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APPLICATION OF HIERARCHICAL MATRIX TECHNIQUES TO THE

HOMOGENIZATION OF COMPOSITE MATERIALS ∗, ∗∗, ∗∗∗

Paul Cazeaux1 and Olivier Zahm2

Abstract. In this paper, we study numerical homogenization methods based on integral equations.
Our work is motivated by materials such as concrete, modeled as composites structured as randomly
distributed inclusions imbedded in a matrix. We investigate two integral reformulations of the corrector
problem to be solved, namely the equivalent inclusion method based on the Lippmann–Schwinger
equation, and a method based on boundary integral equations. The fully populated matrices obtained
by the discretization of the integral operators are successfully dealt with using the H-matrix format.

Résumé. Nous étudions la faisabilité de méthodes numériques d’homogénéisation basées sur des
équations intégrales. Nous nous intéressons particulièrement à des matériaux de type béton, c’est à dire
composés d’agrégats distribués aléatoirement dans une matrice. Deux reformulations équivalentes du
problème du correcteur sont proposées : la première est la méthode des inclusions équivalentes basée
sur l’équation intégrale volumique de Lippmann–Schwinger, et la deuxième basée sur des équations
intégrales surfaciques. Les matrices pleines obtenues par la discrétisation des opérateurs intégraux sont
traitées avec succès à l’aide de matrices hiérarchiques.

Introduction

Understanding the macroscopic properties of composite materials is of great interest in a number of industrial
applications. One such example is the study of the aging of electrical nuclear plants due to the long-term behavior
of concrete. Homogenization techniques have become widely used to predict this macroscopic behavior, based on
the knowledge of the distribution and characteristics of the constituting elements in the microstructure of such
materials. A number of different homogenization frameworks exist, ranging from qualitative methods proposed
by physicists and engineering, see e.g. [19], to more rigorous mathematical methods developed for example in
the periodic case [6, 26] or the stationary random case [6, 21], giving rise to a vast body of literature.

Using these techniques, the effective (macroscopic) properties of the composite are typically deduced from the
solution of an elliptic boundary value problem, called corrector problem. Formulated on a representative volume
element (RVE) of the microstructure, this problem enables us to compute the local behavior of the microstructure
under a macroscopic forcing. Approximate effective parameters are then obtained by averaging the computed
local quantities over the RVE [6]. In the case of idealized structures such as perfect crystals, the geometry of
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the RVE is simple. However, in the case of composite materials such as concrete, this geometry can become
quite complex. In fact, when the composite is modeled as a matrix containing a stationary random distribution
of inclusions, the corrector problem is effectively set on the whole space [21]. In this case, the corrector problem
is usually solved in a bounded box of increasing size. The approximate effective parameters thus computed
are known to converge to the true effective parameters as the size of the box goes to infinity [15]. Thus it
is necessary to develop efficient numerical methods able to deal with complex three-dimensional geometries,
induced by large numbers of inclusions in the RVE, see e.g. [9].

A number of numerical methods can be used to approach the solution of the corrector problem. A widely
used approach is the direct discretization of the elliptic PDE system, either by finite differences or by the finite
elements method. However, such full field simulations remain computationally limited by the large number of
degrees of freedom that is required, in particular in a three dimensional setting.

In this work, we propose to study two different approaches. Both are based on a reformulation of the elliptic
corrector problem by integral equations. As a consequence, discretization results in linear systems involving
fully populated matrices, by contrast with the sparse systems obtained with the finite differences or finite
elements methods. An algebraic tool designed to deal efficiently with such fully populated matrices is the
hierarchical matrix (or H-matrix) format introduced by Hackbusch and his collaborators, see e.g. [5,7,17]. The
main advantages of the H-matrix format are:

• the controlled approximation of the matrix with respect to a given precision,
• the reduced computational and memory cost compared to the usual matrix storage,
• and the accelerated algebraic operations (matrix-vector product, linear solvers, etc).

We investigate in this paper the applicability of this format to some linear systems, obtained by discretizing the
two following integral reformulations of the corrector problem associated to the homogenization of the diffusion
equation.

As a first example, we will present the equivalent inclusion method [19, 25, 29], which is based on the
Lippmann–Schwinger equation as an equivalent reformulation of the corrector problem [13]. The Lippmann–
Schwinger equation is a volumic integral equation with a new unknown, the polarization, set on the whole RVE.
It is the starting point of analytical homogenization schemes, e.g. [10, 22, 29], leads to the well known Hashin–
Shtrikman bounds on the effective parameters [19] and can be used to design effective numerical homogenization
schemes based on the fast Fourier transform [24, 31]. The equivalent inclusion method can be seen as a crude
Galerkin discretization of the Lippmann–Schwinger equation, using only constant-by-inclusion functions in the
polarization space. Each entry of the corresponding matrix has an analytical expression, thus avoiding the need
for numerical integration and ensuring fast assembly of the matrix [9].

As a second example, we present a boundary integral reformulation of the corrector problem. We propose a
numerical approach for its solution, using the boundary element method [20] and following ideas proposed by
Barnett and Greengard in a different setting [2]. Up to our knowledge, this work is the first attempt at solving
corrector problems arising in periodic or random homogenization by use of the boundary element method. There
is, however, an extensive literature on the subject of integral equations for scattering from periodic structures,
see e.g. [12]. Recently, advances have also been made in the direction of band structure calculations in periodic
materials [2, 30].

The structure of the paper is as follows. In section 1, we introduce the Lippmann–Schwinger equation and the
equivalent inclusion method. In section 2, we recall the framework of the H-matrix format by presenting some
definitions, the main properties and associated algorithms. In section 3, we present some numerical results
obtained for the equivalent inclusion method using the H-matrix format and we assess the efficiency of this
approach. Finally, in section 4 we present the boundary integral formulation and some numerical results.
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1. Equivalent inclusion method

1.1. Lippmann–Schwinger equation

In this section we derive the Lippmann-Schwinger equation as an equivalent reformulation of the corrector
problem associated to the homogenization of the diffusion equation [13]. Let Ω ⊂ R3 be a bounded open domain,
the representative volume element of the microstructure, and κ(x) a scalar diffusion coefficient. Note that we
will always use the bold face convention to denote vectors. The corrector problem is to find u(x) such that:

{
−div(κ(∇u+E)) = 0, in Ω,

u = 0, on ∂Ω,
(1)

where E ∈ R3 is a given macroscopic potential gradient.

Remark 1.1. Here we choose to work with homogeneous Dirichlet boundary conditions, but other conditions
can be imposed such as periodic boundary conditions that are known to provide better estimation of the effective
properties in the random homogenization framework [15].

We introduce the polarization τ as:

τ(x) = (κ(x)− κ0)(∇u(x) +E), (2)

where the scalar κ0 > 0 corresponds to the diffusion coefficient in an homogeneous reference medium. Then the
corrector problem (1) is equivalent to:

{
−κ0∆u = div(τ), in Ω,

u = 0, on ∂Ω.
(3)

Let δy denote the Dirac mass centred in y, and G0 denote the Green’s function (also called fundamental solution)
associated to (3), i.e. that satisfies −∆G0(x,y) = δy(x) over Ω, and G0(x,y) = 0 for x ∈ ∂Ω. One can write:

u(x) = κ−1
0

∫

Ω

G0(x,y)div(τ(y))dy = −κ−1
0

∫

Ω

∇yG0(x,y)τ(x)dy ∀x ∈ Ω. (4)

Therefore the gradient of the solution is:

∇u(x) = −

∫

Ω

Γ0(x,y) : τ(y)dy ∀x ∈ Ω, (5)

where Γ0(x,y) = κ−1
0 ∇y∇xG0(x,y) is a second order tensor field called the fundamental operator. Using

relation (2), we obtain the Lippmann-Schwinger equation for the polarization τ :

(κ(x)− κ0)
−1 : τ(x) +

∫

Ω

Γ0(x,y) : τ(y)dy = E ∀x ∈ Ω. (6)

1.2. Energy principle of Hashin Shtrikman

We look for the weak solution τ ∈ L2(Ω,R3) of (6) satisfying the variational problem a(τ, τ̃) = b(τ̃) for all
τ̃ ∈ L2(Ω,R3), where a(·, ·) and b(·) are respectively the following bilinear and linear forms:

a(τ, τ̃) =

∫

Ω

τ̃(x) : (κ(x)− κ0)
−1 : τ(x)dx+

∫

Ω

∫

Ω

τ̃(y) : Γ0(x,y) : τ(x)dydx (7)

b(τ̃) =

∫

Ω

τ̃(x) : Edx. (8)
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As Γ0 is symmetric, it was shown by Kröner [22] that this variational equation can be seen as the stationarity
condition of the functional H(τ) = 1

2a(τ, τ) − b(τ). Moreover, if the relation κ(x) ≤ κ0 (resp. κ(x) ≥ κ0)

holds in Ω, the weak solution of (6) corresponds to the minimum (resp. maximum) of H on L2(Ω,R3). An
approximation proposed by Willis [29] consists in replacing the fundamental operator Γ0 by Γ∞, which is
the fundamental operator associated to the Laplace operator in an infinite domain. The motivation for this
approximation is that Γ∞ has a convenient analytic expression. The second term of a(τ, τ) is then replaced by:

∫

Ω

∫

Ω

τ(y) : Γ0(x,y) : τ(x)dydx ≈

∫

Ω

∫

Ω

τ(x) : Γ∞(x,y) :

(
τ(y)−

∫

Ω

τ(z)dz

)
dydx. (9)

Physically this approximation holds when the effects of the boundary conditions are negligible, i.e. when the
size of Ω is large. We obtain the new stationarity condition where τ∞ satisfies a∞(τ∞, τ̃) = b(τ̃) for all
τ̃ ∈ L2(Ω,R3), where

a∞(τ∞, τ̃) =

∫

Ω

τ̃(x) : (κ(x)− κ0)
−1 : τ∞(x)dx+

∫

Ω

∫

Ω

τ̃(y) : Γ∞(x,y) : τ∞(x)dydx (10)

−

(∫

Ω

τ̃(z)dz

)
:

(∫

Ω

∫

Ω

Γ∞(x,y) : τ∞(x)dydx

)
.

Remark 1.2. One can find in [10] a rigorous analysis of different approximations of a corresponding to a variety
of boundary conditions.

1.3. Assumptions on the microstructure and Galerkin approximation

Let us now suppose that the domain Ω is spherical and is composed of n spherical inclusions with diffu-
sion coefficient {κα}α∈{1,...,n} imbedded in an homogeneous matrix with diffusion coefficient κm. Under this
hypothesis, the diffusion coefficient writes:

κ(x) = κm +

n∑

α=1

χα(x)(κα − κm), (11)

where χα(x) is the indicator function of the αth inclusion. Moreover, let us choose a reference medium with the
same characteristics as the matrix, i.e. κ0 = κm. By relation (2) the polarization is zero in the matrix. As a
consequence we only need to find its value in the inclusions.

We present now the the equivalent inclusion method [19, 25, 29]. From a mathematical point of view, it
consists in finding the Galerkin approximation in a finite dimensional space that is piecewise constant function
on each inclusion : V h = R3 ⊗ span(χα)1≤α≤n ⊂ L2(Ω,R3). The coefficients τα ∈ R3, α ∈ {1, . . . , n}, of the
expansion τh(x) =

∑n
α=1 ταχα(x) satisfy the linear system

n∑

α=1

Aβατα = bβ ∀β ∈ {1, . . . , n}, (12)

where the 3-by-3 matrix blocs Aβα and the right hand side bβ ∈ R3 are:

Aβα = δβαfβ(κβ − κ0)
−1I3 +

∫

Ω

∫

Ω

Γ∞(x,y)χα(x)χβ(y)dxdy − fβ

∫

Ω

∫

Ω

Γ∞(x,y)χα(x)dxdy, (13)

bβ = fβE. (14)

Here, fβ =
∫
Ω
χβ(x)dx denotes the volume of the βth inclusion, and I3 the identity matrix in R3. As the domain

Ω and the inclusions are spherical, the two integrals in Aβα have an analytic expression. This property is an
advantage of the equivalent inclusion method since there is no numerical integration to be done.
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Remark 1.3. Note that the chosen approximation space leads to a crude approximation, since it does not
take into account the variations of the polarization in the inclusions. A more precise estimate could be reached
using a more refined approximation space, for example polynomial functions of fixed degree in each inclusion,
see [9, 23].

From the definition (13) it is clear that the matrix A is full. Numerical resolution of the linear system (12)
is then limited to a relatively small number of degrees of freedom when using classical resolution techniques.

2. H-matrix

In this section we recall the main properties of the hierarchical matrix format, also called H-matrix. This
format, first introduced by Hackbusch in [17], is an algebraic tool designed mainly to manage large linear systems
with fully populated matrices. For a more in-depth description, we refer to [5, 7]. This format as two main
advantages for numerical computation:

• it provides a controlled approximation of the matrix that reduces the memory requirements,
• all algebraic operations (matrix-vector product, LU-factorization, etc) can be accelerated compared to

the full storage.

2.1. Motivations

The H-matrix format can be introduced as a data-sparse approximation of matrices resulting from the
discretization of non local integral operators [18] of type:

∫

Ω

g(x,y)u(y)dy = f(x), ∀x ∈ Ω, (15)

where the kernel g (possibly singular) is assumed to be asymptotically smooth, that is to satisfy :

|∂α
x∂

β
yg(x,y)| ≤ C1(C2‖x− y‖)−|α|−|β||g(x,y)|, C1, C2 ∈ R with α, β ∈ Nd. (16)

We look for the weak solution u ∈ V (with V an appropriate Hilbert space) of problem (15) which satisfies
a(u, v) = b(v) for all v ∈ V , where a(·, ·) and b(·) are defined by :

a(u, v) =

∫

Ω

∫

Ω

g(x,y)v(x)u(y)dydx,

b(v) =

∫

Ω

f(x)v(x)dx.

Under classical assumptions on the kernel g(·, ·), the bilinear form a is coercive and (by the Lax-Milgram
lemma) the variational problem is well posed [18]. The Galerkin approximation uh on a finite element subspace
V h = span{φi}1≤i≤n (φi being shape functions with compact, localized support) is defined by the relation
uh =

∑n
i=1 Uiφi, where the coefficients {Ui}1≤i≤n are the solution of the linear system

AU = B, (17)

with Ai,j = a(φi, φj) and Bi = b(φi).
In order to motivate the following, let us consider two subsets of indices τ, σ ⊂ {1, . . . , n}, and Ωτ =

∪i∈τ supp(φi) and Ωσ = ∪i∈σsupp(φi) two clusters of Ω such that :

min{diam(Ωτ ), diam(Ωσ)} ≤ η dist(Ωτ ,Ωσ), (18)

with η > 0. This last condition is called the admissibility condition.
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,

Figure 1. Representation of two admissible clusters Ωτ and Ωσ (left) and the corresponding
block in the matrix A (right).

In such a situation (see figure 1), the restriction of the kernel g on Ωτ ×Ωσ usually has a low rank structure:
for any ε > 0 there exists k ∈ N, depending on ε and relatively small [16], and there exists pairs of functions

(h1
l , h

2
l ) ∈ L2(Ωτ ) × L2(Ωσ) with l ∈ {1, . . . , k} such that the sum g̃(x,y) =

∑k
l=1 h

1
l (x)h

2
l (y), called a k-rank

function, is such that:

‖g(x,y)− g̃(x,y)‖L2(Ωτ×Ωσ) ≤ ε‖g(x,y)‖L2(Ωτ×Ωσ). (19)

For example, g̃ can be expressed e.g. with a truncated Taylor series or an interpolation scheme, see [5,7]. The
existence of such a low rank approximation ensures that the block Aτ,σ also has a low rank structure. Indeed,
replacing g by g̃ in the definition of the block Aτ,σ, we obtain:

(Aτ,σ)i,j ≈

∫

Ω

∫

Ω

g̃(x,y)φσ(j)(x)φτ(i)(y)dydx

=

k∑

n=1

(∫

Ω

h1
n(x)φσ(j)(x)dx

)

︸ ︷︷ ︸
Bi,k

(∫

Ω

h2
n(y)φτ(i)(y)dy

)

︸ ︷︷ ︸
Cj,k

= (BCt)i,j .

Thus, for any ε > 0 there exists B ∈ R|σ|,k and C ∈ R|τ |,k with k small (i.e. k ≪ |σ| and k ≪ |τ |) such that:

‖Aτ,σ −BCt‖F ≤ ε‖Aτ,σ‖F , (20)

where ‖ · ‖F denotes the Frobenius norm, and we denote by | · | the cardinal of a set of indices. The storage
requirement of the approximation is k(|τ |+ |σ|), which is significantly lower than the |τ |.|σ| needed for the full
storage of Aτ,σ.

The H-matrix format relies on:

• a block partition of the matrix that contains blocks satisfying the admissibility condition (18),
• a low-rank approximation of those admissible blocks with respect to a given precision (20).

In the following, we present the classical procedure for the approximation of an integral operator in the H-matrix
format [5].

2.2. Cluster tree and block tree partition

A good block partition of A must contain a large number of admissible blocks [5]. Let I = {1, . . . , n} be the
set of indices of the degrees of freedom of (17). The first step is the creation of a so-called cluster tree partition
TI of I, defined in the following paragraph. Each node of that tree is a set of indices σ ⊂ I that corresponds
to a subdomain Ωσ = ∪i∈σsupp(φi) of Ω, so that TI equivalently define a partition tree of Ω. The creation of
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TI is so that the partition of Ω contains a large number of subdomains that are potentially admissible. The
second step is the detection of admissible blocks : if σ, τ ∈ TI are so that Ωσ and Ωτ satisfy (18), then those
indices corresponds to a block of A. In practice, the detection of admissible blocks is done recursively in order
to optimize the block partition of A. It results in a block tree partition presented in the next paragraph.

Remark 2.1. Only geometrical information is needed for the creation of the block partition.

Cluster tree partition. A tree TI , with nodes TI , is called a cluster tree if the following conditions hold :

(1) TI ⊂ P(I)\{∅}, i.e. each node of TI is a subset of the index set I,
(2) I is the root of TI ,
(3) If τ ∈ TI is a leaf, then |τ | ≤ Cleaf , i.e. the leaves consist of a relatively small number of indices,
(4) If τ ∈ TI is not a leaf, then it has two sons and their union is disjoint.

The cluster tree TI is recursively constructed with a function split. Starting from the root τ = I and from
an initial tree TI that contains only the root I, the algorithm proceeds as follow :

procedure TI =build cluster tree(τ, TI):
if |τ | ≥ Cleaf ,
[τ1, τ2] = split(τ),
add τ1, and τ2 in TI as sons of τ ,
call TI =build cluster tree(τ1, TI),
call TI =build cluster tree(τ2, TI),

end.

Remark 2.2. The value Cleaf = 15 classically leads to optimal computation time [5].

Note that the function [τ1, τ2] = split(τ) typically uses geometrical information to split the node τ . For
each index i ∈ τ , let xi be the center of the support of φi. For example, a well balanced tree can be obtained
with a geometric bisection on the collection of points xi, meaning that if xi is on one side of the corresponding
hyperplane, i will be assigned in τ1; otherwise in τ2. In figure 2 we illustrate the algorithm for the construction
of the cluster tree partition.

Figure 2. Construction of the cluster partitioning of Ω

Block tree partition. Given a cluster tree partition TI , the block tree partition BI,I of A is a tree that contains
at each node a pair (τ, σ) of indices of TI . The leaves of BI,I corresponds to admissible blocks (18). It can be
constructed by the following procedure (see figure 3) initialized with τ = σ = I and BI,I the block tree that
contains only the root (I, I):

procedure BI,I =build block tree(τ, σ,BI,I)
if (τ, σ) is not admissible, and |τ | ≥ Cleaf , and |σ| ≥ Cleaf

S = {(τ∗, σ∗), τ∗ son of τ, σ∗ son of σ},
add S in BI,I as son of (τ, σ),
for (τ∗, σ∗) ∈ S
BI,I =build block tree(τ∗, σ∗,BI,I)

end for
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end.

Figure 3. Construction of the block tree partition at level 1,2,3,4 of call of the build block tree

function. The green blocks are admissible : at the end, only blocks of size < Cleaf are not
admissible (pink). This matrix corresponds to a discretized 1D Laplace operator.

The complexity of algorithms for the creation of suitable cluster trees and block tree partitions has been
analyzed in detail in [16]. For typical quasi-uniform grids, a “good” cluster tree can be created in O(n log n)
operations, the computation of the block partition can be accomplished in O(n) operations.

2.3. Approximation of the blocks

We continue this presentation by giving here some details on the construction of a low-rank approximation
of each matrix block Aτ,σ. The truncated singular value decomposition (SVD) is the optimal decomposition
meaning that the relative precision ε of (20) is archieved with minimal rank kτ,σ. But the SVD procedure
requires the knowledge of the entire block Aτ,σ.

To reduce the computational cost, the adaptive cross approximation (ACA) algorithm constructs a low rank
approximation based on the knowledge of only a few particular rows and lines of the block. A first method for
choosing these rows and lines, called ACA with full pivoting, has been proposed in [28]. In particular, it results
in a quasi-optimal approximation. The drawback of this algorithm is that the determination of the ideal pivot
requires the knowledge of the entire block, as described in the next paragraph. In [3] the authors proposed a
different algorithm, called ACA with partial pivoting. In this case, the choice of the pivot is made in such a
way that fewer block entries are needed.

ACA with full pivoting. We consider a n-by-m matrix M . The adaptive cross approximation is a greedy

procedure on the approximation Mk =
∑k

ν=1 a
ν ⊗ bν of M . Each iteration consists in the following steps :

(1) Find the pivot (i∗, j∗) such that :

(i∗, j∗) = argmax
ij

|Mij −Mk
ij | (21)

(2) Compute the two vectors aki = (Mij∗ −Mk
ij∗)/(Mi∗j∗ −Mk

i∗j∗) and bkj = (Mi∗j −Mk
i∗j)

(3) Update the approximation Mk+1 = Mk + ak ⊗ bk.

The iterations are stopped when the desired precision is achieved using the condition (20).
In the general case there is no result on the rate of convergence. But when the matrix corresponds to a block

of an discretized integral operator with asymptotically smooth the kernel g, it is proved that the convergence
is exponential [5]. Moreover, this approximation is quasi-optimal. However the first step is to find the largest
matrix entry (full pivoting (21)), which, as for the SVD, requires the knowledge of the full matrix M . The ACA
algorithm with partial pivoting uses a different approach for the selection of the pivot (i∗, j∗) which enables a
significant reduction of the computational cost.
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ACA with partial pivoting. The idea of partial pivoting is to maximise |Mij −Mk
ij | only for one of the two

indices i or j and keep the other one fixed, i.e., we determine the maximal element in modulus in one particular
row or one particular column. The new pivoting strategy consists at each iteration in:

(1) For a given index i∗, find the index j∗ such that :

j∗ = argmax
j

|Mi∗j −Mk
i∗j | (22)

(2) Compute the two vectors aki = (Mij∗ −Mk
ij∗)/(Mi∗j∗ −Mk

i∗j∗) and bkj = (Mi∗j −Mk
i∗j)

(3) Update the approximation Mk+1 = Mk + ak ⊗ bk,
(4) Find the index i∗ such that :

i∗ = argmax
i

|Mij∗ −Mk
ij∗ | = argmax

i
|bkj | (23)

The stopping criterion (20) is replaced by a stagnation-based error estimator:

‖ak ⊗ bk‖F ≤ ε‖Mk‖F . (24)

The particularity of this algorithm is that we do not have to compute all matrix entries ofM . On the other hand,
convergence is not guaranteed: one can find in [7] several counterexamples where ACA with partial pivoting is
unable to reach the desired precision (20). Note that there exists a number of variants of this algorithm, such as
the improved ACA and the Hybrid Cross Approximation [5,7]: using additional heuristics, they try to improve
on some typical failures of the basic ACA algorithm. However we show with numerical examples in the next
section that the basic ACA algorithm seems sufficient for our application, provided that we use a well chosen
value of the admissibility condition parameter η, see (18).

3. Numerical results

We present in this section numerical results on the use of the H-matrix for the resolution of the equiva-
lent inclusion method. The library used for the H-matrix approximation is Ahmed [4], but others are also
available such as Hlib, Hlib-pro. This library provides all the necessary procedures to manage the H-matrix
approximation: cluster and block tree partition, ACA assembly, linear solvers, preconditioners... Five differ-
ent microstructures are studied and contain respectively 200, 1000, 2000, 3000 and 5000 spherical inclusions
randomly distributed, see figure 4. The coefficient diffusion of the matrix is 1, and 100 in the inclusions. Let
us denote by AH the H-matrix approximation of the equivalent inclusion matrix A (12). Note that the ACA
algorithm with partial pivoting is used for the computation of AH .

Figure 4. Representation of the five studied microstructures (200, 1000, 2000, 3000 and 5000
inclusions in a spherical domain).
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3.1. H-matrix approximation

In this paragraph we analyze the influence on the H-matrix approximation of the two parameters:

• the admissibility condition parameter η, see (18), and
• the prescribed accuracy for the block approximation ε, see (20).

The results presented on figure 5 show that η influences the block partition: smaller η leads to smaller size of
the admissible blocks. The choice of ε influences the rank of the approximation of the blocks: with small ε, the
ranks are lower and there are more full-storage blocks (red).
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(c) η = 0.8, ε = 1e−2
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(d) η = 0.8, ε = 5e−4

Figure 5. Representation of the H-matrix approximation of matrix A (200 inclusions) for
differents set of parameter ε and η. In each admissible block (green) the number corresponds
to the rank. Red blocks corresponds to a full storage.

For a given precision ε, we can not say a priori if the compression rate will be better when η is large (that
corresponds to larger blocks with higher rank) rather than small (which leads to smaller blocks with lower rank).
On figure 6 we see that η = 1.7 leads to an optimal compression rate, that is a compromise between the size of
the blocks and their rank.

Remark 3.1. Note that a good choice choice for η depends on the underlying integral equation, and more
precisely on the kernel g [5]. Thus η = 1.7 is not necessary the optimal choice for other integral equations.
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Figure 6. Memory consumption as function of η for different precisions ε (5000 inclusion).



ESAIM: PROCEEDINGS 11

3.2. Error analysis

We analyze here the error due to the H-matrix approximation. First we note that condition (20) implies
that the approximation AH has a relative error ε in the Frobenius norm: ‖A − AH‖F ≤ ε‖A‖F . Even if the
heuristic stopping criterion (24) of the ACA algorithm with partial pivoting does not ensure (20), the curves
of figure 7 shows that in our example, the precision ε is reached for AH . Since the Frobenius norm is not an
operator norm, we can not directly control the error on the solution by ε. Denote by UH the solution of the
linear system:

AHUH = B. (25)

We use here a preconditioned conjugate gradient to solve (25). The preconditioner is an incomplete H-LU
factorization [5]. The iterations are stopped when the residual norm archive a tolerance of 10−14. We see on
figure 7, using the geometry with 5000 inclusions, that the error on the solution ‖U −UH‖/‖U‖ is proportional
to ε. This means that if we want an approximation of the solution with respect to a prescribed accuracy, we
can impose in practice the same accuracy on the H-matrix approximation of the operator.
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Figure 7. Relative error in the Frobenius norm for the approximation of the operator (left)
and relative error on the approximation of the solution (right) as function of ε (5000 inclusions).

3.3. Scalability

We assess now the ability of the H-matrix to solve the equivalent inclusion equation for a large number of
inclusions. Figure 8a shows the memory size for the approximation AH for different precision ε, with η = 1.7.
We observe that the memory scales as O(N1.4) where N denotes the number of inclusion. In comparison with
the memory scaling as N2 which is necessary when using the usual full storage, we see that the H-matrix has
a better scaling. In particular, for N = 5000, the memory for the H-matrix approximation represent only 8.7%
of the memory needed for the full storage.

Furthermore, we present on figure 8b the computational timings on a laptop with a 2.5GHz Intel Centrino 2
for:

(1) the creation of the H-matrix approximation using ACA with partial pivoting,
(2) the computation of the H−LU preconditioner,
(3) the resolution of the system by a preconditioned conjugate gradient.

We observe that the assembly of the matrix (ACA) is the dominating factor. Also the total timing scales almost
linearly with N .
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Figure 8. Evolution of computational time and memory requirement as function of the num-
ber of inclusion.

4. Reformulation as a boundary integral problem and the BEM method

We propose now to study a second application of the hierarchical matrix format to solving periodic corrector
problems arising in homogenization. This new approach relies on a different formulation of the corrector
problem. Rather than using the Lippman–Schwinger equation presented in Section 1, we write a boundary
integral problem equivalent to the original corrector problem (1) with periodic boundary conditions.

4.1. Motivation

The equivalent inclusion method presented in the previous sections is interesting by its simplicity: the use
of analytic expressions makes for a simple formulation with a variational interpretation as a Galerkin approach
which yields a bound for the effective modulus [9]. However, the use of one degree of freedom per inclusion is
insufficient to obtain a reasonable approximation in materials with densely packed inclusions, which is the case
for many applications such as modeling concrete. Indeed, the error resulting from this method is unknown and
cannot be directly improved. It is thus necessary to improve on this approach to obtain a better estimate of
the effective parameters of the homogenized material.

One possible improvement suggested in [23] is to use polynomial approximations of increasing degree inside
each inclusion as a Galerkin method. Analytic expressions can still be derived to account for the interactions
between inclusions, but the resulting estimate is biased by the use of different boundary conditions implied by
the approximation of the Green’s function (9).

We propose to study here as an alternative a rather different approach which is based on the classical refor-
mulation of elliptic boundary value problems as boundary integral equations, which can be solved numerically
by the use of boundary element methods (BEM). These methods are known to easily handle jumps in the
parameters in a complicated geometry, avoid having to discretize the entire domain in a manner that accu-
rately resolves the geometry of the inclusions, can achieve rapid convergence, and have a robust mathematical
foundation [2, 20].

Up to our knowledge, this work is the first attempt at applying the boundary element method to correc-
tor problems arising in periodic or random homogenization. Specific difficulties in this framework involve in
particular dealing with:

• periodic boundary conditions,
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• a three-dimensional setting,
• complex geometries involving large numbers of randomly distributed inclusions in a representative pe-

riodic cell.

A closely related problem is the calculation of band structure in periodic crystals or materials, to which boundary
integral methods have been recently applied, see e.g. [30]. In particular, our approach is inspired by ideas
proposed in [2] in a two-dimensional setting.

4.2. Reformulation of the corrector problem as a boundary integral problem

In this section we derive a boundary integral formulation for the corrector problem associated to the Laplace
equation. Let Ω = (−1/2, 1/2)d be an open unit periodic cell in Rd, d = 2, 3. We decompose Ω as a set of closed
inclusions Ωint ⊂ Ω and a connected matrix Ωext = Ω \ Ωint, see figure 9. Let Γ = ∂Ωint be the boundary of
the set of inclusions.

Figure 9. Example of the geometry of a set of inclusions.

Remark 4.1. It is not necessary to suppose that the inclusions are distributed strictly inside the periodic cell.

Let κ(x) be a scalar diffusion coefficient which takes two different values κint, κext > 0 respectively in the
inclusions and in the matrix:

κ(x) =

{
κint in Ωint,

κext in Ωext.
(26)

As in Section 1, we are interested in the periodic corrector u ∈ H1(Ω)/R solution of the following boundary
value problem: {

−div(κ(E +∇u)) = 0, in Ω,

u is Ω-periodic.
(27)

It is well–known that problem (27) has a unique solution, see e.g. [1]. Note that the solution u is harmonic in
Ω \ Γ and satisfies continuity conditions:

u, κ(∇u+ E) · next continuous across Γ, (28)

where next is the exterior normal to Γ. An elegant approach for the integral representation of periodic fields
involves the use of the Green’s function satisfying the periodic boundary conditions exactly. Let δ0 be the Dirac
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delta function centered at the origin. The periodic Green’s function Gper is then defined by −∆Gper = δ0−1 over
Ω (note that the right-hand side must have zero mean over the periodic cell). Let us introduce the single-layer
potential [20] as an operator H−1/2(Γ) → H1(Ω) defined by:

(ΨSLσ)(x) =

∫

Γ

Gper(x− y)σ(y)ds(y) for x ∈ Ω \ Γ. (29)

We can represent the solution to the PDE problem (27) as u = ΨSLσ with a single-layer density σ. It remains
to solve for the density σ ∈ H−1/2(Γ) so that the matching conditions (28) are satisfied. We use the standard
jump relations for single layer potential [20] to write

κext (−1/2Id+K ′
0)σ − κint (1/2Id+K ′

0)σ = −(κext − κint)E · next on Γ, (30)

where Id is the identity operator and K ′
0 is the adjoint double layer boundary integral operator H−1/2(Γ) →

H1/2(Γ) formally defined as:

(K ′
0σ)(x) =

∫

Γ

σ(y)∇xGper(x− y) · next(y)ds(y). (31)

Finally, we obtain the following boundary integral equation:

(
κext + κint

κext − κint
Id−K ′

0

)
σ = E · next, (32)

where the operator appearing on the left–hand side is a compact perturbation of the identity.

Remark 4.2. Note that this reformulation is quite different from the Lippmann–Schwinger integral equation
presented in Section 1: we have not introduced a reference medium and the integrals are defined on the boundary
of the inclusions instead of the whole volume. There is also no equivalent to the Hashin–Shtrikman variational
principle in this new setting.

4.3. Solution with the Boundary Element Method and numerical results

Since the goal of this study is to explore the use of the hierarchical matrix format in the context of the
solution of the corrector problem, we do not fully detail here the numerical discretization method and we refer
to a forthcoming paper [11] for the full description of the approach. We limit ourselves to the case of a smooth
boundary Γ in dimension d = 3.

4.3.1. Discretization

To solve numerically the boundary integral equation (32), we propose to use the classical Boundary Element
Method. Note that this approach gives rise to full matrices for the representation of the operators, and to
reduce the complexity of the computation, compression techniques such as multipole expansions (e.g. the fast
multipole method) or hierarchical matrices can be used; this latter approach is investigated here.

A Galerkin approach is used to discretize (32) given a mesh of the boundary Γ. Functions in H−1/2(Γ) are
approximated by constant-by-cell functions. The main difficulty is the computation of values of the periodic
Green’s function necessary to the discretization of the boundary integral operator K ′

0 defined by (31). Indeed,
while the free–space Green’s function is given by an explicit expression, as seen in Section 1, the periodic Green’s
function is not known explicitely. It is rather given by a Fourier series,

Gper(x) =
∑

k∈Zd; k 6=0

e2iπk·x

|k|2
.



ESAIM: PROCEEDINGS 15

Because such sums converge too slowly to be numerically useful, a number of schemes have been devised for
their evaluation, see e.g. [8, 14]. We use here a different, new approach, based on an idea proposed recently by
Barnett and Greengard [2] for the Helmholtz two–dimensional case. Observe that the periodic Green’s function
can be represented in Ω as

Gper(x) = G∞(x) +
|x|2

6
+Gr

per(x), (33)

where G∞ is the free-space Green’s function, introduced in section 1.2, and Gr
per, the ”regular” part of the

periodic Green’s function, is a smooth, harmonic function in Ω. It can thus be expanded on the basis of the
solid spherical harmonics as a series converging uniformly in Ω:

Gr
per(x) =

∞∑

l=0

l∑

m=−l

αm
l Φm

l (x), (34)

where Φm
l is the regular solid harmonics of degree l and order m and the αm

l are scalar coefficients. An
approximation to Gr

per can then be computed by truncating the expression (34) up to some degree L ∈ N, given
that we tabulate beforehand the coefficients of the expansion αm

l for l ≤ L.

0 5 10 15 20 25 30 35 40
10

−18

10
−14

10
−10

10
−6

10
−2

Maximal degree of spherical harmonics in the expansion

A
b
so

lu
te

er
ro

r

Error to G̃r
per

Error to Gr

per

Figure 10. Convergence in absolute error, sampled in Ω, for the periodic Green’s function scheme.

To achieve this, we construct a small linear system that enables us to compute an approximation to the
coefficients αm

l easily, as in [2], section 3.2. The general idea is to enforce numerically the periodic boundary
conditions on the approximation to Gper based on the representation (33) and (34). In practice, we use a least–
squares algorithm, minimizing the L2-norm of the deviation from periodicity of the function and its normal
derivative on ∂Ω, sampled at Gaussian quadrature points. We refer to the forthcoming paper [11] for a more
complete description and analysis of this method.

This method, implemented in Matlab, allows us to achieve an exponential convergence rate as shown by the
green curve in figure 10. It can be further accelerated by removing from the regular part Gr

per copies of the
free-space Green’s function centered in the nearest neighbor cells. We then compute and use the coefficients βm

l

in the following expansion:

G̃r
per(x) =

∞∑

l=0

l∑

m=−l

βm
l Φm

l (x) = Gper(x)−
∑

m∈{−1,0,1}3

G∞

(
x+

3∑

i=1

miei

)
−

|x|2

6
, (35)

where the ei are the vectors of the standard basis of R3. The convergence rate is much improved as seen in
figure 10. We use this approximation below, fixing L = 9.
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4.3.2. Implementation
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Figure 11. Representation of the reconstructed field of the corrector u, computed by the
boundary element method for the three studied microstructures.

We present here some numerical results to illustrate this new method for the resolution of the corrector
problem. For the implementation, we used the open-source boundary element library BEM++ [27] interfaced
with the library Ahmed [4] for an efficient representation of the discretized integral operators by H-matrices.
All timings are reported for a laptop running the Python / C++ code with a 2.7 GHz Intel Core i7 CPU. Three
different microstructures are studied containing respectively 42, 98 and 203 randomly distributed inclusions,
with nine different meshes ranging from 1344 to 89140 elements. The diffusion coefficient κ takes the value 1
in the matrix and 100 in the inclusions. The precision used for the H-matrix compression with ACA algorithm
(see section 2) is set to ε = 1e− 3.



ESAIM: PROCEEDINGS 17

mesh size Case storage compression ACA time solver
44784 triangles Free-space 615 Mb / 15301 MB 4.02% 63s 76s
44784 triangles Periodic 1012 Mb / 15301 MB 6.6% 3146s 118s
89140 triangles Free-space 1374 MB / 60622 MB 2.26% 128s 190s
89140 triangles Periodic 2210 MB / 60622 MB 3.6% 6402s 288s

Table 1. Data for the solution of the boundary element problem in a geometry with 203 inclusions

Some graphical representations of the solution are shown in figure 11. In particular, we can observe the
perturbation on the corrector field induced by the periodic copies of the inclusions where the diffusion coefficient
is much higher than in the matrix.

4.4. Analysis of the H-matrix approximation efficiency

We finally investigate here the scalability of the boundary element approach presented above. As a bench-
mark, we will also include results obtained with the same data, but replacing the periodic by the free-space
Green’s function. The behavior and scaling of the method with the number of degrees of freedom is well-known
in this case, see e.g. [27].

We present in table 1 some data collected during the calculations. We observe that the memory storage for the
H-matrix representing the integral operator as well as the time used by the solver is slightly increased, but stays
of the same order of magnitude in the periodic case in comparison to the benchmark free-space computation.
By contrast, the assembly time through the ACA algorithm is much higher in the periodic case. This is due to
the much higher cost of evaluation of the periodic Green’s function using the representation (33).

Figure 12 illustrates however that the scaling in performance with problem size is independent of the kernel
and also of the number of inclusions in the computational geometry: in all cases we observe a memory and time
cost scaling approximately as O(N1.3).
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Figure 12. Computational cost scaling as a function of mesh size for the periodic and the
free-space cases.

5. Conclusion

The H-matrix technique has been successfully applied for the resolution of integral equations arising from
corrector problem of thermal homogenization. The gain of memory and of computational costs provided by the
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H-matrix format has allowed to deal with a very large number of degrees of freedom in the simulation. With
respect to the equivalent inclusion method, we have shown the feasibility of solving the problem with large
numbers of inclusions. However, a more refined discretization of the polarization field is necessary in order to
provide accurate predictions of the effective properties, rather than further adding inclusions in the RVE. We
refer to [9] for details in this direction, for which the H-matrix approach should remain very effective.

We have also proposed a new approach to the solution of the corrector problem by the use of boundary
integral equations. The first results are very promising, and we hope to further develop this method which will
be presented in details and compared to existing approaches in [11].
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