̄x̄ = πx(D), πx̄(d) = πx(d)
and D̄ = C∗(C(X̄)D), where the action of C(X̄) on D is given by

f.d = (f ◦ φ)d

for f ∈ C(X̄) and d ∈ D. The triple D̄ = {D̄, X̄, D̄x̄} is a continuous C*-bundle
on X̄. For n = 1, 2, . . . let f̄n be the function on X̄ given by f̄n(x̄) = fn(x). By
construction, f̄1, f̄2, . . . are continuous.

Let B = {B, X̄,Bx̄} be a continuous C*-bundle on X̄ and let φB be the pull-
back to X. By hypothesis A ⊗C(X) φB is continuous, which implies that if d ∈
D̄ ⊗C(X̄) B, and f is the non-negative real function on X̄ defined by

f(x̄) = ‖πx̄(d)‖



10 BLANCHARD AND WASSERMANN

for x ∈ X, then the function f ◦ φ : x 7→ f(x̄) is continuous. To see that f is
itself continuous, let x1, x2, . . . be a sequence in X such that x̄i → x̄0 in X̄ and
let {x̄i1 , x̄i2 , . . .}, where i1 < i2 < . . ., be a subsequence of {x̄1, x̄2, . . .} such that
f(x̄ij ) converges as j → ∞, with α = limj→∞ f(x̄ij ). By the compactness of X,
{xi1 , xi2 , . . .} has a limit point x′ in X. From the continuity of fn and f̄n,

fn(xi) = f̄n(x̄i)→ f̄n(x̄0) = fn(x0)

as i → ∞, which implies that fn(x′) = fn(x0) and x′ ∼ x0. Since the function
x 7→ f(x̄) is continuous, f(x̄′) = f(x̄0) is a limit point of {f(x̄i1), f(x̄i2), . . .},
which converges to α. Thus α = f(x̄0), and every convergent subsequence of
{f(x̄1), f(x̄2), . . .} converges to f(x̄0). This implies that limi→∞ f(x̄i) exists and
equals f(x̄0), that is, f is continuous at x̄0. Thus D̄ ⊗C(X̄) B is continuous at x̄0

for all continuous C*-bundles B on X̄. By Proposition 3.3, C ∼= Dx̄0 is exact.

Since a C*-algebra is the inductive limit of its net of separable C*-subalgebras
and an inductive limit of exact C*-algebras is itself exact, Ax is exact for all
x ∈ X. It now follows by [5, Theorem 4.6] that A is exact.

In the general case, ifX is not compact, let X̂ be the one-point compactification
of X, with added point ω, and let Â = {A, X̂,Ax} be the natural extension of A
to X̂, so that the fibre Aω at ω is {0} and πω = 0. Then Â is continuous. If B is
a continuous C*-bundle on X̂ and C0(X) is identified with the ideal of functions
in C(X̂) vanishing at ω, then B0 = {C0(X).B,X,Ax} is a continuous C*-bundle
on X. The amalgamated tensor product A⊗minC0(X)B0 is continuous by hypothesis

and its natural extension to X̂ coincides with Â ⊗min
C( bX)

B. Thus Â ⊗min
C( bX)

B is

continuous for any continuous C*-bundle B on X̂. By the proof given for the
compact case, A is exact. �

4. Maximal C0(X)-tensor products

To prove Theorem 1.2, we prove the following more general result.

Theorem 4.1. Let X be a locally compact Hausdorff space and let A be a con-
tinuous C*-bundle on X. Let x0 ∈ X be a limit point. Then A ⊗maxC0(X) B is
continuous at x0 for all continuous C*-bundles B on X if and only if Ax0 is nu-
clear. Moreover if Ax0 is nuclear, then A ⊗minC0(X) B is continuous at x0 for all
continuous C*-bundles B.
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Proof. Let x0 be a limit point of X and assume that Ax0 is nuclear. Let B =
{B,X,Bx} be another continuous C*-bundle on X and let a ∈ A⊗maxC0(X)B. Given
ε > 0, since the function x 7→ ‖ax‖max is upper semicontinuous [5, Lemma 2.3],
there is an open neighbourhood U of x such that

‖ax‖max ≤ ‖ax0‖max + ε

for x ∈ U . Let ã be the image of a in A ⊗minC0(X) B under the canonical C0(X)-
homomorphism from A ⊗maxC0(X) B to A ⊗minC0(X) B. Then ‖ãx0‖min = ‖ax0‖max
since Ax0 is nuclear. Since the function x 7→ ‖ãx‖min is lower semicontinuous [5,
Prop. 4.9], there is an open neighbourhood V of x0 such that

‖ãx‖min ≥ ‖ãx0‖min − ε

for x ∈ V . Thus if x ∈ U ∩ V ,

‖ax0‖ − ε ≤ ‖ãx‖min ≤ ‖ax‖max ≤ ‖ax0‖+ ε.

Since ε is arbitrary, this implies that the functions x 7→ ‖ax‖max and x 7→ ‖ãx‖min
are continuous at x0. Thus A⊗maxC0(X) B and A⊗minC0(X) B are continuous at x0.

For the converse, assume that Ay is not nuclear at a limit point y of X. Then
there exist a Hilbert space H, a C*-algebra C ⊂ B(H) and a finite sum t =

∑
rk⊗

sk ∈ Ay � C such that ‖t‖Ay⊗maxB(H) < ‖t‖Ay⊗maxC (see [5, section 3]). Using
functional calculus, we can assume that ‖t‖Ay⊗maxB(H) < 1 and ‖t‖Ay⊗maxC = 2.
Letting Bx = B(H) for x in X\{y}, By = C and B = {b ∈ C(X,B(H)) : by ∈ C},
B = {B,X,Bx} is a continuous C*-bundle on X. Let r̄k ∈ A and s̄k ∈ B be
liftings of rk and sk, respectively. Then t̄ =

∑
r̄k⊗ s̄k is in both D = A⊗maxC0(X)B

and A ⊗maxC0(X) C0(X,B(H)) = A ⊗max B(H). Regarding t̄ as a section of the
bundle A⊗max B(H) with projection t̄x at x, the function x 7→ ‖t̄x‖Ax⊗maxB(H)

is upper semi-continuous at y, so that for some neighbourhood U of y, x ∈ U ⇒
‖t̄x‖Ax⊗maxB(H) ≤ 3/2 since ‖t̄y‖Ay⊗maxB(H) < 1. Regarding t̄ as a section of the
bundle A ⊗maxC0(X) B, for x ∈ U \ {y}, ‖t̄x‖Ax⊗maxBx

= ‖t‖Ax⊗maxB(H) ≤ 3/2 but
‖t̄y‖Ay⊗maxBy

= ‖t‖Ay⊗maxC = 2, which shows that A⊗maxC0(X)B is not continuous
at y. �

5. Further results and questions

1. Corollary 4 of [3], which was used in the proof of Theorem 1.1, states that,
given an infinite compact Hausdorff space X, a C*-algebra A is exact if and only
if A⊗B is a continuous C*-bundle for any continuous C*-bundle B on X. If X is
metrizable, this is a special case of Proposition 3.3, and in fact the proof given in
[3] involves similar ideas to those used here. For general non-metrizable X, there
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seems to be no way to prove this result without using the method of [3], which
we recall briefly for completeness. Using Urysohn’s Lemma, there exists a subset
{x1, x2, . . .} of distinct points of X with a limit point x0 not in the set and a
continuous function f : X → [0, 1] such that f(x1) < f(x2) < . . . and f(x0) = 1.
Then f(X) is a compact subset of [0, 1] containing 1 as a limit point. If B is a
continuous C*-bundle on f(X), then the pull-back fB is a continuous C*-bundle
on X. If A⊗ fB is continuous on X, then A⊗ B is continuous on f(X). By the
result for the metrizable case, A is exact.

2. In Proposition 3.2 can the cone CA be replaced by A itself, that is, is every
continuous C*-bundle on a closed subset of a compact metric (or, more generally,
compact Hausdorff) space the restriction of a continuous bundle on the whole
space? We have been unable to settle this question in general, though the follow-
ing essentially straightforward special cases are worth noting.

Proposition 5.1. Let X be a compact Hausdorff space, let Y be a non-empty
closed subset of X and let A be a continuous C*-bundle on Y . Then there exists
a continuous C*-bundle Ā on X such that Ā|Y ∼= A if (i) Y is finite, or (ii) A is
separable and exact.

Proof. In either case A is a C*-subbundle of a trivial bundle on Y with fibre a
C*-algebra B. If Y is finite, then B can be taken to be the (finite) direct sum
of the fibres of A at the points of Y . If A is separable and exact, then C(Y )
is separable, which implies that Y is metrizable, and hence, by [2, Appendix],
that A is C(Y )-isomorphic to a C*-subbundle of the trivial bundle on Y with
fibre O2. Since the restriction map f → f |Y from C(X) to C(Y ) is surjective,
the corresponding restriction homomorphism φ : C(X,B)→ C(Y,B) is surjective
and a suitable C*-bundle Ā on X extending A is obtained by taking φ−1(A) as
the bundle algebra, where A is the bundle algebra of A. �
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