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Remarks on the consistency of Upwind Source
at Interface schemes on nonuniform grids
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Abstract. This note presents a preliminary study of the supra-convergence
of well-balanced (finite volume) schemes for conservation laws with a (non-
linear) geometrical source term. In particular, we consider scalar (linear)
advection equations in one dimension, for which smooth analytical solu-
tions are available, and upwind interfacial discretizations for the numerical
simulation on nonuniform grids (also generated by adaptive procedures).
We point out the inconsistent characteristics of the (local) truncation error,
and then we illustrate through a simple example the consistency condition
formulated by Wendroff and White, which turns out to be effectively com-
patible with a (strong) convergence theory at optimal rates.
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2 Upwind Source at Interface schemes on nonuniform grids

Hyperbolic conservation laws with source terms arise in many applications,
especially as effective mathematical models for geophysical flows (shallow
water equations, nozzle flows, debris avalanches), and their numerical sim-
ulation leads to specific difficulties. In comparison with the homogeneous
case, a significant snag is the accurate computation of nonconstant steady
states, occurring for the balance between source term and internal forces
(we refer to [15] for an overall discussion of well-balanced schemes). More-
over, the utilization of unstructured spatial grids is required for problems
incorporating composite geometries, also in view of the recent theoretical
advances on adaptive techniques for mesh refinement in the resolution of
multi-scale complex flows (see [2], [17] and [16], for instance). Motivated by
the debate on the stability mechanisms possibly generated by such strate-
gies, we aim at studying the features of finite volume schemes setting on
nonuniform grids, with an emphasis for their consistency properties with
respect to the question of convergence. We confine our investigation to ele-
mentary transport problems with linear fluxes, in order to prevent classical
complications (computation of discontinuous solutions, stability of the in-
terpolation for general nonlinear fluxes, resonance’s effects), and we shall
perform a formal error analysis attempting to elucidate the influence of the
non-uniformity of the mesh mainly on the convergence’s rates.

For the sake of simplicity in the notation, although our analysis applies
to linear systems as well, we restrict to scalar advection equations, and we
focus on the so-called geometrical source term, in one space dimension,

Ou+adyu+ 2 (x)b(u) =0, teR zeR, (1.1)
u(0,2) =up(x) € LP(R)NL>®(R), 1 <p < 400, (1.2)

with a € R, 2/ € LP(R) N L>=(R) and b € C'(R), for which the stationary
solutions are described by the (integral) relation

D(u(z)) + 2(z) = C*t,  D'(u) = ﬁ € L>(R). (1.3)

The assumptions made above ensure the existence and uniqueness of (weak)
entropic solutions to the problem (1.1)-(1.2), for any 7> 0, in the functional
space C'(R*, LP(R)) N L>((0,T) x R), according to the extended Kruzkov’s
theory [6]. Besides, assuming D given in (1.3) to be strictly monotonic, the
existence of a unique Lipschitz continuous steady state is earned.

We set up a nonuniform mesh on R, and we denote by C; =[z;_ 1, Tyl )
the finite volume (cell) centered at the vertices z; = $7 i €Z, where
x;_1 and 2;, 1 are the cell’s interfaces (see Figure 1) and Ax; =length(C;),
so that the characteristic space-step is h=sup;cz Ax; . We also introduce

a variable time-step At, =t, 11 —t,, n €N, and we set At =sup, cyAt,,
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therefore we have to consider a CFL-condition on the ratio At,,/Ax; for
the numerical stability. We construct a piecewise constant approximation
of the function z on the mesh, whose coefficients are z; = ﬁ /. Ciz(a:)dx,
and the discrete unknowns are defined to approximate the cell-averages of
the analytical solution (cell-centered conservative quantities), namely

v !

' ALL’Z‘

/u(tn,x)dx, neN,ie€Z. (1.4)
C;

A suitable treatment of the geometrical source term (originally formulated
by Roe [14], then adapted in [3], [4] and various others) consists in upwind
discretizations at the mesh’s interfaces, as for the numerical fluxes, that is
particularly relevant to properly reproduce the steady states. According to
the typical formalism of an explicit (three points) method, the simplest one-

sided upwind (and possibly well-balanced) scheme applied to (1.1) reads
n+1 n n n
v, Uy — Vi
1 1 b n
AL, 0T Ag U

Ri — Ri—1

AIi

=0, (1.5)

for a>0, hence the additional constraint b(u) >0 is adopted for (1.3), and
appropriate initial and boundary data must be taken into account.

The (local) truncation error, denoted by 77", is defined by substituting
the analytical solution, expressed in terms of its cell-averages (1.4), into the
numerical formulation (1.5), so that a straightforward calculation yields

A$i71 + A.’E1

1" = a tnv 7
% tu( 1’)+ 2 Az;

[a@mu(tn,xi) n (1.6)
+ 2 (2)b(ultn, 1)) | + O(AL 1),

thus revealing the well-known lack of consistency with the underlying con-
servation law, as the space-step Az; could be very different from the length
of an interfacial interval |z; —x;,_1]|= %—i—% (refer to [10], [19] and [13],
for example). In conclusion, unless the spatial grid is quasi-uniform, and
Az;_1 = Az;+O(h?), it seems that convergence as usually stated by the
Lax theorem cannot be expected, or at least a reduction in the rate occurs.

Nevertheless, the main issue of an error analysis with optimal rates can
be pursued, by virtue of the results concerning the supra-convergence phe-
nomenon for numerical approximation of hyperbolic conservation laws. In
fact, despite a deterioration of the pointwise consistency is observed in con-
sequence of the non-uniformity of the mesh, the formal accuracy is actually
maintained as the global error behaves better than the (local) truncation
error would indicate. This property of enhancement of the numerical error
has been widely explored, starting from [18], [11] and [21]. A comprehensive
interpretation of a priori error estimates, based on the original Kuznecov’s
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theory, is given in [7] for flux-splitting monotone schemes applied to (scalar)
nonlinear problems with low regularity. Otherwise, the question of (finite
volume) upwind schemes for linear equations on two-dimensional triangula-
tions is addressed in [8] and [9], with proof of convergence at optimal rates
for smooth solutions. This bibliography is by far not exhaustive, and must
be complemented with the references therein the papers quoted above.

Therefore, to elucidate the mechanism of supra-convergence, we imitate
the procedure established in [21], then generalized to the multi-dimensional
case in [9] and also in [5], and we postulate that (1.4) is replaced by

n

v, =

' Al‘i

/ [u(tn,z) + A;iaxu(tn,:c) dv, neN,ieZ. (L7
C;

The introduction of a (first order) correction in (1.7) allows to compensate
the wrong terms of the truncation error (1.6), as it represents precisely the
discrepancy between cell-centered and interfacial averages of the solution,
which do not coincide for upwind schemes on nonuniform meshes.

In effects, rewriting the scheme (1.5) for the reconstruction (1.7), analogous
calculations to deduce (1.6) lead to the following modified equation,

R = Ogu(tn, z;) + aOpulty, x;) + 2" (2:)b(u(tn, ;) + (1.8)
+ AZi-1 [aa w(tn, ;) + 2" (2;)b(u(t :v))] Ario1+ A
2 rEmAT ! e 2 Ax;
A$i ’ ’
+5 {amu(tn,xi)—i—z ()b (u(tn,xi))awu(tn,mi)] +O(ALR),

that involves the pointwise form of the exact model (1.1), with extra terms
depending on an (admissible) improved regularity of the solution, while the
higher order remainders are bounded through the usual mesh’s condition

30&,5>0 / ani+1§Axi§BAa:i+1, VieZ. (19)
Moreover, basic first order expansions in the right-hand side of (1.7) justify
to use E'=vl'—u(t,, z;)— A;"' Ozu(ty, ;) as the reference quantity for the

error analysis, together with S =z;—z(z;)— 222/ (z;). Finally, fixing also
b(u)=b>0 to avoid inessential technicalities, we derive from (1.5) and (1.7)

the typical stability equation for the (fully discrete) numerical scheme,

Aty,
Al‘i

At,
EM'=FE'—a

(S¢—Sm) — At R
and, in principle, we can infer (strong) convergence of LP-type with optimal
rate from (1.8), for nonuniform grids verifying the hypothesis (1.9).

We mention that a proper investigation of (1.8) constitutes an easy way to



Chiara Simeoni 5

identify as well the diffusive and dispersive characteristics of the scheme (1.5).

Remark 1. The truncation error (1.6) vanishes for the simulation of steady
states (1.3), thus indicating that the well-balance property enforces an over-
all stability of the finite volume method, because fully conservative schemes
demonstrate to perform substantially better on unstructured meshes when
compared to those not preserving some special structures even for uniform
meshes (see [20] for an interesting discussion).

We conclude this note by providing numerical tests! for (1.1)-(1.2) with
periodic boundary conditions, in the simple case of a source term given by
z(z) =sin(rz), for z€[0, 1], and b(u)=wu, such that an analytical (smooth)
solution is available to make direct comparisons. The nonuniform meshes
used for the computation are built through the adaptive procedure in [1],
that indeed generates cell’s sizes conforming with (1.9), whereas no specific
restriction on the CFL-condition is required to insure numerical stability.
We report in Table 1 the experimental errors obtained from the simulation
at T=0.3, with advection a=0.5, for the (first order) scheme (1.5) when
CFL=0.9 is arbitrarily chosen to determine the variable time-step.

The Table 2 presents similar computations for a stationary solution (1.3)
at T'=1.5, with advection a=1. Because of the smoothness of the source
term, and the corresponding numerical solution, an adaptive technique cus-
tomarily yields quasi-uniform meshes (see Figure 2), hence upwind schemes
like (1.5) actually turn to higher order approximations. On the other hand,
a well-balance property is known to significantly improve the numerical ac-
curacy, and this also constitutes an interpretation for the results in Table 2.

Remark 2. The formal analysis presented above directly extends to the
general framework in [12], and it should concern many effective schemes
developed in the literature (extensively reviewed therein), thus encouraging
to perform a rigorous theoretical study in a forthcoming paper.

Lthe code for reproducing the numerical tests is available upon request to the author
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Figure 1: (first order) reconstruction on nonuniform (spatial) grid
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2: cells’ sizes after mesh refinement (green) over uniform mesh

e el e~
Error Rate Error Rate Error Rate

30 | 0.322152E-01 0.354948E-01 0.587403E-01

60 | 0.149459E-01 | 1.116 | 0.164315E-01 | 1.119 | 0.260567E-01 | 1.181

120 | 0.715125E-02 | 1.092 | 0.787522E-02 | 1.093 | 0.119510E-01 | 1.156

240 | 0.349139E-02 | 1.074 | 0.384303E-02 | 1.075 | 0.565209E-02 | 1.132

480 | 0.171988E-02 | 1.062 | 0.189368E-02 | 1.062 | 0.273081E-02 | 1.112

Table 1: min;ez Az; = 0.230874F —02 , min, ¢y At,, = 0.373335E—02

ez lle()]] 2 ez
Error Rate Error Rate Error Rate
30 | 0.195000E-02 0.232276E-02 0.419508E-02
60 | 0.569572E-01 | 1.820 | 0.679157E-01 | 1.819 | 0.123060E-02 | 1.814
120 | 0.218606E-01 | 1.619 | 0.260709E-01 | 1.618 | 0.470566E-01 | 1.619
240 | 0.960606E-00 | 1.484 | 0.114540E-01 | 1.484 | 0.206341E-01 | 1.485
480 | 0.450752E-00 | 1.391 | 0.537440E-00 | 1.391 | 0.967720E-00 | 1.392

Table 2: experimental well-balance error = 0.224508 E —02




