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Abstract his work addresses the problem of fault detec-

tion and diagnosis (FDD) for a quad-rotor mini air vehicle

(MAV). Actuator faults are considered on this paper. The

basic idea behind the proposed method is to estimate the

faults signals using the extended state observers theory. To

estimate the faults, a polynomial observer is presented by

using the available measurements and know inputs of the

system. In order to investigate the observability and diag-

nosability properties of the system, a differential algebra ap-

proach is proposed. The effectiveness of the methodology is

illustrated by means of numerical simulations.
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1 Introduction

The growing development in research on MAVs and the con-

sequent improvement of technologies like microcomputers,

vision systems and other sensor devices, have increased the

performance requirements of such kind of systems. Prob-

lems related to trajectory tracking, flight-formation, vision-

based localization and lately MAV provided with manipu-

lators, have been widely researched in the last few years.

Therefore, a good performance in the inner-loop of such

flight envelopes is needed.

A wide range of nonlinear control techniques like back-

stepping [1], [2], singular perturbation techniques [3], slid-

ing modes and switching control [4], [5], have been treated

to deal with the complex dynamics of the quad-rotor.

Due to the high cost of the MAV equipment, it is imper-

ative to provide such systems with a fault-control loop, re-

sponsible for the identification of possible faults presented

at any time of the flight envelope.

Motivated by the fault diagnosis problem that have the

goal to detect the faults presence in the system and estimate

the fault signals, and the necessity of developing sufficiently

robust controllers to cope the presence of likely faults, this

research work deals not only with the MAV stabilization

problem, but also with the identification of actuator faults.

Few works dealing with the fault diagnosis problem applied

on quad-rotors are presented in the literature [6], [7], [8],

[9], [10].

Taking the attitude, position, angular and translational

velocities of the quad-rotor MAV as available measurements,

we develop a solution for the fault diagnosis problem by

means of the differential algebraic approach. With this ap-

proach, it is possible to construct a bank of observers in or-

der to implement a scheme of residual generation for fault

diagnosis [11], or implement a control law based on state

estimation [12]. Thus, it is possible to combine different
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schemes of nonlinear observers. In [13], the authors present

a reduced order and a sliding mode observer, to reconstruct

faults in an experimental task, for the case when only one

output is available. A reduced order observer and an alge-

braic observer is presented in [14]. The approach given in

[15] is used for fault detection and fault estimation of a

wound-rotor induction motor (WRIM). In [16] a polyno-

mial observer, a reduced order observer and a sliding mode

observer are used in order to estimate and reconstruct the

system states and faults for the case of multiple available

outputs. In [17], the polynomial observer is used for the syn-

chronization of chaotic systems.

The paper is organized as follows. The fault diagnosis

problem is formulated in Section 2. In order to estimate the

system states and also the faults dynamics, an extended Lu-

enberger observer called polynomial observer is developed

in Section 3. Next, in Section 4, the results previously ob-

tained are applied to the Quad-rotor MAV. Section 5 presents

some simulation results for the fault reconstruction problem.

Finally, some conclusions and future works are presented in

section 6.

2 Fault Diagnosis Problem

The Fault Detection and Diagnosis (FDD) task has the goal

to detect the faults presence in the system and estimate the

signal faults. Such faults can affect directly the performance

of the system components. Therefore, a FDD scheme pro-

vides all the necessary information about faults, such as pres-

ence (time), type (actuator/sensor) and dynamics (magni-

tude and form). Thus, based on this information, it is possi-

ble to design a system reconfiguration to minimize the fault

effects. We begin by defining the terms fault and failure as

follows:

Fault: An undesired change in a system parameter or

variable that reduces the performance/magnitude of one com-

ponent of its nominal value. In summary, a fault is an unac-

ceptable tolerable malfunction.

Failure: A complete breakdown of the system, caused

by a catastrophic malfunction of one or more components

of the system. In summary, a failure is an intolerable mal-

function.

Throughout this work, we describe a class of nonlinear

systems with faults as follows

ẋ(t) = g(x, u, f)
y(t) = h(x, u)

(1)

where

x ∈ R
n is the state vector

u ∈ R
m is the vector of known inputs

f ∈ R
µ is the faults vector (unknown inputs)

y ∈ R
p is the outputs vector

In this paper, we consider only the case of faults in the ac-

tuators. So, we introduce the concept of observability and

diagnosability in the field of the differential algebra.

2.1 Observability and Diagnosability Condition

The observability and diagnosability notion of a system, lin-

ear or nonlinear in the differential algebra approach need a

basic definition. Further details can be found in [13].

Definition 1 For the system described by (1) a state x is

said to be observable if it is possible to estimate the state by

means of the available measurements of the system, so we

say that x is observable if it is algebraically observable, i.e.,

the state x satisfies a polynomial equation in terms of u and

y and some of their time derivatives:

P
(

x, y, ẏ, ÿ, ..., y(n), u, u̇, ü, ..., u(n)
)

= 0 (2)

Definition 2 A fault f is said to be diagnosable if it is pos-

sible to estimate the fault from the available measurements

of the system, i.e., f is diagnosable if it is algebraically ob-

servable if it satisfies a polynomial equation in terms of u
and y and some of their time derivatives:

P
(

f, y, ẏ, ÿ, ..., y(n), u, u̇, ü, ..., u(n)
)

= 0 (3)

Remark 1 The diagnosability condition is independent of

the observability of the system.

Referring to system (1), the vector f contains the un-

known inputs. In order to estimate its uncertain dynamics,

the state vector is extended to deal with the fault vector. So,

we can rewrite the system in an extended form as follows







ẋ (t) = g (x, u, f)

ḟk(t) = Ωk (x, u, f)
y (t) = h (x, u)

1 ≤ k ≤ µ (4)

The following results from differential algebraic approach

are a useful tool to determine the system diagnosability, us-

ing only information from the available inputs and outputs.

Theorem 1 Assume that the system (1) is diagnosable, then

the number of faults is less or equal to the number of avail-

able measurements (outputs), i.e.

µ ≤ p

The proof of Theorem 1 can be seen in [18].
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3 Polynomial Observer

The polynomial observer is a scheme that combines two

kinds of observers. The first one is like an extended Luen-

berger observer which is used to reconstruct and estimate the

system states, while the second one is a free mode observer,

which has the function of reconstructing and estimate the

faults dynamics. The polynomial observer can be seen as a

Taylor series, where the first-order term is the observed state,

thus improving the performance and speed of convergence

including terms of high-order correction in the structure. It is

worth mentioning that this scheme is considered for the case

of multiple outputs available, where the terms of higher or-

der correction are odd powers and are a linear combination

of the observation errors of each output available and the or-

der of the polynomial compensations is a determining factor

for the parameter ”q”.

Consider the system with presence of faults, given in (4),

the observation problem for the unknown vector of faults

can be estimated using a polynomial observer. Therefore the

system (4) can be rewritten as







ẋ (t) = Ax+ Ψ (x, ū)

ḟk(t) = Ωk (x, ū)

y (t) = Cx

1 ≤ k ≤ µ (5)

where ∥Ωk(x, ū)∥ ≤ N,N ∈ R
+ and Ψ(x, ū) is a non-

linear function that satisfies the Lipschitz condition, with

ū = (u, f) uniformly bounded.

∥Ψ(x, ū)− Ψ(x̂, ū)∥ ≤ L∥x− x̂∥ (6)

3.1 Observer design

Now, consider the system with faults (5), the following lemma

describes the construction of the polynomial observer.

Lemma 1 Let the system (5) be algebraically diagnosable,

then, the following nonlinear system is a full order state ob-

server for the given system



























˙̂x (t) = Ax̂+ Ψ
(

x̂, u, f̂
)

+

+
p
∑

i=1

q
∑

j=1

Kij(yi − Cix̂)
2j−1

˙̂
fk(t) =

q
∑

l=1

K̄kl(fk − f̂k)
2l−1

(7)

Where

A ∈ R
n×n

x̂ ∈ R
n×1 is the estimate of the state x

f̂k ∈ R
µ is the estimate of faults vector f

q ∈ R
+

Ψ(x̂, u, k̂) ∈ R
n×1

[Kij ]1≤i≤p
1≤j≤q

, [K̄kl]1≤k≤µ
1≤l≤q

are positive gains

where x̂0 = x̂(t0) and f̂k0 = f̂k(t0) are arbitrary initial con-

ditions, the parameter q determines the order of the polyno-

mial compensation. To ensure the observer convergence, the

following assumptions are considered:

A1: fk(t) is algebraically observable

A2: The gains [Kil]1≤i≤p can be chosen such that the fol-

lowing algebraic Riccati equation has a symmetric and pos-

itive definite solution P for some ϵ > 0

(A−
p

∑

i=1

Ki1Ci)
TP+P (A−

p
∑

i=1

Ki1Ci)+L
2PP+I+ϵI = 0

A3: The gains [Kij ]1≤i≤p
2≤j≤q

are chosen such that

λmin((PKijCi)
T + (PKijCi)) ≥ 0

We define the estimation error vector as e = [ex, ek]
T ,

with ex = x− x̂ and ek = fk − f̂k. So from the systems (5)

and (7), we determine the dynamics for the corresponding

error estimation

ėx = (A−
p
∑

i=1

Ki1Ci)ex−

−
p
∑

i=1

q
∑

j=2

Kij(Ciex)
2j−1+

+[Ψ(x,̄ u)− Ψ(x̂,̄ u)]

ėk = Ωk − K̄k1ek −
q
∑

j=2

K̄kj(ek)
2l−1

(8)

3.2 Convergence Analysis

In order to ensure the convergence to zero of the estimation

error, we establish the following theorem.

Theorem 2 For the system (5), suppose that x(t) ∃ ∀ t ≥ 0,

the function Ψ(x, ū) satisfies the Lipschitz condition given

in (6), and x(t), f(t) are algebraically observable. Thus,

if there exists a positive definite matrix P and positive ob-

server gainsKij , K̄kl such that the system (7) is an observer

for system (5), then the estimation error converges to zero

asymptotically.

Proof Consider the following Lyapunov function candidate

V = V1 + V2
V1 = eTxPex;V2 = 1

2e
2
k

(9)

where the matrix P satisfies the assumption A2.

The proof of theorem 2, is developed in two parts as follows:
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i) The time derivative of V1 is given as

V̇1 = ėTxPex + eTxP ėx

= eTx ((A−
p
∑

i=1

Ki1Ci)
TP + P (A−

p
∑

i=1

Ki1Ci))ex+

+2exTP [Ψ(x, ū)− Ψ(x̂, ū)]−
−2

p
∑

i=1

q
∑

j=2

Kij(Ciex)
2j−2eTx ((PKijCi)

T+

+(PKijCi))ex

From the follow inequality based on the Lipschitz con-

dition

2eTxP [Ψ(x, ū)− Ψ(x̂, ū)] ≤ L2eTxPPex + eTx ex (10)

and using the Rayleigh’s inequality together with as-

sumption A3, it follows that

−eTxPKijCiex ≤ −λmin(PKijCi+(PKijCi)
T )∥ex∥2

(11)

Therefore, applying inequalities (10) and (11) we have

V̇1 ≤ eTx [(A−
p
∑

i=1

Ki1Ci)
TP + P (A−

p
∑

i=1

Ki1Ci)+

+L2PP + I]ex−
−2

p
∑

i=

q
∑

j=2

Kij(Ciex)
2j−2λmin(PKijCi

+

+(PKijCi
)T )∥ex∥2

≤ eTx [(A−
p
∑

i=1

Ki1Ci)
TP + P (A−

p
∑

i=1

Ki1Ci)+

+L2PP + I]ex
= −ϵ∥ex∥2

ii) In the same way, for the second term in the Lyapunov

function candidate, we obtain the time derivative of V2
as

V̇2 = ekėk

= ek(Ωk − K̄k1ek −
q
∑

l=2

K̄kle
2l−1
k )

= ekΩk − K̄k1e
2
k −

q
∑

l=2

K̄kle
2l
k

≤ |ek||Ωk| − K̄k1e
2
k

≤ |ek|N − K̄k1|ek|2
= −[K̄k1|ek| −N ]|ek|

V̇2 is negative inside the set {|ek| > N/K̄k1}, i.e., ex-

ists ϵ̄ > 0 such that K̄k1|ek| −N = ϵ̄ > 0.

We prove that |ek| is upper bounded. Now let constants

α, β upper bounds of V2(ek). With β > N2

2K2

k1

, the so-

lution that initiates in the set {V2(ek) ≤ β} will re-

main inside that set for all t ≥ 0, because V̇2 is negative

in V2 = β. Therefore the solution of ėk is uniformly

bounded [19]. Furthermore, if N2

2K2

k1

< α < β, then

V̇2 will be negative in the set {α ≤ V2 ≤ β}. In this

set V2 will decrease monotonically until the solution is

in the set {V2 ≤ α}. According to [19] the solution

is uniformly ultimately bounded with ultimate bound

|ek| ≤
√
2α. For example, if we define α = N2

2K̄2

k1

and

β = N2

K̄2

k1

, the ultimate bound is

|ek| ≤
N

K̄k1

Hence

V̇2 ≤ −ϵ̄|ek|

Finally, from (i) and (ii), we conclude that

V̇ ≤ −ϵ∥ex∥2 − ϵ̄|ek| < 0

4 Application to Quad-rotor MAV

In this section, the polynomial observer approach developed

in Section 3 is applied to a Quad-rotor MAV. We will state

the mathematical model of the MAV and some notations.

Then, the diagnosability analysis of such vehicle dynamics

is developed.

4.1 Modeling

The Quad-rotor mathematical model using the correspond-

ing coordinate system shown in Figure 1 is given as follows

mẍ = u1(SψSφ + CψSθCφ)
mÿ = u1(SψSθCφ − CψSφ)

mz̈ = mg − u1(CφCθ)

θ̈ = u2
ϕ̈ = u3
ψ̈ = u4

(12)

Where (x, y, z) denotes the position coordinates while vec-

tor (θ, ϕ, ψ) denotes the attitude angles of the Quad-rotor

MAV. Notation cφ stands for cosϕ and sφ for sinϕ. The fol-

lowing changes of coordinates is made in order to formulate

the problem

x1 = x x3 = y x5 = z x7 = θ x9 = ϕ x11 = ψ

x2 = ẋ x4 = ẏ x6 = ż x8 = θ̇ x10 = ϕ̇ x12 = ψ̇

With this notation, the state vector is x = [x1, x2, ..., x12]
T

and the input vector is u = [u1, u2, u3, u4]
T , where their
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components are expressed as

u1 =
4
∑

i=1

Ti

u2 = l(T3 − T1)
u3 = l(T2 − T4)
u4 = T1 − T2 + T3 − T4

(13)

where Ti is the thrust generated by the engine i. Typically

each engine produce a thrust Ti = kTω
2
i and a torque τi =

kτω
2
i due to shaft acceleration and blades drag, where kT

and kτ are constants and ωi is the angular velocity of the ith
engine. For simplicity, we consider that kT = kτ = k and

l = 1.

Remark 2 While obtaining a measure of the thrust engine

is unfeasible in practice, it is possible to obtain an estima-

tion by the measurement of the engine angular velocity, due

to the fact that thrust is proportional to the engine angular

velocity [20].

Fig. 1 The three-dimensional quad-rotor model.

It is noteworthy that the input controls (u1, u2, u3, u4)
should be designed to stabilize the aerial vehicle. Moreover,

the diagnosability of the system is established utilizing the

thrusts as a function of the controllers, i.e.

T1 =
u1 − 2u3 + u4

4

T2 =
u1 + 2u2 + u4

4

T3 =
u1 + 2u3 + u4

4

T4 =
u1 − 2u2 − u4

4

(14)

Equations (14) are obtained from (13).

For a Quadrotor MAV, we consider a fault as a reduction

of the thrust force generated by the engines, and a failure

when two or more engines presences a fault, with the con-

straint that is possible to minimize the faults presence, if the

faults appears in the following form:

1)Only one engine presence of fault

2)The faults affects the pairs (T1, T3) or (T2, T4)

Other wise we would have a catastrophic malfunction

and it would be impossible to minimize fault presence.

We consider a failure presence, i.e, the presence of a

fault on each engine, we analyzed the worst case to eval-

uate the performance of the proposed approach and study

the failure effects, in the control strategy. So we define the

input with presence of fault as ūk = uk + fk. Therefore the

system with faults is given by:

ẋ1 = x2

ẋ2 =
1

m
(ū1 + ū2 + ū3 + ū4)(Sx11

Sx9
+ Cx11

Sx7
Cx9

)

ẋ3 = x4

ẋ4 =
1

m
(ū1 + ū2 + ū3 + ū4)(Sx11

Sx7
Cx9

− Cx11
Sx9

)

ẋ5 = x6

ẋ6 = g − 1

m
(ū1 + ū2 + ū3 + ū4)(Cx9

Cx7
)

ẋ7 = x8
ẋ8 = ū3 − ū1
ẋ9 = x10
ẋ10 = ū2 − ū4
ẋ11 = x12
ẋ12 = ū1 − ū2 + ū3 − ū4

(15)

where fk are additive faults that which affect directly the

performance of the engines that produce the thrust inputs uk.

4.2 Control Strategy

The proposed control strategy is based on the idea that the

global system (12) is constituted of two subsystems, the at-

titude dynamics and the position dynamics, each one with

a time-scale separation between them [21]. Based on this

fact,we propose a hierarchical control scheme where the po-

sition controller provides desired attitude angles ϕd, θd which

are the angles to be tracked by the orientation controllers.

4.2.1 Position Control

In this section we proceed to develop a control law for the

y-position. A similar procedure can be used to obtain the x

position control.

In (12) we can note that the motion along y-axis is re-

lated to the ϕ angle, thus one can design a PD controller to
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manipulate the ϕ angle in order to control y motions. Setting

θ = ψ = 0 and from (12) the term ÿ results in

ÿ = −u1 sinϕ = −kpyy1 − kdyy2 (16)

where kpy and kdy are positive real numbers.

From (16) the desired angle ϕd can be written as

ϕd = arcsin

(

kpyy1 + kdyy2
u1

)

(17)

By taking the derivative of (17) one obtains

ϕ̇d =
kpy ẏ + kdy ÿ
√

u21 − v1
(18)

where v1 = k2pyy
2 +2kpykdyyẏ+ k2dy ẏ

2. Proceeding in the

same way one can obtain θd as

θd = arcsin

(−kpxx1 − kdxx2
u1

)

(19)

where kpx and kdx are positive real numbers. The time deriva-

tive θ̇d required for the controller u2 is

θ̇d = −kpxẋ+ kdxẍ
√

u21 − v2
(20)

where v2 = k2pxx
2 + 2kpxkdxxẋ+ k2dxẋ

2.

The altitude, can be controlled by a PD controller as fol-

lows

u1 =
g + kpz(z1 − z1d) + kvz(z2 − z2d)

cos θ cosϕ
(21)

where kpz and kvz are positive real numbers.

4.2.2 Attitude Control

The integral sliding mode control is used for stabilizing the

attitude dynamics of the Quad-rotor. The approach is ex-

plained for the roll dynamics, but the same procedure must

be followed for generating the pitch and yaw dynamics. The

error equation for the roll sub-system is defined as ϕ̃1 =

ϕ1 − ϕ1d , and its time derivative as
˙̃
ϕ1 = ϕ̇1 − ϕ̇1d = ϕ̃2.

Let as choose the switching function defined in [22] as

φ(ϕ, t) =
˙̃
ϕ1 + 2λϕ̃1 + λ2

∫ t

0

ϕ̃1(τ) dτ (22)

In (22) the parameter λ is the slope of the sliding line,

which should accomplished λ > 0 to ensure the asymptotic

stability of the sliding mode. The time derivative of (22) can

be calculated as φ̇ = u3+2λϕ̃2+λ
2ϕ̃1, and from the sliding

mode condition φ̇ = 0, we find the equivalent control

u3 = −2λϕ̃2 − λ2ϕ̃1 (23)

In order to obtain a control law such that ϕ̃1 remains on the

sliding surface φ(ϕ, t) = 0, ∀t > 0, we propose the Lya-

punov function candidate v(φ) = 1
2φ

2. A condition for the

stability of the roll sub-system is satisfied if we can ensure

that the condition v̇(φ) = 1
2
d
dt
φ2 ≤ η|φ| holds for η ≥

0. Thus, the system remains on the sliding surface and the

states converge to the origin. Then φφ̇ ≤ −η|φ| and the con-

troller must be chosen in a way that ϕ1 = u3 −Ksign(φ)
where K > 0.

4.3 Diagnosability analysis

From Theorem 1 the number of faults (µ = 4)must be less

or equal to available measurements. For this case, we only

consider that the position, and angular position are available,

because one of the goals of FDI task is to perform the task

with the minimum possible number of available inputs and

outputs, therefore we redefine the output vector as follows:

y = [y1, y3, y5, y7, y9, y11]
T = [x1, x3, x5, x7, x9, x11]

T .

Taking into account the above mentioned considerations, the

condition from theorem 1 is hold with 4 = µ < p = 6. To

determine the diagnosability of the system (15), we evaluate

the algebraic diagnosability condition given in definition 2.

For the considered faults, inputs and outputs, the system (15)

results in

ÿ1 = 1
m
(ū1 + ū2 + ū3 + ū4)(Sy11Sy9 + Cy11Sy7Cy9)

ÿ3 = 1
m
(ū1 + ū2 + ū3 + ū4)(Sy11Sy7Cy9 − Cy11Sy9)

ÿ5 = g − 1
m
(ū1 + ū2 + ū3 + ū4)(Cy9Cy7)

ÿ7 = ū3 − ū1
ÿ9 = ū2 − ū4
ÿ11 = ū1 − ū2 + ū3 − ū4

(24)

From system (24), we have that

m(g−ÿ5)
Cy9

Cy7

= u1 + f1 + u2 + f2 + u3 + f3 + u4 + f4 (25a)

ÿ7 = u3 + f3 − u1 − f1 (25b)

ÿ9 = u2 + f2 − u4 − f4 (25c)

ÿ11 = u1 + f1 − u2 − f2 + u3 + f3 − u4 − f4 (25d)

(25a) and (25d)

m(g − ÿ5)

Cy9Cy7
+ ÿ11 = u1 + f1 + 2u3 + 2f3 (26)

Adding 2(25b) and (26)

f3 =
m(g − ÿ5)

4Cy9Cy7
+

1

2
ÿ7 +

1

4
ÿ11 − u3 (27)
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Replacing (27) into (25b)

f1 =
m(g − ÿ5)

4Cy9Cy7
− 1

2
ÿ7 +

1

4
ÿ11 − u1 (28)

Adding, (25a) and (25c)

m(g − ÿ5)

Cy9Cy7
+ ÿ9 = u1 + f1 + 2u2 + 2f2 + u3 + f3 (29)

Replacing (28) and (27) into (29)

f2 =
m(g − ÿ5)

4Cy9Cy7
+

1

2
ÿ9 +

1

4
ÿ11 − u2 (30)

Finally, replacing (30) into (25c) it follows that

f4 =
m(g − ÿ5)

4Cy9Cy7
− 1

2
ÿ9 +

1

4
ÿ11 − u4 (31)

Therefore, from equations (27), (28), (30) and (31) we

conclude that the system (15) is diagnosable, with the con-

sidered inputs and outputs.

4.4 Polynomial Observer

The system (15), can be expressed in a similar way as in (5)

with:

A ∈ R
12×12 where the elements of the matrix are given

as follows: a1,2 = a3,4 = a5,6 = a7,8 = a9,10 = a11,12 = 1
and zero other wise.

The nonlinear function Ψ(x, ū) = [Ψ1, Ψ2, ..., Ψ12]
T is

given by:

Ψ1 = Ψ3 = Ψ5 = Ψ7 = Ψ9 = Ψ11 = 0

Ψ2 = 1
m
(ū1 + ū2 + ū3 + ū4)(Sx11

Sx9
+ Cx11

Sx7
Cx9

)
Ψ4 = 1

m
(ū1 + ū2 + ū3 + ū4)(Sx11

Sx7
Cx9

− Cx11
Sx9

)
Ψ6 = g − 1

m
(ū1 + ū2 + ū3 + ū4)(Cx11

Cx9
)

Ψ8 = ū3 − ū1
Ψ10 = ū2 − ū4
Ψ12 = ū1 − ū2 + ū3 − ū4

So, the following system is a polynomial observer for

the given system



























˙̂x (t) = Ax̂+ Ψ
(

x̂, u, f̂
)

+

+
6
∑

i=1

3
∑

j=1

Kij(yi − Cix̂)
2j−1

˙̂
fk(t) =

3
∑

l=1

K̄kl(fk − f̂k)
2l−1

(32)

Where we fixed the parameter q = 3 and the f1≤k≤4 are

given by (28), (30), (27), (31).

5 Fault reconstruction results

In this section, we present some simulation results of the

procedure developed in Section 3. The dynamics of the Quad-

rotor MAV and the fault dynamics have been simulated us-

ing MATLAB Simulink.

For the simulation procedure, we have consider the fol-

lowing conditions: The desired values for the position dy-

namics are xd = yd = 0m and zd = 0.75m and for the

attitude dynamics are θd = ϕd = 0 and ψd = 45 degrees.

The objective is that the Quad-rotor take off and reaches the

desired height and remain stable in that position, in other

words, we want that the desired values for the linear and

angular velocities are equal to zero. To simplify the calcula-

tions we assume that m = g = 1. A simulation time of 300s

and a step of 0.001s has been chosen.

For all simulation results we have considered that the

fault affects the performance of each engine, i.e. the actu-

ators for the Quad-rotor MAV. Four faults were artificially

generated as follows

f1 = 0.226(1 + sin(0.5te−0.1t))U(t− 50)

f2 = 0.045(1 + sin(0.076e−0.001t))U(t− 20)

f3 = 0.055e−0.01(t−0.3)U(t− 10)+

+0.068e−0.005(t−1)U(t− 80)+

+0.159e−0.007(t−1.3)U(t− 140)

f4 = 0.718e−0.01(t−2)U(t− 30)

where U(t) is the unit step function. The magnitude of the

faults were selected very close to the magnitude of the gen-

erated thrusts inputs for the case without faults, to obtain

better results.

The implementation results for the polynomial observer

proposed in (32), for the considered available inputs and out-

puts for the fault f1 are shown in the Figure 2. The observer

gain values are K11 = 2.5,K12 = 34 and K13 = 66. In

the same way in figures 3, 4 and 5, we show the estima-

tion result for the faults f2, f3 and f4, where the gain values

for each observer are K21 = 5.05,K22 = 2,K23 = 1.6,

K31 = 1.5,K32 = 27,K33 = 56 and K41 = 4.23,K42 =
7,K43 = 3 respectively.

In order to evaluate the effectiveness of the proposed

polynomial observer, we use initial conditions different from

zero, to see how long it takes to converge to the actual value

of the fault. The initial conditions are f1,c.i = 0.087, f2,c.i =

0.065, f3,c.i = 0.055 and f4,c.i = 0.073.

For all faults we obtained good estimation results. As

can be seen, the proposed observer converges quickly to the

actual values of the faults, and although the approach only

considers the case of fault with differentiable dynamics, it

is noted that the approach has the capacity to reconstruct

abrupt faults as shown in figures 4 and 5.

The attitude dynamic under the effect of the faults is

shown in figure 6. The direct consequence of the presence



8 Hipolito Aguilar∗ et al.

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (sec)

N
ew

to
ns

 

 
f1
f1hat

Fig. 2 Estimation result for the fault f1
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Fig. 3 Estimation result for the fault f2

of faults on actuators is that the controller tries to stabilize

the system and bring the dynamics of roll, pitch and yaw

to the desired values. However due to thrust limitation, the

objective is not fully accomplished. Noticed that the faults

affect more the dynamics in yaw.

Figure 7, shows the corresponding angular velocities in

roll, pitch and yaw for the case of presence of faults. As

can be seen, in the first 100 seconds the angular velocities

change abruptly, because in this time interval, is where all

the faults appear.

The position dynamics affected for the faults are shown

in Figure 8. Note that the difference between the dynamic

without faults and with fault is very significant, especially

for the dynamics in the y-axis, which is very large. The Posi-

tion controller generates large inputs to try reach the desired

position values. However due to the faults the errors grow

and the controller is unable to compensate such errors.
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Fig. 4 Estimation result for the fault f3
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Fig. 5 Estimation result for the fault f4

Finally figures 9 and 10 show the control inputs and cor-

responding thrusts generated by the control strategy. As can

be seen in Figure 9 the difference between both cases is very

significant, because for the case without faults the control in-

puts are constant while for the case with faults, the thrusts

are nonconstant and larger. The controller tries to compen-

sate the error generated by the presence of the faults, but

it shows clearly in Figure 10, where we see that the corre-

sponding thrust forces inputs are very similar to the dynam-

ics of the faults but with opposite sign. Notice that the faults

cause the controller does not function properly, as we ob-

served for the thrusts 1 and 4 (Figure 10) and the control

inputs 2, 3 and 4 (Figure 9), there is a time instant when its

becomes negative and this is impossible, because it would

mean that the thrust force is opposite, i.e, when the thrust

force becomes negative, the engine does not have the ability

to change the direction of rotation, and therefore stops com-
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Fig. 6 Comparison for the attitude dynamics for the case without faults

(blue line) and with faults (red dash-dot line)
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Fig. 7 Comparison for the angular velocity dynamics for the case with-

out faults (blue line) and with faults (red dash-dot line)

pletely (turned off) and in this case we are not dealing with

a fault, we would have a failure.

6 Concluding Remarks

This work deals with the problem of fault detection and di-

agnosis task for a Quad-rotor mini air vehicle (MAV) using

the differential algebra approach. This approach consider

the unknown faults like an augmented state of the system,

the strategy proposes a bank of observers in order to es-

timate the fault dynamics, in this case we are only using

the available measurements and known inputs. A polyno-

mial observer was proposed to deal with the fault estima-

tion problem for the case of multiple faults. This approach

detects and identifies multiple faults of relative small mag-

0 50 100 150 200 250 300
−0.2

0

0.2

M
et

er
s

Position in x

0 50 100 150 200 250 300

0

0.1

0.2

0.3

M
et

er
s

Position in y

0 50 100 150 200 250 300
0

0.5

Time (sec)

M
et

er
s

Position in z

Fig. 8 Comparison for the position dynamics for the case without

faults (blue line) and with faults (red dash-dot line)
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Fig. 9 Comparison for the inputs generated by the control strategy for

the case without faults (blue line) and with faults (red dash-dot line)

nitudes. In this work the FDD task for a system stabilized

in the closed-loop using a control strategy is presented. In

other papers that used the similar polynomial observer and

the differential algebra approach, they only studied the open-

loop case with constant inputs and in our case the inputs are

generated through an attitude and position controller.

Due the acceptable estimation results obtained, the fu-

ture work is to implement the proposed approach in a exper-

imental platform to evaluate the approach in a real-time task.

The control strategy tries to compensate the error generated

by the presence of faults, then the idea is to use the informa-

tion provide by the fault estimation to design another control

strategy to minimize the effects of faults.
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exponential polynomial observer for synchronization of chaotic

systems,” Communications in Nonlinear Science and Numerical

Simulation, vol. 15, no. 12, pp. 4114–4130, 2010.

18. J. C. Cruz-Victoria, R. Martı́nez-Guerra, and J. J. Rincón-Pasaye,

“On nonlinear systems diagnosis using differential and algebraic

methods,” Journal of the Franklin Institute, vol. 345, no. 2, pp.

102–118, 2008.

19. H. K. Khalil, Nonlinear Systems. New York: Prentice Hall, 2002.

20. I. Gonzlez, S. Salazar, J. Torres, R. Lozano, and H. Romero,

“Real-time attitude stabilization of a mini-uav quad-rotor using

motor speed feedback,” Journal of Intelligent and Robotic Sys-

tems, vol. 70, no. 1-4, pp. 93–106, 2013.
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