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may come    

Hyperbolic conservation laws with source terms arise in many applications, especially as effective mathematical models for geophysical flows (shallow water equations, nozzle flows, debris avalanches), and their numerical simulation leads to specific difficulties. In comparison with the homogeneous case, a significant snag is the accurate computation of nonconstant steady states, occurring for the balance between source term and internal forces (we refer to [START_REF] Rogers | Mathematical balancing of flux gradient and source terms prior to using Roe's approximate Riemann solver[END_REF] for an overall discussion of well-balanced schemes). Moreover, the utilization of unstructured spatial grids is required for problems incorporating composite geometries, also in view of the recent theoretical advances on adaptive techniques for mesh refinement in the resolution of multi-scale complex flows (see [START_REF] Arvanitis | Behavior of finite volume schemes for hyperbolic conservation laws on adaptive redistributed spatial grids[END_REF], [START_REF] Teng | Modified equation with adaptive monotone difference schemes and its convergent analysis[END_REF] and [START_REF] Sfakianakis | Finite Difference schemes on non-uniform meshes for Hyperbolic Conservation Laws[END_REF], for instance). Motivated by the debate on the stability mechanisms possibly generated by such strategies, we aim at studying the features of finite volume schemes setting on nonuniform grids, with an emphasis for their consistency properties with respect to the question of convergence. We confine our investigation to elementary transport problems with linear fluxes, in order to prevent classical complications (computation of discontinuous solutions, stability of the interpolation for general nonlinear fluxes, resonance's effects), and we shall perform a formal error analysis attempting to elucidate the influence of the non-uniformity of the mesh mainly on the convergence's rates.

For the sake of simplicity in the notation, although our analysis applies to linear systems as well, we restrict to scalar advection equations, and we focus on the so-called geometrical source term, in one space dimension,

∂ t u + a ∂ x u + z ′ (x)b(u) = 0 , t ∈ R + , x ∈ R , (1.1) 
u(0, x) = u 0 (x) ∈ L p (R) ∩ L ∞ (R), 1 ≤ p < +∞ , (1.2) 
with a ∈ R, z ′ ∈ L p (R) ∩ L ∞ (R) and b ∈ C 1 (R), for which the stationary solutions are described by the (integral) relation

D(u(x)) + z(x) = C st , D ′ (u) = a b(u) ∈ L ∞ (R). (1.
3)

The assumptions made above ensure the existence and uniqueness of (weak) entropic solutions to the problem (1.1)-(1.2), for any T > 0, in the functional space C(R + , L p (R)) ∩ L ∞ ((0, T ) × R), according to the extended Kružkov's theory [START_REF] Bouchut | Kružkov's estimates for scalar conservation laws revisited[END_REF]. Besides, assuming D given in (1.3) to be strictly monotonic, the existence of a unique Lipschitz continuous steady state is earned. We set up a nonuniform mesh on R, and we denote by

C i = [x i-1 2 , x i+ 1 
2 ) the finite volume (cell) centered at the vertices

x i = x i-1 2 +x i+ 1 2 2 , i ∈ Z, where x i-1
2 and x i+ 1 2 are the cell's interfaces (see Figure 1) and ∆x i = length(C i ), so that the characteristic space-step is h = sup i∈Z ∆x i . We also introduce a variable time-step ∆t n = t n+1 -t n , n ∈ N, and we set ∆t = sup n∈N ∆t n , therefore we have to consider a CFL-condition on the ratio ∆t n /∆x i for the numerical stability. We construct a piecewise constant approximation of the function z on the mesh, whose coefficients are z i = 1 ∆xi Ci z(x)dx, and the discrete unknowns are defined to approximate the cell-averages of the analytical solution (cell-centered conservative quantities), namely

v n i ≈ 1 ∆x i Ci u(t n , x) dx , n ∈ N , i ∈ Z . (1.4) 
A suitable treatment of the geometrical source term (originally formulated by Roe [START_REF] Roe | Upwind differencing schemes for hyperbolic conservation laws with source terms[END_REF], then adapted in [START_REF] Ben-Artzi | An upwind second-order scheme for compressible duct flows[END_REF], [START_REF] Bermudez | Upwind methods for hyperbolic conservation laws with source terms[END_REF] and various others) consists in upwind discretizations at the mesh's interfaces, as for the numerical fluxes, that is particularly relevant to properly reproduce the steady states. According to the typical formalism of an explicit (three points) method, the simplest onesided upwind (and possibly well-balanced) scheme applied to (1.1) reads

v n+1 i -v n i ∆t n + a v n i -v n i-1 ∆x i + b(v n i ) z i -z i-1 ∆x i = 0 , (1.5) 
for a > 0 , hence the additional constraint b(u) > 0 is adopted for (1.3), and appropriate initial and boundary data must be taken into account. The (local) truncation error, denoted by T n i , is defined by substituting the analytical solution, expressed in terms of its cell-averages (1.4), into the numerical formulation (1.5), so that a straightforward calculation yields

T n i = ∂ t u(t n , x i ) + ∆x i-1 + ∆x i 2 ∆x i a ∂ x u(t n , x i ) + (1.6) + z ′ (x i )b(u(t n , x i )) + O(∆t, h) ,
thus revealing the well-known lack of consistency with the underlying conservation law, as the space-step ∆x i could be very different from the length of an interfacial interval |x i -x i-1 | = ∆xi-1 2 + ∆xi 2 (refer to [START_REF] Hoffman | Relationship between the truncation errors of centered finite-difference approximations on uniform and nonuniform meshes[END_REF], [START_REF] Turkel | Accuracy of schemes with nonuniform meshes for compressible fluid flows[END_REF] and [START_REF] Pike | Grid adaptive algorithms for the solution of the Euler equations on irregular grids[END_REF], for example). In conclusion, unless the spatial grid is quasi-uniform, and ∆x i-1 = ∆x i +O(h 2 ), it seems that convergence as usually stated by the Lax theorem cannot be expected, or at least a reduction in the rate occurs.

Nevertheless, the main issue of an error analysis with optimal rates can be pursued, by virtue of the results concerning the supra-convergence phenomenon for numerical approximation of hyperbolic conservation laws. In fact, despite a deterioration of the pointwise consistency is observed in consequence of the non-uniformity of the mesh, the formal accuracy is actually maintained as the global error behaves better than the (local) truncation error would indicate. This property of enhancement of the numerical error has been widely explored, starting from [START_REF] Tikhonov | On the theory of homogeneous difference schemes[END_REF], [START_REF] Kreiss | Supra-convergent schemes on irregular grids[END_REF] and [START_REF] Wendroff | A supraconvergent scheme for nonlinear hyperbolic systems[END_REF]. A comprehensive interpretation of a priori error estimates, based on the original Kuznecov's theory, is given in [START_REF] Cockburn | A priori error estimates for numerical methods for scalar conservation laws. II. Flux-splitting monotone schemes on irregular Cartesian grids[END_REF] for flux-splitting monotone schemes applied to (scalar) nonlinear problems with low regularity. Otherwise, the question of (finite volume) upwind schemes for linear equations on two-dimensional triangulations is addressed in [START_REF] Després | Lax theorem and finite volume schemes[END_REF] and [START_REF] Després | An explicit a priori estimate for a finite volume approximation of linear advection on non-Cartesian grids[END_REF], with proof of convergence at optimal rates for smooth solutions. This bibliography is by far not exhaustive, and must be complemented with the references therein the papers quoted above.

Therefore, to elucidate the mechanism of supra-convergence, we imitate the procedure established in [START_REF] Wendroff | A supraconvergent scheme for nonlinear hyperbolic systems[END_REF], then generalized to the multi-dimensional case in [START_REF] Després | An explicit a priori estimate for a finite volume approximation of linear advection on non-Cartesian grids[END_REF] and also in [START_REF] Bouche | Error estimate and the geometric corrector for the upwind finite volume method applied to the linear advection equation[END_REF], and we postulate that (1.4) is replaced by

v n i ≈ 1 ∆x i Ci u(t n , x) + ∆x i 2 ∂ x u(t n , x) dx , n ∈ N , i ∈ Z . (1.7)
The introduction of a (first order) correction in (1.7) allows to compensate the wrong terms of the truncation error (1.6), as it represents precisely the discrepancy between cell-centered and interfacial averages of the solution, which do not coincide for upwind schemes on nonuniform meshes. In effects, rewriting the scheme (1.5) for the reconstruction (1.7), analogous calculations to deduce (1.6) lead to the following modified equation,

R n i = ∂ t u(t n , x i ) + a ∂ x u(t n , x i ) + z ′ (x i )b(u(t n , x i )) + (1.8) 
+ ∆x i-1 2 a ∂ xx u(t n , x i ) + z ′′ (x i )b(u(t n , x i )) ∆x i-1 + ∆x i 2 ∆x i + + ∆x i 2 ∂ tx u(t n , x i ) + z ′ (x i )b ′ (u(t n , x i ))∂ x u(t n , x i ) + O(∆t, h) ,
that involves the pointwise form of the exact model (1.1), with extra terms depending on an (admissible) improved regularity of the solution, while the higher order remainders are bounded through the usual mesh's condition

∃ α, β > 0 / α ∆x i+1 ≤ ∆x i ≤ β ∆x i+1 , ∀ i ∈ Z . (1.9) 
Moreover, basic first order expansions in the right-hand side of (1.7) justify to use

E n i = v n i -u(t n , x i )-∆xi 2 ∂
x u(t n , x i ) as the reference quantity for the error analysis, together with S n i = z i -z(x i )-∆xi 2 z ′ (x i ). Finally, fixing also b(u) = b > 0 to avoid inessential technicalities, we derive from (1.5) and (1.7) the typical stability equation for the (fully discrete) numerical scheme,

E n+1 i = E n i -a ∆t n ∆x i E n i -E n i-1 -b ∆t n ∆x i S n i -S n i-1 -∆t n R n i ,
and, in principle, we can infer (strong) convergence of L p -type with optimal rate from (1.8), for nonuniform grids verifying the hypothesis (1.9). We mention that a proper investigation of (1.8) constitutes an easy way to identify as well the diffusive and dispersive characteristics of the scheme (1.5).

Remark 1. The truncation error (1.6) vanishes for the simulation of steady states (1.3), thus indicating that the well-balance property enforces an overall stability of the finite volume method, because fully conservative schemes demonstrate to perform substantially better on unstructured meshes when compared to those not preserving some special structures even for uniform meshes (see [START_REF] Vasilyev | High order finite difference schemes on non-uniform meshes with good conservation properties[END_REF] for an interesting discussion).

We conclude this note by providing numerical tests1 for (1.1)-(1.2) with periodic boundary conditions, in the simple case of a source term given by z(x) = sin(πx), for x ∈ [0 , 1] , and b(u) = u, such that an analytical (smooth) solution is available to make direct comparisons. The nonuniform meshes used for the computation are built through the adaptive procedure in [START_REF] Arvanitis | Mesh redistribution strategies and finite element schemes for hyperbolic conservation laws[END_REF], that indeed generates cell's sizes conforming with (1.9), whereas no specific restriction on the CFL-condition is required to insure numerical stability. We report in Table 1 the experimental errors obtained from the simulation at T = 0.3 , with advection a = 0.5 , for the (first order) scheme (1.5) when CFL = 0.9 is arbitrarily chosen to determine the variable time-step. The Table 2 presents similar computations for a stationary solution (1.3) at T = 1.5 , with advection a = 1 . Because of the smoothness of the source term, and the corresponding numerical solution, an adaptive technique customarily yields quasi-uniform meshes (see Figure 2), hence upwind schemes like (1.5) actually turn to higher order approximations. On the other hand, a well-balance property is known to significantly improve the numerical accuracy, and this also constitutes an interpretation for the results in Table 2.

Remark 2. The formal analysis presented above directly extends to the general framework in [START_REF] Perthame | Convergence of the Upwind Interface Source method for hyperbolic conservation laws[END_REF], and it should concern many effective schemes developed in the literature (extensively reviewed therein), thus encouraging to perform a rigorous theoretical study in a forthcoming paper.

the code for reproducing the numerical tests is available upon request to the author