Th Katsaounis 
  
C Simeoni 
email: simeoni@dma.ens.fr
  
  
  
First and second order error estimates for the Upwind Interface Source method

Keywords: scalar conservation laws, source terms, upwind interfacial methods, consistency, error estimates

). To improve the numerical accuracy, we develop two different approaches of treating the source term and we discuss the question to derive second order error estimates. Numerical evidence shows that those techniques produce high resolution schemes compatible with the Upwind Interface Source method.

Introduction

We consider the initial values problem for a transport equation with nonlinear source term, in one space dimension,

∂ t u + ∂ x u = B(x, u), t ∈ R + , x ∈ R, (1.1) u(0, x) = u 0 (x) ∈ L p (R) ∩ L ∞ (R), 1 ≤ p < +∞, (1.2) 
with u(t, x) ∈ R and the analytical source operator is given by

B(x, u) = z ′ (x) b(u), z ′ ∈ L p (R), b ∈ C 1 (R).
(1.3)

The system (1.1)- (1.3) corresponds to the simplest model of scalar conservation law with a geometrical source term, extensively treated in [START_REF] Perthame | Convergence of the Upwind Interface Source method for hyperbolic conservation laws[END_REF].

The entropy inequalities associated to (1.1) are described by the equation

∂ t S(u) + ∂ x S(u) + S ′ (u)B(x, u) ≤ 0, (1.4) 
for any convex entropy function S (see [START_REF] Kružkov | First order quasilinear equations in several independent space variables[END_REF] and [START_REF] Lax | Shock waves and entropy[END_REF]). Under stronger assumptions on the source term, Kružkov [START_REF] Kružkov | First order quasilinear equations in several independent space variables[END_REF] proved existence and uniqueness of the entropy solution to the problem (1.1)-(1.2), in the functional space L ∞ ([0, T ); L p (R)), for all T ∈ R + . Another approach, based on convergence analysis for special approximations, is presented in [START_REF] Amadori | Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws[END_REF]. In the case of singular source terms (namely, z discontinuous), a uniqueness result has recently been proved by Vasseur [START_REF] Vasseur | Well-posedness of scalar conservation laws with singular sources[END_REF].

Formalism of the Upwind Interface Source method

We set up a uniform mesh on R, whose vertices are x i , i ∈ Z and with characteristic space-step h. We denote by

C i = [x i-1 2 , x i+ 1 2
) the control volume (cell) centered on x i , where x i+ 1 2 = x i +x i+1 2 are the cell interfaces, so that h = length(C i ). Then we construct a piecewise constant approximation of the function z on the mesh, for example

z h (x) = i∈Z z i 1 C i (x), z i = 1 h C i z(x) dx, (1.5) 
where 1 C i is the characteristic function of the cell C i .
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We also introduce a piecewise constant approximation of the analytical solution to the problem (1.1)-(1.2), defined by

u h (t, x) = i∈Z u i (t)1 C i (x), u i (t) = 1 h C i u(t, x) dx. (1.6) 
In the above framework, the numerical solution obtained from a finite volume scheme applied to (1.1)-(1.2) is a function v h (t, x), whose cell-averages

v i (t) = 1 h C i v h (t, x) dx, i ∈ Z, (1.7) 
are interpreted as approximations of the cell-averages of the analytical solution, v i (t) ≈ u i (t), i ∈ Z. The general scheme for (1.1) reads

∂ t v h + ∂ x v h = B N (x, v h ), (1.8) 
with initial data corresponding to the approximate initial condition

v h 0 (x) = i∈Z u 0i 1 C i (x), u 0i = 1 h C i u 0 (x) dx. (1.9) 
According to the Upwind Interface Source method in [START_REF] Perthame | Convergence of the Upwind Interface Source method for hyperbolic conservation laws[END_REF], appropriate discretizations of the source term in (1.8) are given by

B N (x, v h ) = i∈Z 1 h B + (v i-1 , v i , ∆z i-1 2 ) + B -(v i , v i+1 , ∆z i+ 1 2 ) 1 C i , (1.10) 
where we set ∆z i+ 1 2 = z i+1z i (we dropped the time and space dependence in the formula, for simplicity). We assume the following consistency properties for the numerical source operator (1.10), in respect of (1.3), which are fundamental to the convergence analysis,

B ± ∈ C 2 , B ± (u, v, 0) = 0, ∂B ± ∂u (u, v, 0) = ∂B ± ∂v (u, v, 0) = 0, (1.11a) lim ζ→0 B + (u, u, ζ) + B -(u, u, ζ) ζ = b(u).
(1.11b)

The last limit holds uniformly in u, as specified by the further assumption

B + (u, u, ζ) + B -(u, u, ζ) ζ -b(u) ≤ K B ζ, (1.12) 
where K B is a fixed constant (independent of u). Moreover, we denote by L b and L B any Lipschitz constant associated respectively to the continuous or discrete source operator.

1.2 What is a second order scheme for the Upwind Interface Source method?

In order to obtain second order extensions of the discrete solver (1.8)-(1.9), we apply a slope limiter method to the numerical functions: the basic idea is to replace the piecewise constant reconstruction on the mesh of the approximate solution by more accurate reconstructions, namely piecewise linear (refer to [START_REF] Godlewski | Hyperbolic systems of conservation laws[END_REF] and [START_REF] Leveque | Numerical methods for conservation laws[END_REF] for a survey of high resolution methods).

We associate to the numerical solution (1.7) some coefficients, defined as second order interpolation of the discrete unknowns,

vi (t, x) = v i (t) + (x -x i )v ′ i , i ∈ Z, x ∈ C i , (1.13) 
where v ′ i indicates a generic numerical derivative (computed by means of an appropriate limiter, as it will be discussed more precisely later on). From (1.6), analogous definitions are introduced for the analytical solution,

ūi (t, x) = u i (t) + (x -x i )u ′ i , i ∈ Z, x ∈ C i . (1.14) 
The function z can also be represented in terms of piecewise linear approximations on the spatial mesh, departing from (1.5), with coefficients

zi (x) = z i + (x -x i )z ′ i , x ∈ C i .
At the cell interfaces, the values of the numerical functions are given by

v - i = vi (x i-1 2 ) = v i - h 2 v ′ i , v + i = vi (x i+ 1 2 ) = v i + h 2 v ′ i , (1.15a) 
z - i = zi (x i-1 2 ) = z i - h 2 z ′ i , z + i = zi (x i+ 1 2 ) = z i + h 2 z ′ i , (1.15b) 
as represented in the figure below, so that ∆z i+ 1 2 = z - i+1z + i in this case (we drop the time and space dependence when no mistake is possible).
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Therefore, it is natural to perform a discretization of the source term (1.3) by using the interfacial values (1.15a)-(1.15b), as follows,

B N (x, v h ) = i∈Z 1 h B + (v + i-1 , v - i , ∆z i-1 2 ) + B -(v + i , v - i+1 , ∆z i+ 1 2 ) 1 C i + i∈Z z ′ i b(v i ) 1 C i , (1.16) 
with an additional term in comparison to the discrete source operator (1.10), which depends on the cell-averages and is necessary to achieve second order estimates (see Section 4 for details).

An alternative approach to formulating second order extensions of the Upwind Interface Source method is based on improving the consistency properties of the numerical source operator. We consider a piecewise constant approximation (1.5) of the function z and piecewise linear reconstructions (1.13) of the numerical solution on the mesh, to define the upwind interfacial discretization

B N (x, v h ) = i∈Z 1 h B + (v + i-1 , v - i , ∆z i-1 2 ) + B -(v + i , v - i+1 , ∆z i+ 1 2 ) 1 C i , (1.17) 
where the numerical functions are computed on the interfacial values (1.15a) and ∆z i+ 1 2 = z i+1z i . To obtain second order accuracy, we need to assume that (1.11a) holds and the second order definition of consistency

B + (u, u, ζ) + B -(u, u, ζ) ζ -b(u) ≤ K B ζ 2 . (1.18)
This is suggested by the particular form of the source term (1.3), given by the product of functions which exhibit different orders of derivative.

Remark 1.1. In effect, the two discretizations (1.16) and (1.17) are strictly related, as formally verified by means of standard asymptotic expansions on the numerical functions and simple algebraic calculations with the discrete differences of values (1.5) or (1.15b). We also note that many of the second order schemes proposed in the literature do not include the additional term in (1.16), for the sake of simplicity (see [START_REF] Louaked | Un schma TVD-multirsolution pour les quations de Saint-Venant[END_REF], [START_REF] Barakhnin | TVD scheme of second-order approximation on a nonstationary adaptive grid for hyperbolic systems[END_REF] and [START_REF] Oliveira | On a class of high resolution methods for solving hyperbolic conservation laws with source terms[END_REF], for instance), but that is probably recovered implicitly in the formulation.

Convergence and error estimates

To deal with the question of deriving error estimates for the approximation (1.8) to the equation (1.1), we introduce the error function

e(t, x) = u(t, x) -v h (t, x), (1.19) 
which satisfies

∂ t e + ∂ x e = B(x, u) -B N (x, v h ) = B(x, u) -B N (x, u h ) + B N (x, u h ) -B N (x, v h ) := C(u; u h ) + S(u h ; v h ).
(1.20)

From (1.6) and (1.7), we obtain the usual expression for the cell-averages,

e i (t) = 1 h C i e(t, x) dx = u i (t) -v i (t), i ∈ Z. (1.21)
The operators C(u; u h ) and S(u h ; v h ) in the formula (1.20) indicate the consistency and stability error term respectively.

The following result constitute the main stage of the convergence analysis for the Upwind Interface Source method.

Theorem 1.2. We assume z ∈ W 2,p , 1 ≤ p < +∞, and we consider the numerical source operator (1.10) in (1.20). Then, for all t ∈ R + , the error function (1.19) verifies the first order estimate

e(t) L p ≤ C(t) e 0 L p + h z W 2,p + h t 0 exp{-Cs} u(s) W 1,p ds , (1.22)
where C(t) is a constant independent of h.

The convergence properties of second order schemes are notably affected by the technique used to construct piecewise linear approximations of the numerical functions, namely the choice of the slope limiter, as pointed out by several authors (see [START_REF] Osher | Recent developments in the numerical solution of nonlinear conservation laws[END_REF], [START_REF] Vila | An analysis of a class of second-order accurate Godunov-type schemes[END_REF] and [START_REF] Hubbard | Multidimensional slope limiters for MUSCL-type finite volume schemes on unstructured grids[END_REF]). Without appropriate hypotheses on the coefficients of such approximations, the proof of the consistency estimate given in Section 3.2 fails and numerical evidence shows that the discretization (1.16) loses second order accuracy (refer to Section 4 for details).

The following results extend the one which is established in Theorem 1.2 to the discretization (1.16) and (1.17).

Theorem 1.3. We assume z ∈ W 3,p , 1 ≤ p < +∞, and we consider the numerical source operator (1.16), with discrete derivatives computed in the restricted class of slope limiters introduced in Section 3. Then, for all t ∈ R + , the error function (1.19) verifies the second order estimate

e(t) L p ≤ C(t) e 0 L p + h 2 z W 3,p + h 2 t 0 exp{-Cs} u(s) W 2,p ds , (1.23)
where C(t) is a constant independent of h. Theorem 1.4. We assume z ∈ W 3,p , 1 ≤ p < +∞, and we consider the numerical source operator (1.17), with the consistency property (1.18). Then, for all t ∈ R + , the error function (1.19) verifies the second order estimate

e(t) L p ≤ C(t) e 0 L p + h 2 z W 3,p + h 2 t 0 exp{-Cs} u(s) W 2,p ds , (1.24) where C(t) is a constant independent of h.
Because of the definition (1.6) and (1.9), we have v h 0 = u h 0 and then we deduce from (1.19) that e 0 (x) = u 0 (x)u h 0 (x), x ∈ R. Besides, the following statements are classical and not difficult to prove (see [START_REF] Brezis | Analyse fonctionnelle. Thorie et applications, Collection Mathmatiques Appliques pour la Matrise[END_REF], for instance),

u h 0 L p ≤ u 0 L p , 1 ≤ p < +∞, e 0 L p ≤ Ch if u 0 ∈ W 1,p , e 0 L p ≤ Ch 2 if u 0 ∈ W 2,p .
The convergence of initial data in (1.22), (1.23) and (1.24), as the mesh size tends to zero, is thus guaranteed by the first and second order convergence of piecewise constant approximations. The detailed proofs of Theorem 1.2, Theorem 1.3 and Theorem 1.4, with the corresponding intermediate stages, are presented in Section 2 and Section 3.

Remark 1.5. The same approach as described above applies to nonlinear scalar conservation laws with a source term, also to define numerical fluxes in semi-discrete methods (refer to [START_REF] Perthame | Convergence of the Upwind Interface Source method for hyperbolic conservation laws[END_REF] for specific notations). Therefore, the arguments developed in this paper might extend to the general case, to derive complete error estimates for the Upwind Interface Source method.

Error estimates for first order schemes

Before giving details about the estimates, we introduce some relations on the discrete differences of numerical functions, we will frequently use later on the proofs.

We consider a generic function w ∈ C 1 , whose cell-averages on the spatial mesh are denoted by w i = 1 h C i w(x) dx, i ∈ Z. By performing appropriate expansions, we obtain

w i+1 -w i = C i w ′ (ξ(x)) dx (2.1a) = hw ′ (x i ) + C i w ′′ (η(x))(x -x i ) dx, (2.1b) 
w i+1 -2w i + w i-1 = h C i w ′′ (ϑ(x)) dx, (2.1c) 
for some ξ(x), η(x), ϑ(x) ∈ C i . We also recall the classical Taylor's formula,

w(x) = n k=0 1 k! w k (x i )(x -x i ) k + 1 n! x x i (x -s) n w n+1 (s) ds, (2.2) 
in the particular form with an integral expression for the remainder.

Stability estimate

We begin by dealing with the stability error term S(u h ; v h ) in (1.20), to test the stability of the numerical source operator. Lemma 2.1. For the assumptions of Theorem 1.2, together with (1.11a), there exists a constant

C := C(L B , z ′ L ∞ ), independent of h, such that R S(u h ; v h ) |e| p-1 sgn(e) dx ≤ C e p L p . (2.3) Proof. From (1.20), we have R S(u h ; v h ) |e| p-1 sgn(e) dx = R B N (x, u h ) -B N (x, v h ) |e| p-1 sgn(e) dx.
Then, according to (1.10) and (1.6), we deduce

R S(u h ; v h ) |e| p-1 sgn(e) dx = R i∈Z 1 h B + (u i-1 , u i , ∆z i-1 2 ) + B -(u i , u i+1 , ∆z i+ 1 2 ) 1 C i - i∈Z 1 h B + (v i-1 , v i , ∆z i-1 2 ) + B -(v i , v i+1 , ∆z i+ 1 2 ) 1 C i |e| p-1 sgn(e) dx = i∈Z B + (u i-1 , u i , ∆z i-1 2 ) -B + (v i-1 , v i , ∆z i-1 2 ) e p-1 i + i∈Z B -(u i , u i+1 , ∆z i+ 1 2 ) -B -(v i , v i+1 , ∆z i+ 1 2 ) e p-1 i = i∈Z B + (u i , u i+1 , ∆z i+ 1 2 ) -B + (v i , v i+1 , ∆z i+ 1 2 ) e p-1 i+1 + i∈Z B -(u i , u i+1 , ∆z i+ 1 2 ) -B -(v i , v i+1 , ∆z i+ 1 2 ) e p-1 i := S 1 + S 2 ,
where we set e p-1 i = 1 h C i |e| p-1 sgn(e) dx (as usually, we dropped the time and space dependence in the above formulas for simplicity). We estimate the terms S 1 and S 2 separately. For S 1 , we have

S 1 = i∈Z B + (u i , u i+1 , ∆z i+ 1 2 ) -B + (v i , u i+1 , ∆z i+ 1 2 ) e p-1 i+1 + i∈Z B + (v i , u i+1 , ∆z i+ 1 2 ) -B + (v i , v i+1 , ∆z i+ 1 2 ) e p-1 i+1 = i∈Z u i v i ∂B + ∂u (u, u i+1 , ∆z i+ 1 2 ) du e p-1 i+1 + i∈Z u i+1 v i+1 ∂B + ∂v (v i , v, ∆z i+ 1 2
) dv e p-1 i+1 ,

(2.4) so that, in view of (1.11a), we get

S 1 = i∈Z u i v i ∂B + ∂u (u, u i+1 , ∆z i+ 1 2 ) - ∂B + ∂u (u, u i+1 , 0) du e p-1 i+1 + i∈Z u i+1 v i+1 ∂B + ∂v (v i , v, ∆z i+ 1 2 ) - ∂B + ∂v (v i , v, 0) dv e p-1 i+1 ≤ L B i∈Z |∆z i+ 1 2 | (|u i -v i | + |u i+1 -v i+1 |) |e p-1 i+1 |.
(2.5)

We proceed in similar way for S 2 and we establish the relations corresponding to (2.4) and (2.5). Therefore, also recalling (1.21), we conclude 

S 1 ≤ L B i∈Z |∆z i+ 1 2 | (|e i | + |e i+1 |) |e p-1 i+1 |, (2.6) 
S 2 ≤ L B i∈Z |∆z i+ 1 2 | (|e i | + |e i+1 |) |e p-1 i |. ( 2 
S(u h ; v h ) |e| p-1 sgn(e) dx ≤ L B i∈Z |∆z i+ 1 2 | |e i | p + |e i | p-1 |e i+1 | + |e i ||e i+1 | p-1 + |e i+1 | p .
(2.8)

Now the Young's inequality, ab ≤ a p p + b q q , 1 p + 1 q = 1, applied to (2.8) and the immediate property

|e i | p ≤ 1 h C i |e| p dx, i ∈ Z, provide R S(u h ; v h ) |e| p-1 sgn(e) dx ≤ 2L B i∈Z |∆z i+ 1 2 | h C i |e| p dx + C i+1 |e| p dx .
(2.9) In the case of (1.5), according to (2.1a), a direct estimate yields the first order approximation

|∆z i+ 1 2 | h ≤ z ′ L ∞ . The proof of (2.
3) is thus completed.

Consistency estimate

We turn our attention to the consistency error term C(u; u h ) in (1.20), for which an optimal result in terms of the rate of convergence is obtained. Lemma 2.2. For the assumptions of Theorem 1.2, together with (1.11a), (1.11b) and (1.12), there exists a constant independent of h such that

R C(u; u h ) |e| p-1 sgn(e) dx ≤ Ch ( z W 2,p + u W 1,p ) e p-1 L p .
(2.10)

Proof. From (1.20), we have R C(u; u h ) |e| p-1 sgn(e) dx = R B(x, u) -B N (x, u h ) |e| p-1 sgn(e) dx.
We compute the integral of the discrete source operator,

R B N (x, u h ) |e| p-1 sgn(e) dx = R i∈Z 1 h B + (u i-1 , u i , ∆z i-1 2 ) + B -(u i , u i+1 , ∆z i+ 1 2 ) 1 C i |e| p-1 sgn(e) dx = i∈Z B + (u i-1 , u i , ∆z i-1 2 ) + B -(u i , u i+1 , ∆z i+ 1 
2

) e p-1 i
,

where e p-1 i = 1 h C i |e| p-1 sgn(e) dx.
Then we decompose as follows,

R B N (x, u h ) |e| p-1 sgn(e) dx = i∈Z B + (u i , u i+1 , ∆z i+ 1 2 ) + B -(u i , u i+1 , ∆z i+ 1 2 ) e p-1 i + + i∈Z B + (u i-1 , u i , ∆z i-1 2 ) -B + (u i , u i+1 , ∆z i+ 1 2 ) e p-1 i := T 1 + T 2 .
(2.11)

We estimate each T j , j = 1, 2 separately. Setting B = B + + B -, we write

T 1 = i∈Z B(u i , u i+1 , ∆z i+ 1 2 ) -B(u i , u i , ∆z i+ 1 2 ) e p-1 i + i∈Z B + (u i , u i , ∆z i+ 1 2 ) + B -(u i , u i , ∆z i+ 1 2 ) e p-1 i := T 1 1 + T 2 1 .
(2.12)

For the remainder T 1 1 , thanks to (1.11a), we get

T 1 1 = i∈Z u i+1 u i ∂B ∂v (u i , v, ∆z i+ 1 2 ) - ∂B ∂v (u i , v, 0) dv e p-1 i ≤ L B i∈Z |∆z i+ 1 2 ||u i+1 -u i ||e p-1 i |,
so that (2.1a) applied to (1.5) and (1.6) leads to conclude

T 1 1 ≤ L B z ′ L ∞ i∈Z C i |∂ x u| dx C i |e| p-1 dx . (2.13)
The second term T 2 1 of (2.12) can be further decomposed into three parts,

T 2 1 = i∈Z B(u i , u i , ∆z i+ 1 2 ) ∆z i+ 1 2 ∆z i+ 1 2 h he p-1 i = i∈Z B(u i , u i , ∆z i+ 1 2 ) ∆z i+ 1 2 ∆z i+ 1 2 h -z ′ (x i ) he p-1 i + i∈Z B(u i , u i , ∆z i+ 1 2 ) ∆z i+ 1 2 -b(u i ) z ′ (x i ) he p-1 i + i∈Z z ′ (x i )b(u i ) he p-1 i := T 2,1 1 + T 2,2 1 + T 2,3 1 .
(2.14)

We give details for each part. By using (1.11a), from (2.1b) we deduce that

T 2,1 1 ≤ i∈Z B(u i , u i , ∆z i+ 1 2 ) -B(u i , u i , 0) ∆z i+ 1 2 ∆z i+ 1 2 h -z ′ (x i ) h|e p-1 i | ≤ L B i∈Z C i |z ′′ | dx C i |e| p-1 dx . (2.15) 
Because of the consistency property (1.12) and (2.1a) for (1.5), we derive

T 2,2 1 ≤ K B z ′ L ∞ i∈Z C i |z ′ | dx C i |e| p-1 dx . (2.16)
Finally, the third term in (2.14) is equivalent to the integral of the analytical source operator (1.3). Indeed, by means of Taylor's expansions in (1.6), we obtain the midpoint formula (dropping the time dependence, for simplicity)

u i = u(x i ) + R i , R i = 1 h C i ∂ x u(ξ(x))(x -x i ) dx,
for some ξ(x) ∈ C i , and the regularity assumed in (1.3) guarantees that

b(u i ) = b(u(x i )) + b ′ (ν i )R i , |b ′ (ν i )| ≤ L b , ∀i ∈ Z.
We thus write

T 2,3 1 = i∈Z z ′ (x i )b(u(x i )) he p-1 i + R 1 , (2.17) 
where the remainder satisfies

R 1 ≤ L b z ′ L ∞ i∈Z C i |∂ x u| dx C i |e| p-1 dx . (2.18)
The Taylor's formula (2.2), applied to the source term (1.3), yields

R B(x, u) |e| p-1 sgn(e) dx = i∈Z C i z ′ (x i )b(u(x i )) |e| p-1 sgn(e) dx + R 2
and we readily check that the remainder satisfies

R 2 ≤ L b i∈Z C i |z ′′ | dx C i |e| p-1 dx + L b z ′ L ∞ i∈Z C i |∂ x u| dx C i |e| p-1 dx . (2.19)
Therefore, from (2.17) we have

T 2,3 1 = R B(x, u) |e| p-1 sgn(e) dx + R 1 -R 2 , (2.20) 
with the remainders (2.18) and (2.19), which are conveniently bounded.

Coming back to decomposition (2.11), using (1.11a) we have for the last term

T 2 = i∈Z B + (u i-1 , u i , ∆z i-1 2 ) -B + (u i , u i , ∆z i-1 2 ) e p-1 i + i∈Z B + (u i , u i , ∆z i-1 2 ) -B + (u i , u i , ∆z i+ 1 2 ) e p-1 i + i∈Z B + (u i , u i , ∆z i+ 1 2 ) -B + (u i , u i+1 , ∆z i+ 1 2 ) e p-1 i = i∈Z u i-1 u i ∂B + ∂u (u, u i , ∆z i-1 2 ) - ∂B + ∂u (u, u i , 0) du e p-1 i + i∈Z B + (u i , u i , ∆z i-1 2 ) -B + (u i , u i , ∆z i+ 1 2 ) e p-1 i + i∈Z u i u i+1 ∂B + ∂v (u i , v, ∆z i+ 1 2 ) - ∂B + ∂v (u i , v, 0) dv e p-1 i ≤ L B i∈Z |∆z i-1 2 ||u i -u i-1 | + |∆z i+ 1 2 -∆z i-1 2 | + |∆z i+ 1 2 ||u i+1 -u i | |e p-1 i |,
so that we conclude by means of (2.1a) and (2.1c), • i∈Z b q i 1 q , 1 p + 1 q = 1, to the products and then the usual continuous inequality to each integral on the mesh cells. This provides a coefficient h in front of all expressions and the result in (2.10) thus follows, with Finally, a straightforward extension of Gronwall's inequality yields the desired result (1.22), where C(t) := C(t; p, L B , K B , L b , z ′ L ∞ ) is any positive constant depending on time by the factor exp{-Ct}.

T 2 ≤ 2L B z ′ L ∞ i∈Z C i |∂ x u| dx C i |e| p-1 dx + L B i∈Z C i |z ′′ | dx C i |e| p-1 dx . ( 2 
C := C(L B , K B , L b , z ′ L ∞ ).

Proof of

Error estimates for second order schemes

The convergence properties of the approximation (1.16) are shown by mimicking the proof of the analogous results for (1.10), provided in Section 2.

As in the case of first order approximations, we derive some preliminary estimates on the discrete differences of numerical functions. For a function w ∈ C 2 , with cell-averages w i = 1 h C i w(x) dx, i ∈ Z, we construct piecewise linear approximations on the spatial mesh by means of the coefficients

wi (x) = w i + (x -x i )w ′ i , i ∈ Z, x ∈ C i , (3.1) 
where the numerical derivatives are defined as appropriate interpolations of the discrete increments between neighboring cells,

w ′ i = lmtr w i+1 -w i h , w i -w i-1 h , i ∈ Z. (3.2) 
We consider a general representation of the slope limiter introduced in the above formula, i.e. if M = lmtr{α, β}, then M = κα + λβ, with κ, λ ∈ [0, 1] and κ+λ = 1 or κ+λ = 0. In particular, we restrict our analysis to the special class of operators which satisfy the condition κ i + λ i = 1, ∀i ∈ Z (that excludes, for instance, the classical minmod limiter in the case of nonmonotonic numerical functions). We also assume that the numerical application (3.2) relating the cell-averages w j , j = i-1, i, i+1, to the discrete derivative w ′ i is Lipschitz continuous on its arguments, with constant C h . Several examples of slope limiter which satisfies these properties have been formulated in the literature (refer to [START_REF] Harten | Uniformly high-order accurate nonoscillatory schemes I[END_REF], [START_REF] Harten | Some results on uniformly high-order accurate essentially nonoscillatory schemes[END_REF], [START_REF] Harten | Uniformly highorder accurate essentially nonoscillatory schemes III[END_REF], [START_REF] Nessyahu | Nonoscillatory central differencing for hyperbolic conservation laws[END_REF], [START_REF] Shu | Essentially non-oscillatory and weighted essentially nonoscillatory schemes for hyperbolic conservation laws[END_REF] and [START_REF] Van Leer | Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method[END_REF]).

We deduce from those definitions that

w ′ i = κ i w i+1 -w i h + λ i w i -w i-1 h , i ∈ Z. (3.3)
The interfacial values of the reconstruction (3.1) are given by

w - i = wi (x i-1 2 ) = w i - h 2 w ′ i , w + i = wi (x i+ 1 2 ) = w i + h 2 w ′ i , (3.4) 
and we are interested in evaluating the jumps at the interfaces, i.e. w - i+1 -w + i . Taking into account (3.4) and (3.3), we have

w - i+1 -w + i = w i+1 -w i - h 2 w ′ i + w ′ i+1 = 1 - κ i 2 - λ i+1 2 W 1 - λ i 2 W 2 - κ i+1 2 W 3 , (3.5) 
where we indicate

W 1 = w i+1 -w i , W 2 = w i -w i-1 , W 3 = w i+2 -w i+1 . (3.6)
Consequently, to deal with (3.5) we use the same procedure as (2.1a)-(2.1b), based on high order Taylor expansions applied to the various terms in (3.6).

Besides, we observe that

w i+1 -w i = 1 h C i [w(x + h) -w(x)] dx = 1 h C i h 0 w ′ (x + s) ds dx,
then the following result holds,

|W j | ≤ w ′ L 1 (C i ) , i ∈ Z, j = 1, 2, 3. (3.7)
The simplest first order approximation reads

w - i+1 -w + i = 1 - κ i 2 - λ i+1 2 C i w ′ (ξ(x)) dx - λ i 2 C i w ′ (η(x)) dx - κ i+1 2 C i w ′ (ϑ(x)) dx, (3.8) 
for some ξ(x), η(x), ϑ(x) ∈ C i , so it follows also from (3.7) that

|w - i+1 -w + i | ≤ D i+ 1 2 w W 1,1 or |w - i+1 -w + i | ≤ D i+ 1 2 h w ′ L ∞ . (3.9)
Recalling that κ i + λ i = 1, ∀i ∈ Z, we obtain the second order approximation

w - i+1 -w + i = 1 - κ i 2 - λ i+1 2 C i w ′′ (ξ(x))(x -x i ) dx + λ i 2 C i w ′′ (η(x))(x -x i ) dx - 3 2 κ i+1 C i w ′′ (ϑ(x))(x -x i ) dx,
for some ξ(x), η(x), ϑ(x) ∈ C i , and then it follows

|w - i+1 -w + i | ≤ D i+ 1 2 h w W 2,1 or |w - i+1 -w + i | ≤ D i+ 1 2 h 2 w ′′ L ∞ . (3.10)
Remark 3.1. We note that the constant in (3.9) and (3.10) satisfies, uniformly for i ∈ Z, the estimate

D i+ 1 2 ≤ max 1 -κ i 2 -λ i+1 2 , λ i 2 , 3 4 κ i+1 ≤ 1.
Moreover, for any set of values (κ i , λ i ) i∈Z , the bounds on these quantities are always not degenerate.

Finally, a long but straightforward computation, involving also the third order expansions, leads to conclude that

w - i+1 -w + i = (λ i+1 -κ i ) h 2 2 w ′′ (x i ) (3.11) + 1 - κ i 2 - λ i+1 2 C i w ′′′ (ξ(x))(x -x i ) 2 dx - λ i 2 C i w ′′′ (η(x))(x -x i ) 2 dx - κ i+1 2 C i w ′′′ (ϑ(x))(x -x i ) 2 dx,
for some ξ(x), η(x), ϑ(x) ∈ C i .

Remark 3.2. According to the piecewise linear reconstruction (3.1), discrete interfacial jumps approximate the second derivative of the numerical functions, as it can be roughly deduced from (3.5).

Stability estimate

The following result corresponds to that presented in Section 2.1 and then we adapt the proof of Lemma 2.1 in the case of the numerical source operator (1.16). Lemma 3.3. For the assumptions of Theorem 1.3, together with (1.11a), there exists a constant

C := C(L B , L b , z ′ L ∞ , z ′′ L ∞ ), independent of h, such that R S(u h ; v h ) |e| p-1 sgn(e) dx ≤ C e p L p . (3.12) 
Proof. From (1.20), (1.16) and (1.6), we deduce

R S(u h ; v h ) |e| p-1 sgn(e) dx = R i∈Z 1 h B + (u + i-1 , u - i , ∆z i-1 2 ) + B -(u + i , u - i+1 , ∆z i+ 1 2 ) 1 C i - i∈Z 1 h B + (v + i-1 , v - i , ∆z i-1 2 ) + B -(v + i , v - i+1 , ∆z i+ 1 2 ) 1 C i |e| p-1 sgn(e) dx + R i∈Z z ′ i b(u i ) 1 C i - i∈Z z ′ i b(v i ) 1 C i |e| p-1 sgn(e) dx = i∈Z B + (u + i , u - i+1 , ∆z i+ 1 2 ) -B + (v + i , v - i+1 , ∆z i+ 1 2 ) e p-1 i+1 + i∈Z B -(u + i , u - i+1 , ∆z i+ 1 2 ) -B -(v + i , v - i+1 , ∆z i+ 1 2 ) e p-1 i (3.13) + i∈Z z ′ i [b(u i ) -b(v i )] he p-1 i := S 1 + S 2 + S 3
,

where e p-1 i = 1 h C i |e| p-1 sgn(e) dx.
To deal with S 1 and S 2 , we proceed exactly as in (2.4) and (2.5). Because of the definition (3.3) and (3.4), together with the Lipschitz property of the application (3.2), simple computations lead to verify that

|u + i -v + i | ≤ max (|u i -v i | + |u i+1 -v i+1 | + |u i-1 -v i-1 |) ,
and the same relation is satisfied by |u - i -v - i |. So, we can establish for the second order methods similar estimates to (2.6) and (2.7). On the other hand, a direct treatment of the last term in (3.13) yields

S 3 ≤ L b i∈Z |z ′ i | |u i -v i | h|e p-1 i |. (3.14) 
We give some details about the estimate of numerical derivatives (3.3), for the particular case of (1.5), we will use later on the proofs. By performing appropriate expansions, also recalling that κ i + λ i = 1, ∀i ∈ Z, we obtain

z ′ i = κ i h C i z ′ (ξ(x)) dx + λ i h C i z ′ (η(x)) dx = z ′ (x i ) + (κ i -λ i ) h 2 z ′′ (x i ) + κ i 3 h C i z ′′′ (ϑ(x)) dx + λ i 3 h C i z ′′′ (̺(x)) dx, (3.15) 
for some ξ(x), η(x), ϑ(x), ̺(x) (3.14). Thanks to the arguments used for passing to (2.8) and (2.9), with the first order approximation (3.9) applied to (1.15b), we conclude (3.12).

∈ C i , which implies that |z ′ i | ≤ z ′ L ∞ in

Consistency estimate

The proof of the following result is also an extension of that of Lemma 2.2. Lemma 3.4. For the assumptions of Theorem 1.3, together with (1.11a), (1.11b) and (1.12), there exists a constant independent of h such that R C(u; u h ) |e| p-1 sgn(e) dx ≤ Ch 2 ( z W 3,p + u W 2,p ) e p-1 L p .

(3.16)

Proof. We consider the integral of the source operator (1.16), computed on the approximation (1.6) of the analytical solution,

R B N (x, u h ) |e| p-1 sgn(e) dx = R i∈Z 1 h B + (u + i-1 , u - i , ∆z i-1 2 ) + B -(u + i , u - i+1 , ∆z i+ 1 2 ) 1 C i |e| p-1 sgn(e) dx + R i∈Z z ′ i b(u i )1 C i |e| p-1 sgn(e) dx = i∈Z B + (u + i-1 , u - i , ∆z i-1 2 ) + B -(u + i , u - i+1 , ∆z i+ 1 2 ) e p-1 i + i∈Z z ′ i b(u i ) he p-1 i ,
where we set e p-1 i = 1 h C i |e| p-1 sgn(e) dx. In the sequel, we neglect the dependence on time of the numerical functions to simplify the notation. We decompose the first part of the above formula, similarly to (2.11), into two terms T j , j = 1, 2 treated separately. The remainder can be rewritten as

T 2 = i∈Z B + (u + i-1 , u - i , ∆z i-1 2 ) -B + (u + i , u - i , ∆z i-1 2 ) e p-1 i + i∈Z B + (u + i , u - i , ∆z i-1 2 ) -B + (u + i , u - i , ∆z i+ 1 2 ) e p-1 i + i∈Z B + (u + i , u - i , ∆z i+ 1 2 ) -B + (u + i , u - i+1 , ∆z i+ 1 
2 ) e p-1 i and the usual procedures for the differences, by using (1.11a), leads to deduce

T 2 ≤ L B i∈Z |∆z i-1 2 ||u + i -u + i-1 | + |∆z i+ 1 2 -∆z i-1 2 | + |∆z i+ 1 2 ||u - i+1 -u - i | |e p-1 i |.
(3.17)

According to the definition (3.3) and (3.4), concerning (1.14), we easily obtain

|u + i -u + i-1 | = u i -u i-1 + h 2 u ′ i -u ′ i-1 ≤ C i |∂ x u| dx,
with an analogous estimate for |u - i+1u - i |, while a second order approximation is needed for the central term in (3.17), that is

|∆z i+ 1 2 -∆z i-1 2 | = (z i+1 -2z i + z i-1 ) - h 2 z ′ i+1 -z ′ i-1 ≤ h 2 C i |z ′′′ | dx.
These estimates and (3.10) for (1.15b) provide an analogous inequality to (2.21),

T 2 ≤ 2L B h z ′′ L ∞ i∈Z C i |∂ x u| dx C i |e| p-1 dx + L B h i∈Z C i |z ′′′ | dx C i |e| p-1 dx . (3.18)
For the term corresponding to (2.12), setting B = B + + B -, we thus have

T 1 = i∈Z B(u + i , u - i+1 , ∆z i+ 1 2 ) -B(u + i , u + i , ∆z i+ 1 2 ) e p-1 i + i∈Z B(u + i , u + i , ∆z i+ 1 2 ) e p-1 i := T 1 1 + T 2 1 . (3.19) 
We use again the property (1.11a) and we deduce

T 1 1 ≤ L B i∈Z |∆z i+ 1 2 ||u - i+1 -u + i ||e p-1 i |,
to conclude from (3.8) and (3.10) that

T 1 1 ≤ L B h z ′′ L ∞ i∈Z C i |∂ x u| dx C i |e| p-1 dx . (3.20)
The second term of (3.19) is further decomposed, also thanks to (3.11),

T 2 1 = i∈Z B(u + i , u + i , ∆z i+ 1 2 ) ∆z i+ 1 2 ∆z i+ 1 2 h -Q i+ 1 2 h 2 z ′′ (x i ) he p-1 i + i∈Z B(u + i , u + i , ∆z i+ 1 2 ) ∆z i+ 1 2 -b(u + i ) Q i+ 1 2 h 2 z ′′ (x i ) he p-1 i + i∈Z Q i+ 1 2 h 2 z ′′ (x i )b(u + i ) he p-1 i := T 2,1 1 + T 2,2 1 + T 2,3 1 , (3.21) 
where

Q i+ 1 2 = λ i+1 -κ i ≤ 1, ∀i ∈ Z,
for the properties of coefficients in (3.3). We give a few details of the estimate for each part. We proceed as in (2.15), by means of (1.11a) and (3.11), to obtain

T 2,1 1 ≤ L B h i∈Z C i |z ′′′ | dx C i |e| p-1 dx . (3.22)
From the consistency bound (1.12), together with the approximation (3.8), we derive that

T 2,2 1 ≤ K B h z ′′ L ∞ i∈Z C i |z ′ | dx C i |e| p-1 dx . (3.23) 
Then we pass to the crucial point of the proof, to show the convergence towards the integral of the analytical source operator (1.3). On the one hand, by applying to that function classical Taylor's expansions, we have

R B(x, u) |e| p-1 sgn(e) dx = i∈Z C i z ′ (x i )b(u(x i )) |e| p-1 sgn(e) dx + i∈Z C i (z ′ b(u)) ′ (ξ(x i ))(x -x i ) |e| p-1 sgn(e) dx, (3.24) 
for some ξ(x i ) ∈ C i . On the other hand, recalling the definition of interfacial values (1.15a) and by the regularity assumed in (1.3), we can write

b(u + i ) = b(u i ) + b ′ (ν i ) h 2 u ′ i , |b ′ (ν i )| ≤ L b , ∀i ∈ Z,
so that from (3.21) we deduce

T 2,3 1 = i∈Z Q i+ 1 2 h 2 z ′′ (x i )b(u i ) he p-1 i + R 1 (3.25)
and we use analogous approximations to (3.15) for the numerical derivatives of the analytical solution to obtain

R 1 ≤ L b h z ′′ L ∞ i∈Z C i |∂ x u| dx C i |e| p-1 dx . (3.26)
To conclude the announced result, we need to take into account the contribution of the additional term in the numerical source operator, neglected in the first part of the proof. The second order approximation of cell-averages,

u i = u(x i ) + R i , R i = 1 h C i ∂ xx u(ξ(x)) (x -x i ) 2 2 dx, (3.27) 
for some ξ(x) ∈ C i , together with the usual Taylor's expansion

b(u i ) = b(u(x i )) + b ′ (ν i )R i , |b ′ (ν i )| ≤ L b , ∀i ∈ Z, (3.28) 
after proceeding according to (3.15), setting

P i+ 1 2 = κ i -λ i , i ∈ Z, leads to i∈Z z ′ i b(u i ) he p-1 i = i∈Z z ′ (x i )b(u(x i )) he p-1 i + R 2 + i∈Z P i+ 1 2 h 2 z ′′ (x i )b(u i ) he p-1 i + R 3 , (3.29) 
with the following estimates for the remainders, 

R 2 ≤ L b h z ′ L ∞ i∈Z C i |∂ xx u| dx C i |e| p-1 dx , (3.30) 
R 3 ≤ L b h i∈Z C i |z ′′′ | dx C i |e| p-1 dx . ( 3 
B(x, u) |e| p-1 sgn(e) dx -T 2,3 1 - i∈Z z ′ i b(u i ) he p-1 i = i∈Z C i z ′′ (ξ(x i )) b(u(ξ(x i ))) (x -x i ) |e| p-1 sgn(e) dx + i∈Z C i z ′ (ξ(x i )) b ′ (u(ξ(x i ))) u ′ (ξ(x i )) (x -x i ) |e| p-1 sgn(e) dx - i∈Z (P i+ 1 2 + Q i+ 1 2 ) h 2 z ′′ (x i )b(u(x i )) he p-1 i - i∈Z (P i+ 1 2 + Q i+ 1 2 ) h 2 z ′′ (x i )b ′ (ν i )R i he p-1 i , (3.32) 
where again we used (3.27)-(3.28) and P i+ 1 2

+ Q i+ 1 2 = λ i+1 -λ i , i ∈ Z.
We introduce an appropriate hypothesis on the slope limiter (3.2)-(3.3), as discussed in Section 1.3, namely an additional property for its coefficients, ∃ Λ 0 > 0 such that λ i+1λ i ≥ Λ 0 , ∀i ∈ Z. (3.33) This condition and general properties of the numerical functions allow us to rewrite the difference between first and third term in the right-hand side of (3.32) in integral form, to conclude that 

+ Q i+ 1 2 ) h 2 z ′′ (x i )b(u(x i )) he p-1 i ≤ h i∈Z C i | (z ′′ b(u)) ′ | dx C i |e| p-1 dx ≤ L b h i∈Z C i |z ′′′ | dx C i |e| p-1 dx + L b h z ′′ L ∞ i∈Z C i |∂ x u| dx C i |e| p-1 dx .
An analogous estimate is proved for the difference between second and fourth term in the right-hand side of (3.32), which also involves the second derivative of the analytical solution, similarly to the remainder (3.30).

We apply to the previous computations the arguments in the conclusion of Lemma 2.2, to obtain (3.16) with C = C(L B , K B , L b , z ′ L ∞ , z ′′ L ∞ ).

Proof of Theorem 1.3 and Theorem 1.4

With the stability estimate (3.12) and the consistency estimate (3.16), we proceed as in Section 2.3 to conclude the second order error estimate (1.23).

The proof of Theorem 1.4 is obtained by using the main tools introduced for proving the results of Section 2 and Section 3. Because of the consistency hypotheses (1.11a)-(1.18), the same techniques as in Lemma 2.2 extend to the numerical source operator (1.17), while we apply the arguments formulated in Lemma 3.3 to deduce stability estimates.

Remarks and numerical evidence

The principal issue in the proofs of Theorem 1.2 and Theorem 1.3 is to establish the consistency estimates (2.10) and (3.16) respectively, in particular to show the convergence of the numerical source operators towards the analytical source term (1.3) from the relations (2.17) and (3.25).

We note that, due to the introduction of piecewise linear reconstructions of the function z, the differences of interfacial values approximate the second order derivative and the upwind part of the discretization (1.16) "overtakes" the desired result; an additional term is thus needed to recover the first order derivatives in the Taylor's expansion of the source term. Moreover, some restrictions on the definition of the slope limiter are also required, to guarantee the occurrence of suitable error estimates (refer also to [START_REF] Chalabi | On convergence of numerical schemes for hyperbolic conservation laws with stiff source terms[END_REF], [START_REF] Levy | Compact central WENO schemes for multidimensional conservation laws[END_REF] and [START_REF] Levy | Central WENO schemes for hyperbolic systems of conservation laws[END_REF]). Without these assumptions, only suboptimal results are derived (see [START_REF] Le Roux | Convergence d'un schma quasi d'ordre deux pour une quation quasi linaire du premier ordre[END_REF] and [START_REF] Le Roux | Convergence of an accurate scheme for first order quasilinear equations[END_REF], for instance).

These considerations can also be justified numerically: the tables above reproduce the convergence rates observed when the Upwind Interface Source discretization (1.16) exactly simulates simple equilibria (refer to [START_REF] Katsaounis | Second order approximation of the viscous Saint-Venant system and comparison with experiments[END_REF]). As far as we know, similar issues are only addressed in [START_REF] Gascón | Construction of second-order TVD schemes for nonhomogeneous hyperbolic conservation laws[END_REF] and [START_REF] Le Roux | Convergence d'un schma profils stationnaires pour les quations quasi linaires du premier ordre avec termes sources[END_REF].
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  ′′ (ξ(x i )) b(u(ξ(x i ))) (xx i ) |e| p-1 sgn(e) dx -i∈Z (P i+ 1 2

  Theorem 1.2 

	We multiply equation (1.20) by |e| p-1 sgn(e) and we integrate as follows,
				t *				
			0	e(s) p L p ds				
	+ Cp h z W 2,p	0	t *	e(s) p-1 L p ds + Cp h	t L p	0	t *	u(s) W 1,p ds,
	which implies that							
				t *				
	e(t * ) L p ≤ e(0) L p + Cp	e(s) L p ds		
				0	t *				(2.24)
	+ Cp h t * z W 2,p + Cp h	u(s) W 1,p ds.
					0			

R (∂ t e + ∂ x e) |e| p-1 sgn(e) dx = R C(u; u h ) |e| p-1 sgn(e) dx + R S(u h ; v h ) |e| p-1 sgn(e) dx.

(2.22)

An integration by parts shows R |e| p-1 sgn(e) ∂ x e dx = 0, then we deduce from

(2.22)

, (2.3) and (2.10) that 1 p ∂ t e(t) p L p ≤ C e(t) p L p + Ch ( z W 2,p + u(t) W 1,p ) e(t) p-1 L p . (2.23) Let t * ∈ R + be such that e(t * ) L p = max t∈R + e(t) L p . By integrating in time from 0 to t * , we get e(t * ) p L p ≤ e(0) p L p + Cp * 0 u(s) W 1,p e(s) p-1 L p ds ≤ e(0) L p e(t * ) p-1 L p + Cp e(t * ) p-1 L p t * 0 e(s) L p ds + Cp h t * z W 2,p e(t * ) p-1 L p + Cp h e(t * ) p-1

with z(x) = sin(π * x), x ∈ [0, 1], for which an analytical solution is available to make direct comparisons, u(t, x) = u 0 (x) + z ′ (x) t.

The results plotted correspond to the discretization (1.16), for the standard VanLeer limiter, with a simple TVD reconstruction (see [START_REF] Sweby | TVD schemes for inhomogeneous conservation laws[END_REF]) in Table 1 and with an appropriate ENO reconstruction (see [START_REF] Harten | Uniformly high-order accurate nonoscillatory schemes I[END_REF]) in Table 2.

The problems just discussed do not arise in the case of discretization (1.17), for which stronger consistency hypotheses are made, to compensate reduced regularity of the reconstructions. Some classical convergence results for numerical approximations of hyperbolic conservation laws are presented in [START_REF] Osher | On the convergence of difference approximations to scalar conservation laws[END_REF], [START_REF] Vila | High-order schemes and entropy condition for nonlinear hyperbolic systems of conservation laws[END_REF], [START_REF] Gosse | Sur la stabilit des approximations implicites des lois de conservation scalaires non homognes[END_REF], [START_REF] Chainais-Hillairet | Finite volume schemes for nonhomogeneous scalar conservation laws: error estimate[END_REF] and its references. Further applications of these methods to different situations are proposed in [START_REF] Ben-Artzi | A high-resolution upwind scheme for quasi 1-D flows[END_REF] and [START_REF] Ben-Artzi | An upwind second-order scheme for compressible duct flows[END_REF].

Although the question of preserving stationary states at the discrete level is only handled rigorously for discretizations of the first order (refer to [START_REF] Perthame | Convergence of the Upwind Interface Source method for hyperbolic conservation laws[END_REF]), the numerical results obtained for the Saint-Venant system indicate that the