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Properly infinite C(X)-algebras and K 1 -injectivity

We investigate if a unital C(X)-algebra is properly infinite when all its fibres are properly infinite. We show that this question can be rephrased in several different ways, including the question of whether every unital properly infinite C * -algebra is K 1 -injective. We provide partial answers to these questions, and we show that the general question on proper infiniteness of C(X)-algebras can be reduced to establishing proper infiniteness of a specific C([0, 1])-algebra with properly infinite fibres.

Introduction

The problem that we mainly are concerned with in this paper is whether any unital C(X)algebra with properly infinite fibres is itself properly infinite (see Section 2 for a brief introduction to C(X)-algebras). An analogous study was carried out in the recent paper [START_REF] Hirshberg | C 0 (X)-algebras, stability and strongly selfabsorbing C*-algebras[END_REF] where it was decided when C(X)-algebras, whose fibres are either stable or absorb tensorially a given strongly self-absorbing C * -algebra, themselves have the same property. This was answered in the affirmative in [START_REF] Hirshberg | C 0 (X)-algebras, stability and strongly selfabsorbing C*-algebras[END_REF] under the crucial assumption that the dimension of the space X is finite, and counterexamples were given in the infinite dimensional case.

Along similar lines, Dadarlat, [START_REF] Dadarlat | Continuous fields of C * -algebras over finite dimensional spaces[END_REF], recently proved that C(X)-algebras, whose fibres are Cuntz algebras, are trivial under some K-theoretical conditions provided that the space X is finite dimensional.

The property of being properly infinite turns out to behave very differently than the property of being stable or of absorbing a strongly self-absorbing C * -algebra. It is relatively easy to see (Lemma 2.10) that if a fibre A x of a C(X)-algebra A is properly infinite, then A F is properly infinite for some closed neighborhood F of x. The (possible) obstruction to proper infiniteness of the C(X)-algebra is hence not local. Such an obstruction is also not related to the possible complicated structure of the space X, as we can show that a counterexample, if it exists, can be taken to be a (specific) C([0, 1])-algebra (Example 4.1 and Theorem 5.5). The problem appears to be related with some rather subtle internal structure properties of properly infinite C * -algebras.

Cuntz studied purely infinite-and in the process also properly infinite-C * -algebras, [START_REF] Cuntz | K-theory for certain C * -algebras[END_REF], where he among many other things (he was primarily interested in calculating the 1 K-theory of his algebras O n ) showed that any unital properly infinite C * -algebra A is K 1surjective, i.e., the mapping U (A) → K 1 (A) is onto; and that any purely infinite simple C * -algebra A is K 1 -injective, i.e., the mapping U (A)/U 0 (A) → K 1 (A) is injective (and hence an isomorphism). He did not address the question of whether any properly infinite C * -algebra is K 1 -injective. That question has not been raised formally to our knowledgewe do so here-but it does appear implicitly, eg. in [START_REF] Rørdam | Classification of inductive limits of Cuntz algebras[END_REF] and in [START_REF] Toms | Strongly self-absorbing C * -algebras[END_REF], where K 1 -injectivity of properly infinite C * -algebras has to be assumed.

Proper infiniteness of C * -algebras has relevance for existence (or rather non-existence) of traces and quasitraces. Indeed, a unital C * -algebra admits a 2-quasitrace if and only if no matrix algebra over the C * -algebra is properly infinite, and a unital exact C * -algebra admits a tracial state again if and only if no matrix algebra over the C * -algebra is properly infinite.

In this paper we show that every properly infinite C * -algebra is K 1 -injective if and only if every C(X)-algebra with properly infinite fibres itself is properly infinite. We also show that a matrix algebra over any such C(X)-algebra is properly infinite. Examples of unital C * -algebras A, where M n (A) is properly infinite for some natural number n ≥ 2 but where M n-1 (A) is not properly infinite, are known, see [START_REF] Rørdam | On sums of finite projections[END_REF] and [START_REF] Rørdam | A simple C * -algebra with a finite and an infinite projection[END_REF], but still quite exotic.

We relate the question of whether a given properly infinite C * -algebra is K 1 -injective to questions regarding homotopy of projections (Proposition 5.1). In particular we show that our main questions are equivalent to the following question: is any non-trivial projection in the first copy of O ∞ in the full unital universal free product O ∞ * C O ∞ homotopic to any (non-trivial) projection in the second copy of O ∞ ? The specific C([0, 1])-algebra, mentioned above, is perhaps not surprisingly a sub-algebra of

C([0, 1], O ∞ * C O ∞ ).
Using ideas implicit in Rieffel's paper, [START_REF] Rieffel | The homotopy groups of the unitary groups of non-commutative tori[END_REF], we construct in Section 4 a C(T)-algebra B for each C * -algebra A and for each unitary u ∈ A for which diag(u, 1) is homotopic to 1 M 2 (A) ; and B is non-trivial if u is not homotopic to 1 A . In this way we relate our question about proper infiniteness of C(X)-algebras to a question about K 1 -injectivity.

The last mentioned author thanks Bruce Blackadar for many inspiring conversations on topics related to this paper.

C(X)-algebras with properly infinite fibres

A powerful tool in the classification of C * -algebras is the study of their projections. A projection in a C * -algebra is said to be infinite if it is equivalent to a proper subprojection of itself, and it is said to be properly infinite if it is equivalent to two mutually orthogonal subprojections of itself.

A projection which is not infinite is said to be finite. A unital C * -algebra is said to be finite, infinite, or properly infinite if its unit is finite, infinite, or properly infinite, respectively. If A is a C * -algebra for which M n (A) is finite for all positive integers n, then A is stably finite.

In this section we will study stability properties of proper infiniteness under (uppersemi-)continuous deformations using the Cuntz-Toeplitz algebra which is defined as follows.

For all integers n ≥ 2 the Cuntz-Toeplitz algebra T n is the universal C * -algebra generated by n isometries s 1 , . . . , s n satisfying the relation

s 1 s * 1 + . . . + s n s * n ≤ 1.
Remark 2.1 A unital C * -algebra A is properly infinite if and only if T n embeds unitally into A for some n ≥ 2, in which case T n embeds unitally into A for all n ≥ 2.

In order to study deformations of such algebras, let us recall a few notions from the theory of C(X)-algebras.

Let X be a compact Hausdorff space and C(X) be the C * -algebra of continuous functions on X with values in the complex field C. Definition 2.2 A C(X)-algebra is a C * -algebra A endowed with a unital * -homomorphism from C(X) to the center of the multiplier C * -algebra M(A) of A.

If A is as above and Y ⊆ X is a closed subset, then we put I Y = C 0 (X \ Y )A, which is a closed two-sided ideal in A. We set A Y = A/I Y and denote the quotient map by π Y .

For an element a ∈ A we put a Y = π Y (a), and if Y consists of a single point x, we will write A x , I x , π x and a x in the place of A {x} , I {x} , π {x} and a {x} , respectively. We say that A x is the fibre of A at x.

The function

x → a x = inf{ [1 -f + f (x)]a : f ∈ C(X)}
is upper semi-continuous for all a ∈ A (as one can see using the right-hand side identity above). A C(X)-algebra A is said to be continuous (or to be a continuous C * -bundle over X) if the function x → a x is actually continuous for all elements a in A.

For any unital C * -algebra A we let U (A) denote the group of unitary elements in A, U 0 (A) denotes its connected component containing the unit of A, and U n (A) and U 0 n (A) are equal to U (M n (A)) and U 0 (M n (A)), respectively.

An element in a C * -algebra A is said to be full if it is not contained in any proper closed two-sided ideal in A.

It is well-known (see for example [13, Exercise 4.9]) that if p is a properly infinite, full projection in a C * -algebra A, then e p, i.e., e is equivalent to a subprojection of p, for every projection e ∈ A.

We state below more formally three more or less well-known results that will be used frequently throughout this paper, the first of which is due to Cuntz, [START_REF] Cuntz | K-theory for certain C * -algebras[END_REF].

Proposition 2.3 (Cuntz)

Let A be a C * -algebra which contains at least one properly infinite, full projection.

(i) Let p and q be properly infinite, full projections in A.

Then [p] = [q] in K 0 (A) if and only if p ∼ q.
(ii) For each element g ∈ K 0 (A) there is a properly infinite, full projection

p ∈ A such that g = [p].
The second statement is a variation of the Whitehead lemma.

Lemma 2.4 Let A be a unital C * -algebra.

(i) Let v be a partial isometry in A such that 1 -vv * and 1 -v * v are properly infinite and full projections. Then there is a unitary element u in A such that [u] = 0 in K 1 (A) and v = uv * v, i.e., u extends v.

(ii) Let u be a unitary element A such that [u] = 0 in K 1 (A). Suppose there exists a projection p ∈ A such that up -pu < 1 and p and 1 -p are properly infinite and full. Then u belongs to U 0 (A).

Proof:

(i). It follows from Proposition 2.3 (i) that 1 -v * v ∼ 1 -vv * , so there is a partial isometry w such that 1 -v * v = w * w and 1 -vv * = ww * . Now, z = v + w is a unitary element in A with zv * v = v. The projection 1 -v * v is properly infinite and full, so 1 1 -v * v, which implies that there is an isometry s in A with ss * ≤ 1 -v * v. As -[z] = [z * ] = [sz * s * + (1 -ss * )] in K 1 (A) (see eg. [13, Exercise 8.9 (i)]), we see that u = z(sz * s * + (1 -ss * )) is as desired. (ii). Put x = pup + (1 -p)u(1 -p) and note that u -x < 1. It follows that x is invertible in A and that u ∼ h x in GL(A). Let x = v|x| be the polar decomposition of x, where |x| = (x * x) 1/2 and v = x|x| -1 is unitary. Then u ∼ h v in U (A) (see eg. [13, Proposition 2.1.8]
), and pv = vp. We proceed to show that v belongs to U 0 (A) (which will entail that u belongs to U 0 (A)).

Write v = v 1 v 2 , where

v 1 = pvp + (1 -p), v 2 = p + (1 -p)v(1 -p).
As 1 -p p we can find a symmetry t in A such that t(1 -p)t ≤ p. As t belongs to U 0 (A) (being a symmetry), we conclude that v 2 ∼ h tv 2 t, and one checks that tv 2 t is of the form w + (1 -p) for some unitary w in pAp. It follows that v is homotopic to a unitary of the form v 0 + (1 -p), where v 0 is a unitary in pAp. We can now apply eg. [START_REF] Rørdam | An Introduction to K-theory for C * -algebras[END_REF]Exercise 8.11] to conclude that v ∼ h 1 in U (A).

We remind the reader that if p, q are projections in a unital C * -algebra A, then p and q are homotopic, in symbols p ∼ h q, (meaning that they can be connected by a continuous path of projections in A) if and only if q = upu * for some u ∈ U 0 (A), eg. cf. [13, Proposition 2.2.6].

Proposition 2.5 Let A be a unital C * -algebra. Let p and q be two properly infinite, full projections in A such that p ∼ q. Suppose that there exists a properly infinite, full projection r ∈ A such that p ⊥ r and q ⊥ r. Then p ∼ h q.

Proof: Take a partial isometry v 0 ∈ A such that v * 0 v 0 = p and v 0 v * 0 = q. Take a subprojection r 0 of r such that r 0 and r -r 0 both are properly infinite and full. Put v = v 0 + r 0 .

Then vpv * = q and vr 0 = r 0 = r 0 v. Note that 1 -v * v and 1 -vv * are properly infinite and full (because they dominate the properly infinite, full projection r -r 0 ). Use Lemma 2.4 (i) to extend v to a unitary u ∈ A with [u] = 0 in K 1 (A). Now, upu * = q and ur 0 = vr 0 = r 0 = r 0 v = r 0 u. Hence u ∈ U 0 (A) by Lemma 2.4 (ii), and so p ∼ h q as desired.

Definition 2.6 A unital C * -algebra A is said to be K 1 -injective if the natural mapping U (A)/U 0 (A) → K 1 (A) is injective. In other words, if A is K 1 -injective, and if u is a unitary element in A, then u ∼ h 1 in U (A) if (and only if) [u] = 0 in K 1 (A).
One could argue that K 1 -injectivity should entail that the natural mappings U n (A)/U 0 n (A) → K 1 (A) be injective for every natural number n. However there seems to be an agreement for defining K 1 -injectivity as above. As we shall see later, in Proposition 5.2, if A is properly infinite, then the two definitions agree.

Proposition 2.7 Let A be a unital C * -algebra that is the pull-back of two unital, properly infinite C * -algebras A 1 and A 2 along the * -epimorphisms π 1 :

A 1 → B and π 2 : A 2 → B: A ϕ 1 ~ϕ2 A 1 π 1 A 2 π 2 B Then M 2 (A) is properly infinite. Moreover, if B is K 1 -injective, then A itself is properly infinite.
Proof: Take unital embeddings σ i : T 3 → A i for i = 1, 2, where T 3 is the Cuntz-Toeplitz algebra (defined earlier), and put

v = 2 j=1 (π 1 • σ 1 )(t j )(π 2 • σ 2 )(t * j ),
where t 1 , t 2 , t 3 are the canonical generators of T 3 . Note that v is a partial isometry with

(π 1 • σ 1 )(t j ) = v(π 2 • σ 2 )(t j ) for j = 1, 2. As (π 1 • σ 1 )(t 3 t * 3 ) ≤ 1 -vv * and (π 2 • σ 2 )(t 3 t * 3 ) ≤ 1-v * v, Lemma 2.4 (i) yields a unitary u ∈ B with [u] = 0 in K 1 (B) and with (π 1 •σ 1 )(t j ) = u(π 2 • σ 2 )(t j ) for j = 1, 2.
If B is K 1 -injective, then u belongs to U 0 (B), whence u lifts to a unitary v ∈ A 2 . Define σ 2 : T 2 → A 2 by σ 2 (t j ) = vσ 2 (t j ) for j = 1, 2 (observing that t 1 , t 2 generate T 2 ). Then π 1 • σ 1 = π 2 • σ 2 , which by the universal property of the pull-back implies that σ 1 and σ 2 lift to a (necessarily unital) embedding σ : T 2 → A, thus forcing A to be properly infinite.

In the general case (where B is not necessarily K 1 -injective) u may not lift to a unitary element in A 2 , but diag(u, u) does lift to a unitary element v in M 2 (A 2 ) by Lemma 2.4 (ii) (applied with p = diag(1, 0)). Define unital embeddings σ i :

T 2 → M 2 (A i ), i = 1, 2, by σ 1 (t j ) = σ 1 (t j ) 0 0 σ 1 (t j ) , σ 2 (t j ) = v σ 2 (t j ) 0 0 σ 2 (t j ) , for j = 1, 2. As (π 1 ⊗ id M 2 ) • σ 1 = (π 2 ⊗ id M 2 )
• σ 2 , the unital embeddings σ 1 and σ 2 lift to a (necessarily unital) embedding of T 2 into M 2 (A), thus completing the proof.

Question 2.8 Is the pull-back of any two properly infinite unital C * -algebras again properly infinite?

As mentioned in the introduction, one cannot in general conclude that A is properly infinite if one knows that M n (A) is properly infinite for some n ≥ 2. One obvious way of obtaining an answer to Question 2.8, in the light of the last statement in Proposition 2.7, is to answer the question below in the affirmative: Question 2.9 Is every properly infinite unital C * -algebra K 1 -injective?

We shall see later, in Section 5, that the two questions above in fact are equivalent.

The lemma below, which shall be used several times in this paper, shows that one can lift proper infiniteness from a fibre of a C(X)-algebra to a whole neighborhood of that fibre.

Lemma 2.10 Let X be a compact Hausdorff space, let A be a unital C(X)-algebra, let x ∈ X, and suppose that the fibre A x is properly infinite. Then A F is properly infinite for some closed neighborhood F of x.

Proof: Let {F λ } λ∈Λ be a decreasing net of closed neighborhoods of x ∈ X, fulfilling that λ∈Λ F λ = {x}, and set

I λ = C 0 (X \F λ )A. Then {I λ } λ∈Λ is an increasing net of ideals in A, A F λ = A/I λ , I := λ∈Λ I λ = C 0 (X \{x}), and A x = A/I.
By the assumption that A x is properly infinite there is a unital * -homomorphism ψ : T 2 → A x , and since T 2 is semi-projective there is a λ 0 ∈ Λ and a unital * -homomorphism ϕ : T 2 → A F λ 0 making the diagram

A F λ 0 π x T 2 ϕ = = ψ / / A x commutative.
We can thus take F to be F λ 0 .

Theorem 2.11 Let A be a unital C(X)-algebra where X is a compact Hausdorff space. If all fibres A x , x ∈ X, are properly infinite, then some matrix algebra over A is properly infinite.

Proof: By Lemma 2.10, X can be covered by finitely many closed sets F 1 , F 2 , . . . , F n such that A F j is properly infinite for each j. Put G j = F 1 ∪ F 2 ∪ . . . ∪ F j . For each j = 1, 2, . . . , n -1 we have a pull-back diagram

A G j+1 y y & & A G j % % A F j+1 x x A G j ∩F j+1
We know that M 2 j-1 (A G j ) is properly infinite when j = 1. Proposition 2.7 (applied to the diagram above tensored with

M 2 j-1 (C)) tells us that M 2 j (A G j+1 ) is properly infinite if M 2 j-1 (A G j ) is properly infinite. Hence M 2 n-1 (A) is properly infinite. Remark 2.
12 Uffe Haagerup has suggested another way to prove Theorem 2.11: If no matrix-algebra over A is properly infinite, then there exists a bounded non-zero lower semi-continuous 2-quasi-trace on A, see [START_REF] Handelman | Homomorphism of C * -algebras to finite AW * algebras[END_REF] and [1, page 327], and hence also an extremal 2-quasi-trace. Now, if A is also a C(X)-algebra for some compact Hausdorff space X, this implies that there is a bounded non-zero lower semi-continuous 2-quasitrace on A x for (at least) one point x ∈ X (see eg. [START_REF] Hirshberg | C 0 (X)-algebras, stability and strongly selfabsorbing C*-algebras[END_REF]Proposition 3.7]). But then the fibre A x cannot be properly infinite.

Question 2.13 Is any unital C(X)-algebra A properly infinite if all its fibres A x , x ∈ X, are properly infinite?

We shall show in Section 5 that the question above is equivalent to Question 2.8 which again is equivalent to Question 2.9.

Lower semi-continuous fields of properly infinite C *algebras

Let us briefly discuss whether the results from Section 2 can be extended to lower semicontinuous C * -bundles (A, {σ x }) over a compact Hausdorff space X. Recall that any such separable lower semi-continuous C * -bundle admits a faithful C(X)-linear representation on a Hilbert C(X)-module E such that, for all x ∈ X, the fibre σ x (A) is isomorphic to the induced image of A in L(E x ), [START_REF] Blanchard | A few remarks on C(X)-algebras[END_REF]. Thus, the problem boils down to the following: Given a separable Hilbert C(X)-module E with infinite dimensional fibres E x , such that the unit p of the C * -algebra L C(X) (E) of bounded adjointable C(X)-linear operators acting on E has a properly infinite image in L(E x ) for all x ∈ X. Is the projection p itself properly infinite in L C(X) (E)? Dixmier and Douady proved that this is always the case if the space X has finite topological dimension, [START_REF] Dixmier | Champs continus d'espaces hilbertiens et de C * -algèbres[END_REF]. But it does not hold anymore in the infinite dimensional case, see [6, §16, Corollaire 1] and [START_REF] Rørdam | A simple C * -algebra with a finite and an infinite projection[END_REF], even if X is contractible, [START_REF] Blanchard | Global Glimm halving for C * -bundles[END_REF]Corollary 3.7].

Two examples

We describe here two examples of continuous fields; the first is over the interval and the second (which really is a class of examples) is over the circle.

Example 4.1 Let (O ∞ * C O ∞ , (ι 1 , ι 2
)) be the universal unital free product of two copies of O ∞ , and let A be the unital sub-C * -algebra of

C([0, 1], O ∞ * C O ∞ ) given by A = {f ∈ C([0, 1], O ∞ * C O ∞ ) : f (0) ∈ ι 1 (O ∞ ), f (1) ∈ ι 2 (O ∞ )}.
Observe that A (in a canonical way) is a C([0, 1])-algebra with fibres

A t =      ι 1 (O ∞ ), t = 0, O ∞ * C O ∞ , 0 < t < 1, ι 2 (O ∞ ), t = 1 ∼ =      O ∞ , t = 0, O ∞ * C O ∞ , 0 < t < 1, O ∞ , t = 1.
In particular, all fibres of A are properly infinite.

One claim to fame of the example above is that the question below is equivalent to Question 2.13 above. Hence, to answer Question 2.13 in the affirmative (or in the negative) we need only consider the case where X = [0, 1], and we need only worry about this one particular C([0, 1])-algebra (which of course is bad enough!). The three equivalent statements in the proposition below will in Section 5 be shown to be equivalent to Question 4.2. (i) A contains a non-trivial projection (i.e., a projection other than 0 and 1).

(ii) There are non-zero projections p, q ∈ O ∞ such that p = 1, q = 1, and ι 1 (p) ∼ h ι 2 (q).

(iii) Let s be any isometry in

O ∞ . Then ι 1 (ss * ) ∼ h ι 2 (ss * ) in O ∞ * C O ∞ .
We warn the reader that all three statements above could be false.

Proof: (i) ⇒ (ii). Let e be a non-trivial projection in A. Let π t :

A → A t , t ∈ [0, 1], denote the fibre map. As A ⊆ C([0, 1], O ∞ * C O ∞ ), the mapping t → π t (e) ∈ O ∞ * C O ∞ is continuous, so in particular, π 0 (e) ∼ h π 1 (e) in O ∞ * C O ∞ .
The mappings ι 1 and ι 2 are injective, so there are projections p, q ∈ O ∞ such that π 0 (e) = ι 1 (p) and π 1 (e) = ι 2 (q). The projections p and q are non-zero because the mapping t → π t (e) is continuous and not constant equal to 0. Similarly, and 1 -p and 1 -q are non-zero because 1 -e is non-zero.

(ii) ⇒ (iii). Take non-trivial projections p, q ∈ O ∞ such that ι 1 (p) ∼ h ι 2 (q). Take a unitary v in U 0 (O ∞ * C O ∞ ) with ι 2 (q) = vι 1 (p)v * . Let s ∈ O ∞ be an isometry. If s is unitary, then ι 1 (ss * ) = 1 = ι 2 (ss * ) and there is nothing to prove. Suppose that s is non-unitary. Then ss * is homotopic to a subprojection p 0 of p and to a subprojection q 0 of q (use that p and q are properly infinite and full, then Lemma 2.4 (i), and last the fact that the unitary group of O ∞ is connected). Hence ι 1 (ss * ) ∼ h ι 1 (p 0 ) ∼ h vι 1 (p 0 )v * and ι 2 (ss * ) ∼ h ι 2 (q 0 ), so we need only show that vι 1 (p 0 )v * ∼ h ι 2 (q 0 ). But this follows from Proposition 2.5 with r = 1 -ι 2 (q) = ι 2 (1 -q), as we note that p 0 ∼ 1 ∼ q 0 in O ∞ , whence

ι 2 (q 0 ) ∼ ι 2 (1) = 1 = ι 1 (1) ∼ ι 1 (p 0 ) ∼ vι 1 (p 0 )v * .
(iii) ⇒ (i). Take a non-unitary isometry s ∈ O ∞ . Then ι 1 (ss * ) ∼ h ι 2 (ss * ), and so there is a continuous function e : [0, 1] → O ∞ * C O ∞ such that e(t) is a projection for all t ∈ [0, 1], e(0) = ι 1 (ss * ) and e(1) = ι 2 (ss * ). But then e is a non-trivial projection in A.

It follows from Theorem 2.11 that some matrix algebra over A (from Example 4.1) is properly infinite. We can sharpen that statement as follows: 1 2 ] is properly infinite, and a similar argument shows that A [ 1 2 ,1] is properly infinite. The two statements now follow from Proposition 2.7.

Proposition 4.4 M 2 (A) is properly infinite; and if O ∞ * C O ∞ is K 1 -injective, then A itself is properly infinite. It follows from Theorem 5.5 below that A is properly infinite if and only if O ∞ * C O ∞ is K 1 -injective. Proof: We have a pull-back diagram A x x & & A [0, 1 2 ] π 1/2 & & A [ 1 2 ,1] π 1/2 x x O ∞ * C O ∞ One can unitally embed O ∞ into A [0, 1 2 ] via ι 1 , so A [0,
The example below, which will be the focus of the rest of this section, and in parts also of Section 5, is inspired by arguments from Rieffel's paper [START_REF] Rieffel | The homotopy groups of the unitary groups of non-commutative tori[END_REF]. Corollary 4.8 Let A be a unital C * -algebra such that C(T, A) has the cancellation property. Then A is K 1 -injective.

Proof: It suffices to show that the natural maps U n-1 (A)/U 0 n-1 (A) → U n (A)/U 0 n (A) are injective for all n ≥ 2. Let v ∈ U n-1 (A) be such that diag(v, 1 A ) ∈ U 0 n (A) and find a continuous path of unitaries t → u t in U n (A) such that

u 0 = 1 Mn(A) = 1 M n-1 (A) 0 0 1 A and u 1 = v 0 0 1 A . Put p t = u t 1 M n-1 (A) 0 0 0 u * t , t ∈ [0, 1],
and note that p 0 = p 1 so that p defines a projection in C(T, M n (A)). Repeating the proof of Lemma 4.6 we find that 1 

Mn(A) -p ∼ diag(0, 1 A ) in C(T, M n (A)), whence p ∼ diag(1 M n-1 (A) , 0 
v ∼ h 1 M n-1 (A) in U n-1 (A) if (and only if) p ∼ diag(1 M n-1 (A) , 0).
Hence v belongs to U 0 n-1 (A) as desired.

5 K 1 -injectivity of properly infinite C * -algebras

In this section we prove our main result that relates K 1 -injectivity of arbitrary unital properly infinite C * -algebras to proper infiniteness of C(X)-algebras and pull-back C * -algebras. More specifically we shall show that Question 2.9, Question 2.13, Question 2.8, and Question 4.2 are equivalent. First we reformulate in two different ways the question if a given properly infinite unital C * -algebra is K 1 -injective.

Proposition 5.1 The following conditions are equivalent for any unital properly infinite C * -algebra A:

(i) A is K 1 -injective.
(ii) Let p, q be projections in A such that p ∼ q and p, q, 1 -p, 1 -q are properly infinite and full. Then p ∼ h q.

(iii) Let p and q be properly infinite, full projections in A. There exist properly infinite, full projections p 0 , q 0 ∈ A such that p 0 ≤ p, q 0 ≤ q, and p 0 ∼ h q 0 .

Proof: (i) ⇒ (ii). Let p, q be properly infinite, full projections in A with p ∼ q such that 1 -p, 1 -q are properly infinite and full. Then by Lemma 2.4 (i) there is a unitary v ∈ A such that vpv * = q and [v] = 0 in K 1 (A). By the assumption in (i), v ∈ U 0 (A), whence p ∼ h q.

Our main theorem below, which in particular implies that Question 2.9, Question 2. (i) Every unital, properly infinite C * -algebra is K 1 -injective.

(ii) For every compact Hausdorff space X, every unital C(X)-algebra A, for which A x is properly infinite for all x ∈ X, is properly infinite.

(iii) Every unital C * -algebra A, that is the pull-back of two unital, properly infinite C *algebras A 1 and A 2 along * -epimorphisms π 1 :

A 1 → B, π 2 : A 2 → B: A ϕ 1 ~ϕ2 A 1 π 1 A 2 π 2 B

is properly infinite.

(iv) There exist non-zero projections p, q ∈ O ∞ such that p = 1, q = 1, and ι 1 (p) ∼ h ι 2 (q)

in O ∞ * C O ∞ .

(v) The specific C([0, 1])-algebra A considered in Example 4.1 (and whose fibres are properly infinite) is properly infinite.

(vi) O ∞ * C O ∞ is K 1 -injective.
Note that statement (i) is reformulated in Propositions 5.1, 5.2, and 5.4; and that statement (iv) is reformulated in Proposition 4.3. We warn the reader that all these statements may turn out to be false (in which case, of course, there will be counterexamples to all of them).

Proof: (i) ⇒ (iii) follows from Proposition 2.7.

(iii) ⇒ (ii). This follows from Lemma 2.10 as in the proof of Theorem 2.11, except that one does not need to pass to matrix algebras.

(ii) ⇒ (i). Suppose that A is unital and properly infinite. Take a unitary v ∈ U(A) such that diag(v, 1) ∈ U 0 2 (A). Let B be the C(T)-algebra constructed in Example 4.5 from A, v, and a path of unitaries t → u t connecting 1 M 2 (A) to diag(v, 1). Then B t ∼ = A for all

Question 4 . 2

 42 Is the C([0, 1])-algebra A from Example 4.1 above properly infinite?

Proposition 4 . 3

 43 The following three statements concerning the C([0, 1])-algebra A and the C * -algebra (O ∞ * C O ∞ , (ι 1 , ι 2 )) defined above are equivalent:

  ) by the cancellation property of C(T, A), where we identify projections in M n (A) with constant projections in C(T, M n (A)). The arguments going into the proof of Proposition 4.7 show that

  [START_REF] Rørdam | An Introduction to K-theory for C * -algebras[END_REF], Question 2.8 and Question 4.2 all are equivalent, also give a special converse to Proposition 5.4: Indeed, withι 1 , ι 2 : O ∞ → O ∞ * C O ∞ the two canonical inclusions, if ι 1 ∼ h ι 2 , then condition (iv) below holds, whence O ∞ * C O ∞ is K 1 -injective,which again implies that all unital properly infinite C * -algebras are K 1 -injective. Below we retain the convention that O ∞ * C O ∞ is the universal unital free product of two copies of O ∞ and that ι 1 and ι 2 are the two natural inclusions of O ∞ into O ∞ * C O ∞ . Theorem 5.5 The following statements are equivalent:

Example 4.5 Let A be a unital C * -algebra, and let v be a unitary element in A such that

Let t → u t be a continuous path of unitaries in U 2 (A) such that u 0 = 1 and u 1 = diag(v, 1). Put

and note that p(0) = p(1). Identifying, for each C * -algebra D, C(T, D) with the algebra of all continuous functions f : [0, 1] → D such that f (1) = f (0), we see that p belongs to C(T, M 2 (A)). Put B = pC(T, M 2 (A))p, and note that B is a unital (sub-trivial) C(T)-algebra, being a corner of the trivial C(T)algebra C(T, M 2 (A)). The fibres of B are

for all t ∈ T. Summing up, for each unital C * -algebra A, for each unitary v in A for which diag(v, 1) ∼ h 1 in U 2 (A), and for each path t → u t ∈ U 2 (A) implementing this homotopy we get a C(T)algebra B with fibres B t ∼ = A. We shall investigate this class of C(T)-algebras below. Lemma 4.6 In the notation of Example 4.5,

In particular, p is stably equivalent to diag [START_REF] Blackadar | Dimension functions and traces on C * -algebras[END_REF]0).

Then

It is easy to see that v * t v t = diag(0, 1) and v t v * t = 1 -p(t), and so the lemma is proved. Proposition 4.7 Let A, v ∈ U(A), and B be as in Example 4.5. Conditions (i) and (ii) below are equivalent for any unital C * -algebra A, and all three conditions are equivalent if A in addition is assumed to be properly infinite.

1 0 0 0 and w * t w t = p t for all t ∈ [0, 1] and w 1 = w 0 (as we identify C(T, M 2 (A)) with the set of continuous functions f : [0, 1] → M 2 (A) with f (1) = f (0)). Upon replacing w t with w * 0 w t we can assume that w 1 = w 0 = diag(1, 0). Now, with t → u t as in Example 4.5,

Then we can find a continuous path t → v t ∈ U (A), t ∈ [1 -ε, 1], such that v 1-ε = v and v 1 = 1 for an ε > 0 (to be determined below). Again with t → u t as in Example 4.5, define

Then t → u t is a continuous path of unitaries in U 2 (A) such that u 1-ε = u 1 = diag(v, 1) and u 0 = u 1 = 1. It follows that u belongs to C(T, M 2 (A)). Provided that ε > 0 is chosen small enough we obtain the following inequality:

(iii) ⇒ (ii). Suppose that B is properly infinite. From Lemma 4.6 we know that [p] = [diag(1 A , 0)] in K 0 (C(T, A)). Because B and A are properly infinite, it follows that p and diag(1 A , 0) are properly infinite (and full) projections, and hence they are equivalent by Proposition 2.3 (i).

(ii) ⇒ (iii). Since A is properly infinite, diag(1 A , 0) and hence p (being equivalent to diag(1 A , 0)) are properly infinite (and full) projections, whence B is properly infinite.

We will now use (the ideas behind) Lemma 4.6 and Proposition 4.7 to prove the following general statement about C * -algebras.

(ii) ⇒ (i). Let u ∈ U (A) be such that [u] = 0 in K 1 (A). Take, as we can, a projection p in A such that p and 1 -p are properly infinite and full. Set q = upu * . Then p ∼ h q by (ii), and so there exists a unitary v ∈ U 0 (A) with p = vqv * . It follows that

Therefore vu ∈ U 0 (A) by Lemma 2.4 (ii), which in turn implies that u ∈ U 0 (A).

(ii) ⇒ (iii). Let p, q be properly infinite and full projections in A. There exist mutually orthogonal projections e 1 , f 1 such that e 1 ≤ p, f 1 ≤ p and e 1 ∼ p ∼ f 1 , and mutually orthogonal projections e 2 , f 2 such that e 2 ≤ q, f 2 ≤ q and e 2 ∼ q ∼ f 2 . Being equivalent to either p or q, the projections e 1 , e 2 , f 1 and f 2 are properly infinite and full. There are properly infinite, full projections p 0 ≤ e 1 and q 0 ≤ e 2 such that [p 0 ] = [q 0 ] = 0 in K 0 (A) and p 0 ∼ q 0 (cf. Proposition 2.3). As f 1 ≤ 1 -p 0 and f 2 ≤ 1 -q 0 , we see that 1 -p 0 and 1 -q 0 are properly infinite and full, and so we get p 0 ∼ h q 0 by (ii).

(iii) ⇒ (ii). Let p, q be equivalent properly infinite, full projections in A such that 1 -p, 1 -q are properly infinite and full. From (iii) we get properly infinite and full projections p 0 ≤ p, q 0 ≤ q which satisfy p 0 ∼ h q 0 . Thus there is a unitary v ∈ U 0 (A) such that vp 0 v * = q 0 . Upon replacing p by vpv * (as we may do because p ∼ h vpv * ) we can assume that q 0 ≤ p and q 0 ≤ q. Now, q 0 is orthogonal to 1 -p and to 1 -q, and so 1 -p ∼ h 1 -q by Proposition 2.5, whence p ∼ h q. Proposition 5.2 Let A be a unital properly infinite C * -algebra. The following conditions are equivalent:

Let n ≥ 1 be given and consider the natural maps

The first map is onto, as proved by Cuntz in [START_REF] Cuntz | K-theory for certain C * -algebras[END_REF], see also [START_REF] Rørdam | An Introduction to K-theory for C * -algebras[END_REF]Exercise 8.9], and the composition of the two maps is injective by assumption, hence the second map is injective. (iii) ⇒ (i) is trivial.

We give below another application of K 1 -injectivity for properly infinite C * -algebras. First we need a lemma:

Lemma 5.3 Let A be a unital, properly infinite C * -algebra, and let ϕ, ψ : O ∞ → A be unital embeddings. Then ψ is homotopic to a unital embedding ψ ′ : O ∞ → A for which there is a unitary u ∈ A with [u] = 0 in K 1 (A) and for which ψ ′ (s j ) = uϕ(s j ) for all j (where s 1 , s 2 , . . . are the canonical generators of O ∞ ).

Proof: For each n set

, and ψ(s j ) = v n ϕ(s j ) for j = 1, 2, . . . , n. Since 1 -e n is full and properly infinite it follows from Lemma 2.4 that each v n extends to a unitary u n ∈ A with [u n ] = 0 in K 1 (A). In particular, ψ(s j ) = u n ϕ(s j ) for j = 1, 2, . . . , n.

We proceed to show that n → u n extends to a continuous path of unitaries t → u t , for t ∈ [2, ∞), such that u t ϕ(e n ) = u n ϕ(e n ) for t ≥ n + 1. Fix n ≥ 2. To this end it suffices to show that we can find a continuous path t → z t , t ∈ [0, 1], of unitaries in A such that z 0 = 1, z 1 = u * n u n+1 , and z t ϕ(e n-1 ) = ϕ(e n-1 ) (as we then can set u t to be u n z t-n for t ∈ [n, n + 1]).

Observe that

Set A 0 = (1 -ϕ(e n-1 ))A(1 -ϕ(e n-1 )), and set y = u * n u n+1 (1 -ϕ(e n-1 )). Then y is a unitary element in A 0 and [y] = 0 in K 1 (A 0 ). Moreover, y commutes with the properly infinite full projection ϕ(e n ) -ϕ(e n-1 ) ∈ A 0 . We can therefore use Lemma 2.4 to find a continuous path t → y t of unitaries in A 0 such that y 0 = 1 A 0 = 1 -ϕ(e n-1 ) and y 1 = y. The continuous path t → z t = y t + ϕ(e n-1 ) is then as desired.

For each t ≥ 2 let ψ t : O ∞ → A be the * -homomorphism given by ψ t (s j ) = u t ϕ(s j ). Then ψ t (s j ) = ψ(s j ) for all t ≥ j + 1, and so it follows that lim t→∞ ψ t (x) = ψ(x) for all x ∈ O ∞ . Hence ψ 2 is homotopic to ψ, and so we can take ψ ′ to be ψ 2 .

Proposition 5.4 Any two unital * -homomorphisms from O ∞ into a unital K 1 -injective (properly infinite) C * -algebra are homotopic.

Proof: In the light of Lemma 5.3 it suffices to show that if ϕ, ψ : O ∞ → A are unital *homomorphisms such that, for some unitary u ∈ A with [u] = 0 in K 1 (A), ψ(s j ) = uϕ(s j ) for all j, then ψ ∼ h ϕ. By assumption, u ∼ h 1, so there is a continuous path t → u t of unitaries in A such that u 0 = 1 and u 1 = u. Letting ϕ t : O ∞ → A be the * -homomorphism given by ϕ t (s j ) = u t ϕ(s j ) for all j, we get t → ϕ t is a continuous path of * -homomorphisms connecting ϕ 0 = ϕ to ϕ 1 = ψ. t ∈ T, so all fibres of B are properly infinite. Assuming (ii), we can conclude that B is properly infinite. Proposition 4.7 then yields that v ∈ U 0 (A). It follows that the natural map

])-algebra with properly infinite fibres). (v) ⇒ (iv) follows from Proposition 4.3. (iv) ⇒ (i). We show that Condition (iii) of Proposition 4.3 implies Condition (iii) of Proposition 5.1.

Let A be a properly infinite C * -algebra and let p, q be properly infinite, full projections in A. Then there exist (properly infinite, full) projections p 0 ≤ p and q 0 ≤ q such that p 0 ∼ 1 ∼ q 0 and such that 1-p 0 and 1-q 0 are properly infinite and full, cf. Propositions 2.3. Take isometries t 1 , r 1 ∈ A with t 1 t * 1 = p 0 and r 1 r * 1 = q 0 ; use the fact that 1 1 -p 0 and 1 1 -q 0 to find sequences of isometries t 2 , t 3 , t 4 , . . . and r 2 , r 3 , r 4 , . . . in A such that each of the two sequences {t j t * j } ∞ j=1 and {r j r * j } ∞ j=1 consist of pairwise orthogonal projections. By the universal property of O ∞ there are unital * -homomorphisms ϕ j : O ∞ → A, j = 1, 2, such that ϕ 1 (s j ) = t j and ϕ 2 (s j ) = r j , where s 1 , s 2 , s 3 , . . . are the canonical generators of O ∞ . In particular,

By the property of the universal unital free products of C * -algebras, there is a unique unital

Concluding remarks

We do not know if all unital properly infinite C * -algebras are K 1 -injective, but we observe that K 1 -injectivity is assured in the presence of certain central sequences: Proposition 6.1 Let A be a unital properly infinite C * -algebras that contains an asymptotically central sequence {p n } ∞ n=1 , where p n and 1 -p n are properly infinite, full projections for all n. Then A is K 1 -injective Proof: This follows immediately from Lemma 2.4 (ii).

It remains open if arbitrary C(X)-algebras with properly infinite fibres must be properly infinite. If this fails, then we already have a counterexample of the form B = pC(T, M 2 (A))p, cf. Example 4.5, for some unital properly infinite C * -algebra A and for some projection p ∈ C(T, M 2 (A)). (The C * -algebra B is a C(T)-algebra with fibres B t ∼ = A.)

On the other hand, any trivial C(X)-algebra C(X, D) with constant fibre D is clearly properly infinite if its fibre(s) D is unital and properly infinite (because C(X, D) ∼ = C(X) ⊗ D). We extend this observation in the following easy proposition: Proposition 6.2 Let X be a compact Hausdorff space, let p ∈ C(X, D) be a projection, and consider the sub-trivial C(X)-algebra pC(X, D)p whose fibre at x is equal to p(x)Dp(x).

If p is Murray-von Neumann equivalent to a constant projection x → q, then pC(X, D)p is C(X)-isomorphic to the trivial C(X)-algebra C(X, D 0 ), where D 0 = qDq. In this case, pC(X, D)p is properly infinite if and only if D 0 is properly infinite.

In particular, if X is contractible, then pC(X, D)p is C(X)-isomorphic to a trivial C(X)-algebra for any projection p ∈ C(X, D) and for any C * -algebra D.

Proof: Suppose that p = v * v and q = vv * for some partial isometry v ∈ C(X, D). The map f → vf v * defines a C(X)-isomorphism from pC(X, D)p onto qC(X, D)q, and qC(X, D)q = C(X, D 0 ).

If X is contractible, then any projection p ∈ C(X, D) is homotopic, and hence equivalent, to the constant projection x → p(x 0 ) for any fixed x 0 ∈ X. Remark 6.3 One can elaborate a little more on the construction considered above. Take a unital C * -algebra D such that for some natural number n ≥ 2, M n (D) is properly infinite, but M n-1 (D) is not properly infinite (see [START_REF] Rørdam | On sums of finite projections[END_REF] or [START_REF] Rørdam | A simple C * -algebra with a finite and an infinite projection[END_REF] for such examples). Take any space X, preferably one with highly non-trivial topology, eg. X = S n , and take, for some k ≥ n, a sufficiently non-trivial n-dimensional projection p in C(X, M k (D)) such that p(x) is equivalent to the trivial n dimensional projection 1 Mn(D) for all x (if X is connected we need only assume that this holds for one x ∈ X). The C(X)-algebra A = p C(X, M k (D)) p, then has properly infinite fibres A x = p(x)Dp(x) ∼ = M n (D). Is A always properly infinite? We guess that a possible counterexample to the questions posed in this paper could be of this form (for suitable D, X, and p).

Let us end this paper by remarking that the answer to Question 2.13, which asks if any C(X)-algebra with properly infinite fibres is itself properly infinite, does not depend (very much) on X. If it fails, then it fails already for X = [0, 1] (cf. Theorem 5.5), and [0, 1] is a contractible space of low dimension. However, if we make the dimension of X even lower than the dimension of [0, 1], then we do get a positive anwer to our question: Proposition 6.4 Let X be a totally disconnected space, and let A be a C(X)-algebra such that all fibres A x , x ∈ X, of A are properly infinite. Then A is properly infinite.

Proof: Using Lemma 2.10 and the fact that X is totally disconnected we can write X as the disjoint union of clopen sets F 1 , F 2 , . . . , F n such that A F j is properly infinite for all j.

the claim is proved.