ON UNITAL C(X)-ALGEBRAS AND C(X)-VALUED CONDITIONAL EXPECTATIONS OF FINITE INDEX

ETIENNE BLANCHARD AND ILJA GOGIĆ

ABSTRACT. Let X be a compact Hausdorff space and let A be a unital C(X)algebra, where C(X) is embedded as a unital C^* -subalgebra of the centre of A. We consider the problem of characterizing the existence of a conditional expectation $E : A \to C(X)$ of finite index in terms of the underlying C^* -bundle of A over X. More precisely, we show that if A admits a C(X)-valued conditional expectation of finite index, then A is necessarily a continuous C(X)-algebra, and there exists a positive integer N such that every fibre A_x of A is finitedimensional, with dim $A_x \leq N$. We also give some sufficient conditions on A that ensure the existence of a C(X)-valued conditional expectation of finite index.

1. INTRODUCTION

Let $B \subseteq A$ be two unital C^* -algebras with the same unit element. A *conditional* expectation (abbreviated by C.E.) from A to B is a completely positive contraction $E: A \to B$ such that E(b) = b for all $b \in B$, and which is B-bilinear, i.e.

$$E(b_1ab_2) = b_1E(a)b_2$$

for all $a \in A$ and $b_1, b_2 \in B$. By a result of Y. Tomiyama (see [22, Theorem 1] or [4, Theorem II.6.10.2]), a map $E : A \to B$ is a C.E. if and only if E is a projection of norm one.

If $E(a^*a) = 0$ $(a \in A)$ implies a = 0, E is said to be *faithful*. Every faithful conditional expectation $E : A \to B$ introduces a pre-Hilbert *B*-module structure on *A*, whose inner product is defined by

(1.1)
$$\langle a_1, a_2 \rangle_E := E(a_1^*a_2) \quad (a_1, a_2 \in A).$$

The notion of finite index was introduced by V. F. R. Jones [14] in order to classify the subfactors of a type II₁ factor. Soon afterwards H. Kosaki [16] extended the Jones index theory to arbitrary factors. In order to generalize the results of [14, 16], M. Pimsner and S. Popa introduced in [19, 20] a definition for conditional expectations of finite index in the context of W^* -algebras: There must exist a constant $K \ge 1$ such that the map $K \cdot E - id_A$ is positive on A. Then, following the idea of M. Baillet, Y. Denizeau and J.-F. Havet (see [3]), the index of E can be defined in the following way: Since the map $K \cdot E - id_A$ is positive, E defines a (complete) Hilbert B-module structure on A, with respect to the inner product

Date: October 24, 2013.

²⁰¹⁰ Mathematics Subject Classification. Primary 46L65; Secondary 46L05, 55R05.

Key words and phrases. C(X)-algebra, C^* -bundle, conditional expectation of finite index, non-commutative branched covering.

(1.1). If $\{x_i\}$ is a quasi-orthonormal basis in A, the *index* of E is the sum $\sum_{i=1}^{\infty} x_i^* x_i$, with respect to the ultraweak topology.

Y. Watatani also considered C.E. of (algebraically) finite index, when the original C^* -algebra A is a finitely generated Hilbert C^* -module over B (see [23]).

The results of M. Baillet, Y. Denizeau and J.-F. Havet in [3] also indicated that there might occur some difficulties in order to extend the notion of "finite index" for conditional expectations of C^* -algebras with arbitrary centres. However, this problem was solved by M. Frank and E. Kirchberg in [11]. The main result of their paper is [11, Theorem 1]:

Theorem 1.1 (M. Frank and E. Kirchberg). For a C.E. $E : A \to B$, where $B \subseteq A$ are unital C^{*}-algebras with the same unit element, the following conditions are equivalent:

- (i) There exists a constant $K \ge 1$ such that the map $K \cdot E id_A$ is positive.
- (ii) There exists a constant $L \ge 1$ such that the map $L \cdot E id_A$ is completely positive.
- (iii) A becomes a (complete) Hilbert B-module when equipped with the inner product (1.1).

Moreover, if

 $K(E) := \inf\{K \ge 1 : K \cdot E - \mathrm{id}_A \text{ is positive}\},\$

 $L(E) := \inf\{L \ge 1 : L \cdot E - \operatorname{id}_A \text{ is completely positive}\},\$

with $K(E) = \infty$ or $L(E) = \infty$ if no such number K or L exists, then

 $K(E) \le L(E) \le \lfloor K(E) \rfloor K(E),$

where $\lfloor \cdot \rfloor$ denotes the integer part of a real number.

The importance of this result is that it gives the right general definition for conditional expectations on C^* -algebras to be of finite index:

Definition 1.2. If $B \subseteq A$ are two unital C^* -algebras with the same unit element, then a C.E. $E : A \to B$ is said to be of *finite index* (abbreviated C.E.F.I.) if E satisfies one of the equivalent conditions of Theorem 1.1.

In this case the index value of E can be calculated in the enveloping von Neumann algebra A^{**} (see [11, Definition 3.1]).

For a unital inclusion $A\subseteq B$ of unital $C^*\text{-algebras}$ we introduce the following constant

 $K(A,B) := \inf\{K(E) : E : A \to B \text{ is C.E.F.I.}\},\$

with $K(A, B) = \infty$, if no such C.E.F.I. exists. This constant will play an important role in this paper.

More recently, A. Pavlov and E. Troitsky considered in [17] the problem of existence of a C.E.F.I. $E : C(Y) \to C(X)$ for a unital inclusion $\varphi : C(X) \to C(Y)$ of unital commutative C^* -algebras. The main result of their paper is [17, Theorem 1.1], which shows that such a C.E.F.I. exists if and only if the transpose map $\varphi_* : Y \to X$ is a branched covering. This means that φ_* is an open map with uniformly bounded number of pre-images (i.e. $\sup_{x \in X} |\varphi_*^{-1}(x)| < \infty$). This result motivated A. Pavlov and E. Troitsky to define the noncommutative branched coverings, as unital inclusion $B \subseteq A$ of unital C^* -algebras such that there exists a C.E.F.I. from A to B (see [17, Definition 1.2]).

 $\mathbf{2}$

Using the above inclusion $\varphi : C(X) \hookrightarrow C(Y)$ we may consider C(Y) as a C(X)algebra. Then the map φ_* is open if and only if C(Y) is a continuous C(X)algebra, and φ_* has uniformly bounded number of pre-images if and only if C(Y) is subhomogeneous C(X)-algebra. This means that there exists a positive integer Nsuch that every fibre $C(Y)_x$ of C(Y) is finite-dimensional with dim $C(Y)_x \leq N$ (see Section 2). Therefore, we can restate [17, Theorem 1.1] in terms of C(X)-algebras as follows:

Theorem 1.3 (A. Pavlov and E. Troitsky). Let A be a unital commutative C(X)-algebra, where C(X) is embedded as a unital C^* -subalgebra of A. Then A admits a C(X)-valued C.E.F.I. if and only if A is a continuous subhomogeneous C(X)-algebra.

The purpose of the present paper is to consider a possible extension of Theorem 1.3 to the case when A is an arbitrary (not necessarily commutative) unital C(X)-algebra. The necessary condition for the existence of a C(X)-valued C.E.F.I. appears to be identical to the one of Theorem 1.3:

Theorem 1.4. Let A be a unital C(X)-algebra, where C(X) is embedded as a unital C^* -subalgebra of the centre of A. If A admits a C(X)-valued C.E.F.I., then A is a continuous subhomogeneous C(X)-algebra. Moreover, in this case the following inequality holds:

$$K(A, C(X)) \ge r(A),$$

where r(A) is the rank of A, i.e.

$$r(A) = \max\left\{\sum_{[\pi_x]\in\widehat{A_x}} \dim \pi_x : x \in X\right\}.$$

We shall prove Theorem 1.4 in Section 3. At the moment we do not know if the converse of Theorem 1.4 also holds. However, if all the fibres of a continuous unital C(X)-algebra A are *-isomorphic to the same finite-dimensional C*-algebra (i.e. A is a homogeneous C(X)-algebra), then there exists a unique C.E. $E: A \to C(X)$ such that the map $r(A) \cdot E - \mathrm{id}_A$ is positive (Proposition 3.4). In particular, we have the equality K(A, C(X)) = r(A) in this case. Also, a direct consequence of this fact is that any unital C(X)-algebra A which can be embedded as a C(X)subalgebra of some continuous homogeneous unital C(X)-algebra also admits a C(X)-valued C.E.F.I. However, this embedding condition is not necessary for the existence of such C.E.F.I. Indeed, there exists a continuous unital C(X)-algebra A over a second-countable compact Hausdorff space X with fibres $M_2(\mathbb{C})$ or \mathbb{C} which admits a C(X)-valued C.E.F.I., but which cannot be embedded as a C(X)subalgebra into any continuous homogeneous unital C(X)-algebra (Example 3.6). At the end of this paper we also show that any continuous unital C(X)-algebra A of rank 2 admits a C.E. $E: A \to C(X)$ such that the map $2 \cdot E - id_A$ is positive (Proposition 3.7). In particular, the equality K(A, C(X)) = r(A) also holds in this class of C(X)-algebras.

2. NOTATION AND PRELIMINARIES

Throughout this paper A will be a C^* -algebra. We denote by A_{sa} and A_+ the self-adjoint and the positive parts of A. The centre of A is denoted by Z(A). By

A and $\operatorname{Prim}(A)$ we respectively denote the *spectrum* of A (i.e. the set of all classes of irreducible representations of A) and the *primitive spectrum* of A (i.e. the set of all primitive ideals of A), equipped with the Jacobson topology. By a *dimension* of $[\pi] \in \hat{A}$, which is denoted by $\dim \pi$, we mean the dimension of the underlying Hilbert space of some representative of $[\pi]$.

Let X be a compact Hausdorff space. For each point $x \in X$ let

$$C_x(X) := \{ f \in C(X) : f(x) = 0 \}$$

be the corresponding maximal ideal of C(X).

Definition 2.1. A C(X)-algebra is a C^* -algebra A endowed with a unital *homomorphism ψ_A from C(X) to the centre of the multiplier algebra of A.

Remark 2.2. Given $f \in C(X)$ and $a \in A$, we write fa for the product $\psi_A(f) \cdot a$ if no confusion is possible.

There is a natural connection between C(X)-algebras and upper semicontinuous C^* -bundles over X. We first give a formal definition of such bundles:

Definition 2.3. Following [24] by an *upper semicontinuous* C^* -bundle we mean a triple $\mathfrak{A} = (p, \mathcal{A}, X)$ where \mathcal{A} is a topological space with a continuous open surjection $p : \mathcal{A} \to X$, together with operations and norms making each fibre $\mathcal{A}_x := p^{-1}(x)$ into a C^* -algebra, such that the following conditions are satisfied:

- (A1) The maps $\mathbb{C} \times \mathcal{A} \to \mathcal{A}$, $\mathcal{A} \times_X \mathcal{A} \to \mathcal{A}$, $\mathcal{A} \times_X \mathcal{A} \to \mathcal{A}$ and $\mathcal{A} \to \mathcal{A}$ given in each fibre by scalar multiplication, addition, multiplication and involution, respectively, are continuous ($\mathcal{A} \times_X \mathcal{A}$ denotes the Whitney sum over X).
- (A2) The map $\mathcal{A} \to \mathbb{R}$, defined by norm on each fibre, is upper semicontinuous.
- (A3) If $x \in X$ and if (a_{α}) is a net in \mathcal{A} such that $||a_{\alpha}|| \to 0$ and $p(a_{\alpha}) \to x$ in X, then $a_{\alpha} \to 0_x$ in \mathcal{A} $(0_x$ denotes the zero-element of \mathcal{A}_x).

If "upper semicontinuous" in (A2) is replaced by "continuous", then we say that \mathfrak{A} is a *continuous* C^* -bundle.

By a section of an upper semicontinuous C^* -bundle \mathfrak{A} we mean a map $s : X \to \mathcal{A}$ such that p(s(x)) = x for all $x \in X$. We denote by $\Gamma(\mathfrak{A})$ the set of all continuous sections of \mathfrak{A} . Then $\Gamma(\mathfrak{A})$ becomes a C(X)-algebra with respect to the natural pointwise operations and sup-norm.

On the other hand, given a C(X)-algebra A, one can always associate an upper semicontinuous C^* -bundle \mathfrak{A} over X such that $A \cong \Gamma(\mathfrak{A})$, as follows. Set $J_x := C_x(X) \cdot A$ and note that J_x is a closed two-sided ideal in A (by Cohen factorization theorem [7], [6, Theorem A.6.2])). The quotient $A_x := A/J_x$ is called the *fibre* at the point x, and we denote by a_x the image in A_x of an element $a \in A$. Let

$$\mathcal{A} := \bigsqcup_{x \in X} A_x,$$

and let $p : \mathcal{A} \to X$ be the canonical associated projection. For $a \in A$ we define the map $\hat{a} : X \to \mathcal{A}$ by $\hat{a}(x) := a_x$, and let $\Omega := \{\hat{a} : a \in A\}$. Since for each $a \in A$ we have

$$||a_x|| = \inf\{||[1 - f + f(x)] \cdot a|| : f \in C(X)\},\$$

the norm function $x \mapsto ||a_x||$ is upper semicontinuous on X. Hence, by Fell's theorem [24, Theorem C.25] there exists a unique topology on \mathcal{A} for which $\mathfrak{A} := (p, \mathcal{A}, X)$ becomes an upper semicontinuous C^* -bundle such that $\Omega \subseteq \Gamma(\mathfrak{A})$. Moreover, by Lee's theorem [24, Theorem C.26], $\Omega = \Gamma(\mathfrak{A})$, and the generalized Gelfand transform $\mathcal{G} : a \in A \mapsto \hat{a} \in \Gamma(\mathfrak{A})$, is an isomorphism of C(X)-algebras, from A onto $\Gamma(\mathfrak{A})$.

Definition 2.4. Let A be a C(X)-algebra. If all the norm functions $x \mapsto ||a_x||$ $(a \in A)$ are continuous on X, we say that A is a *continuous* C(X)-algebra.

Note that the C(X)-algebra A is continuous if and only if \mathfrak{A} is continuous as a C^* -bundle.

The C^* -algebra A is said to be

- (*n*-)homogeneous ($n \in \mathbb{N}$), if dim $\pi = n$ for all $[\pi] \in \widehat{A}$,
- (*n*-)subhomogeneous $(n \in \mathbb{N})$, if $\sup_{[\pi]\in \widehat{A}} \dim \pi = n$.

We shall now define the similar notions for C(X)-algebras. To do this, first recall that if D is a finite-dimensional C^* -algebra, then there is a finite number of central pairwise orthogonal projections $p_1, \ldots, p_m \in Z(D)$ with $\sum_{i=1}^m p_i = 1_D$, such that

$$(2.1) D = p_1 D \oplus \dots \oplus p_m D,$$

and each $p_i D$ is *-isomorphic to the matrix algebra $M_{n_i}(\mathbb{C})$ (see e.g. [21, Theorem I.11.9]). We define the *rank* of D as

$$r(D) := \sum_{i=1}^{m} n_i = \sum_{[\pi] \in \hat{D}} \dim \pi.$$

Definition 2.5. Let A be a C(X)-algebra. We say that A is

- homogeneous all the fibres of A are *-isomorphic to the same finite-dimensional C^* -algebra.
- subhomogeneous if there exists a positive integer N such that every fibre A_x of A is finite-dimensional with dim $A_x \leq N$.

Remark 2.6. Let A be a C(X)-algebra.

(i) A is subhomogeneous if and only if

$$r(A) := \sup\{r(A_x) : x \in X\} < \infty$$

As in the finite-dimensional case, we call the number r(A) the rank of A.

(ii) If A is continuous and homogeneous, then by [10, Lemma 3.1] the underlying C^* -bundle \mathfrak{A} is locally trivial.

3. Results

Remark 3.1. If A is a unital C(X)-algebra, we always assume in this section that the map $\psi_A : C(X) \to Z(A)$ is injective, so that we can identify C(X) with the unital C^* -subalgebra $\psi_A(C(X))$ of Z(A).

In order to prove Theorem 1.4 we shall need the following two auxiliary results.

Lemma 3.2. Let D be a unital C^{*}-algebra. Then $K(D, \mathbb{C}) := K(D, \mathbb{C}1_D) < \infty$ if and only if D is finite-dimensional. In this case we have:

 (i) The constant K(ω) is finite for every faithful state ω on D, which we identify with the corresponding faithful C.E.

$$d \in D \mapsto \omega(d) \cdot 1_D \in \mathbb{C} \cdot 1_D \quad (d \in D).$$

(ii) $K(D, \mathbb{C}) = r(D)$. Moreover, there exists a unique state τ on D such that

(3.1)
$$r(D) \cdot \tau(d) \mathbf{1}_D \ge d \text{ for all } d \in D_+$$

Proof. The equivalence $K(D, \mathbb{C}) < \infty \Leftrightarrow \dim D < \infty$ follows from [13, Lemma 4.5]. Hence, suppose that D is finite-dimensional and let ω be a faithful state on D. The proof will now proceed in two steps.

Step 1. Assume that D is simple, i.e. $D = M_n(\mathbb{C})$ for some n. If $\operatorname{tr}(\cdot)$ is the standard trace of $M_n(\mathbb{C})$, then there exists a strictly positive matrix $a \in M_n(\mathbb{C})$ with $\operatorname{tr}(a) = 1$ such that

$$\omega(d) = \operatorname{tr}(ad) \quad (d \in M_n(\mathbb{C})).$$

Let $a = u^* \cdot \operatorname{diag}(\lambda_1, \ldots, \lambda_n) \cdot u$ be a diagonalisation of a, where $u \in M_n(\mathbb{C})$ is a unitary and $\lambda_1, \ldots, \lambda_n > 0$ are the eigenvalues of a. Then for all $d \in M_n(\mathbb{C})$ one has

(3.2)
$$\omega(u^*du) = \operatorname{tr}(au^*du) = \operatorname{tr}(uau^*d) = \operatorname{tr}(\operatorname{diag}(\lambda_1, \dots, \lambda_n)d).$$

The constant $K(\omega)$ is by definition the smallest $K \ge 1$ satisfying

(3.3)
$$K \cdot \omega(d) \mathbf{1}_D \ge d \text{ for all } d \in D_+.$$

Thus, (3.2) and (3.3) for rank 1 projections in D imply that

$$K(\omega) = \max\{\lambda_i^{-1} : 1 \le i \le n\}.$$

As $1 = \omega(1) = \sum_{i=1}^{n} \lambda_i$, one has $K(\omega) \ge n$ for any faithful state ω on D. Also, $K(\omega) = n$ if and only if $\omega = \tau := \frac{1}{n} \operatorname{tr}(\cdot)$. In particular, if $D = M_n(\mathbb{C})$, we have $K(D, \mathbb{C}) = r(D) = n$, and τ is the unique state on D satisfying (3.1).

Step 2. Suppose that D is an arbitrary finite-dimensional C*-algebra. We decompose D as in (2.1). For each $1 \le i \le m$

$$\omega_i(p_i d) := \frac{1}{\omega(p_i)} \cdot \omega(p_i d) \quad (d \in D)$$

defines a faithful state on p_iD . By Step 1 we have $n_i \leq K(\omega_i) < \infty$ for all $1 \leq i \leq m$. Put

$$K_{\omega} := \max\left\{\frac{K(\omega_i)}{\omega(p_i)} : 1 \le i \le m\right\}.$$

We claim that $K(\omega) = K_{\omega}$. Indeed, for all $d \in D_+$ we have

$$K_{\omega} \cdot \omega(d) \mathbf{1}_{D} = \sum_{i=1}^{m} K_{\omega} \cdot \omega(p_{i}) \omega_{i}(p_{i}d) \mathbf{1}_{D} \ge \sum_{i=1}^{m} K(\omega_{i}) \cdot \omega_{i}(p_{i}d) p_{i}$$
$$\ge \sum_{i=1}^{m} p_{i}d = d,$$

which shows $K(\omega) \leq K_{\omega}$. On the other hand, for each $d \in D_+$ we have

$$[\omega(p_i)K(\omega)] \cdot \omega_i(p_id)p_i \ge p_id$$

so that

(3.4)
$$\omega(p_i)K(\omega) \ge K(\omega_i) \quad (1 \le i \le m).$$

This shows $K(\omega) = K_{\omega}$, as wanted. Also,

$$K(\omega) = \sum_{i=1}^{m} \omega(p_i) K(\omega) \ge \sum_{i=1}^{m} K(\omega_i) \ge \sum_{i=1}^{m} n_i = r(D),$$

so that $K(D, \mathbb{C}) \ge r(D)$.

It remains to show that there exists a unique state τ on D satisfying (3.1). To do this, suppose that r(D) = n, and for each $1 \leq i \leq m$ let τ_i be the only faithful tracial state on $p_i D \cong M_{n_i}(\mathbb{C})$. Define the state τ on D by

(3.5)
$$\tau(d) := \frac{1}{n} \sum_{i=1}^{m} n_i \cdot \tau_i(p_i d) \quad (d \in D).$$

As $\tau(p_i) = \frac{n_i}{n}$ and $K(\tau_i) = n_i$ for all $1 \le i \le m$, we have $K(\tau) = K_{\tau} = n$. In particular, $K(D, \mathbb{C}) = n = r(D)$.

To show the uniqueness of this state τ , suppose that ω is another state on D with $K(\omega) = n$. Then using (3.4) we have

$$\sum_{i=1}^{m} K(\omega_i) \le \sum_{i=1}^{m} \omega(p_i) K(\omega) = K(\omega) = n.$$

But since $K(\omega_i) \ge n_i$ and $\sum_{i=1}^m n_i = n$, we must have $K(\omega_i) = n_i$ for all $1 \le i \le m$. By the uniqueness part of Step 1 we conclude that

(3.6)
$$\omega_i = \tau_i \quad \text{for all} \quad 1 \le i \le m.$$

Also, $K_{\omega} = K(\omega) = n$ and $K(\omega_i) = n_i$ imply $\omega(p_i) \ge \frac{n_i}{n}$ for all $1 \le i \le m$. Since ω is a state on D and $\sum_{i=1}^m p_i = 1_D$, we must have

(3.7)
$$\omega(p_i) = \frac{n_i}{n} \quad \text{for all} \quad 1 \le i \le m.$$

Finally, (3.6) and (3.7) imply that

$$\omega(d) = \sum_{i=1}^m \omega(p_i)\omega_i(p_id) = \frac{1}{n}\sum_{i=1}^m n_i \cdot \tau_i(p_id) = \tau(d),$$

for all $d \in D$, which finishes the proof.

Proposition 3.3. Let A be a unital C(X)-algebra. If A admits a faithful C(X)-valued C.E., then A is a continuous C(X)-algebra.

Proof. This can be deduced from [5, Section 2]. For completeness, we include a short proof of this fact. It suffices to show that all norm functions $x \mapsto ||a_x||$ $(a \in A)$ are lower semicontinuous on X. To prove this, let $E : A \to C(X)$ be a faithful C.E. and let $L^2(A, E)$ be the completion of the pre-Hilbert C(X)-module A, with respect to the inner product (1.1). For $a \in A$ let $\Phi(a) : L^2(A, E) \to L^2(A, E)$ denote the continuous extension of the left multiplication map $a_1 \mapsto aa_1$ $(a \in A)$. Since E is faithful and since

$$\begin{aligned} \langle \Phi(a)(a_1), a_2 \rangle_E &= \langle aa_1, a_2 \rangle_E = E(a_1^* a^* a_2) = \langle a_1, a^* a_2 \rangle_E \\ &= \langle a_1, \Phi(a^*)(a_2) \rangle_E, \end{aligned}$$

for all $a_1, a_2 \in A$, the map Φ defines an injective C(X)-linear morphism from A to the C(X)-algebra $\mathbb{B}_{C(X)}(L^2(A, E))$ of bounded adjointable C(X)-linear operators on $L^2(A, E)$. Therefore, for $a \in A$ and $x \in X$ we have

$$\begin{aligned} \|a_x\| &= \|\Phi(a)_x\| \\ &= \sup\{|\langle \Phi(a)(a_1), a_2\rangle_E(x)| : a_1, a_2 \in A, \|a_1\|_E = \|a_2\|_E = 1\} \\ &= \sup\{|E(a_1^*a^*a_2)(x)| : a_1, a_2 \in A, \|a_1\|_E = \|a_2\|_E = 1\}. \end{aligned}$$

In particular, the function $x \mapsto ||a_x||$ is a supremum of continuous functions $x \mapsto |E(a_1^*a^*a_2)(x)|$ ($||a_1||_E = ||a_2||_E = 1$), so it must be lower semicontinuous on X. \Box

Proof of Theorem 1.4. Let $E: A \to C(X)$ be a C.E.F.I.. As the conditional expectation E is faithful, Proposition 3.3 implies that the C(X)-algebra A is continuous (note that in this case $(A, \langle \cdot, \cdot \rangle_E)$ is already a complete Hilbert C(X)-module by Theorem 1.1). It remains to show that each fibre A_x ($x \in X$) is finite-dimensional and satisfies $r(A_x) \leq K(E)$. Indeed, for a fixed point $x \in X$ and $\varepsilon > 0$,

$$\omega_x : a_x \mapsto E(a)(x)$$

defines a state on a fibre A_x satisfying

$$(K(E) + \varepsilon) \cdot \omega_x(a_x) \mathbf{1}_x \ge a_x$$

for all $a_x \in (A_x)_+$. Lemma 3.2 now yields $r(A_x) \leq K(E)$, as wanted.

We shall now give some sufficient conditions on a continuous unital subhomogeneous C(X)-algebra A to ensure the existence of a C(X)-valued C.E.F.I..

Proposition 3.4. Every continuous homogeneous unital C(X)-algebra A admits a unique C.E. $E : A \to C(X)$ such that the map $r(A) \cdot E - id_A$ is positive. In particular, K(A, C(X)) = r(A) in this case.

Proof. The construction of such a C.E. $E: A \to C(X)$ can be deduced from the proof of [13, Lemma 4.6]. But we include here the main steps of the proof for completeness. By assumption all fibres of A are *-isomorphic to a fixed finite-dimensional C^* -algebra D. Suppose that r(D) = n, and let τ be a state on D defined by (3.5). It is easy check that τ is invariant under the group $\operatorname{Aut}(D)$ of *-automorphisms of D. Since the C(X)-algebra A is continuous and homogeneous, its underlying bundle \mathfrak{A} is locally trivial by Remark 2.6. Hence, there exists an open covering $\{U_{\alpha}\}$ of X such that $\Phi_{\alpha}: \mathfrak{A}|_{U_{\alpha}} \cong U_{\alpha} \times D$, where

- Φ_{α} is an isomorphism of C^* -bundles, and
- $\mathfrak{A}|_U$ is the restriction bundle over a subset $U \subseteq X$.

Fix an element $a \in A$. For $x \in X$ choose an index α such that $x \in U_{\alpha}$, and define

$$E(a)(x) := \tau(\Phi_{\alpha}(a_x)).$$

Since τ is invariant under the group Aut(D), the value E(a)(x) is well defined, and the local triviality of \mathfrak{A} implies that the function $E(a): x \mapsto E(a)(x)$ is continuous on X. It is now easy to see that the map $E: a \to E(a)$ defines a C(X)-valued C.E.F.I. on A. Moreover, by (3.1) we have

$$n \cdot E(a)(x) \mathbf{1}_x \ge a_x$$
, for all $a \in A_+$ and $x \in X$.

Thus, the map $n \cdot E - \mathrm{id}_A$ is positive and E is the only C.E. with this property (Lemma 3.2). In particular, $K(A, C(X)) \leq r(A)$, so Theorem 1.4 yields that K(A, C(X)) = n.

Corollary 3.5. If the unital C(X)-algebra A admits a C(X)-linear embedding into some homogeneous continuous unital C(X)-algebra A', then A admits a C(X)-valued C.E.F.I.

Proof. By Proposition 3.4 there exists a C.E. $E' : A' \to C(X)$ of finite index. Then the restriction $E'|_A : A \to C(X)$ defines a convenient C.E.F.I..

Note that the embedding condition of Corollary 3.5 is not necessary for the existence of a C(X)-valued C.E.F.I.. Indeed, in Example 3.6 we show that there exists a continuous unital C(X)-algebra A of rank 2 which does not admit a C(X)-linear embedding into any continuous homogeneous unital C(X)-algebra. On the other hand, a direct consequence of Proposition 3.7 is that A admits a C(X)-valued C.E.F.I.

To do this, first recall that a C^* -algebra A is said to be *central* if it satisfies the following two conditions:

(i) A is quasi-central (i.e. no primitive ideal of A contains Z(A));

(ii) If $P, Q \in Prim(A)$ and $P \cap Z(A) = Q \cap Z(A)$, then P = Q

(see [1, 8, 12, 15]). By [8, Proposition 3] a quasi-central C^* -algebra A is central if and only if Prim(A) is Hausdorff.

Example 3.6. By [18, Example 3.5] there exists a continuous $M_2(\mathbb{C})$ -bundle \mathfrak{A}_0 over the second countable locally compact space $X_0 := \bigsqcup_{n=1}^{\infty} \mathbb{C}P^n$, where $\mathbb{C}P^n$ is the complex projective space of dimension n, which is not of finite type (that is, X_0 does not admit a finite open cover $\{U_i\}$ such that each restriction bundle $\mathfrak{A}_0|_{U_i}$ is trivial, as a C^* -bundle). Let A_0 be the C^* -algebra $\Gamma_0(\mathfrak{A}_0)$ consisting of all continuous sections of \mathfrak{A}_0 which vanish at infinity. Then A_0 is a 2-homogeneous C^* -algebra with $Prim(A_0) = X_0$. In particular A_0 is a central C^* -algebra with centre $C_0(X_0)$. Let $X := X_0 \sqcup \{\infty\}$ be the one-point compactification of X_0 , and let A be the minimal unitisation of A_0 . By [8, Proposition 3] (or [12, Proposition 3.12) A is also a central C^{*}-algebra with Prim(A) = X and centre C(X). In particular, by [4, II.6.5.8] all norm functions $x \mapsto ||a_x||$ $(a \in A)$ are continuous on X, so that A is a continuous unital C(X)-algebra with fibres $A_x = M_2(\mathbb{C})$ $(x \in X_0)$ and $A_{\infty} = \mathbb{C}$. Suppose that A is C(X)-subalgebra of some continuous homogeneous C(X)-algebra A'. Then the underlying C*-bundle \mathfrak{A} of A over X is a C^* -subbundle of the underlying C^* -bundle \mathfrak{A}' of A' over X. Since A' is continuous and homogeneous, \mathfrak{A}' is locally trivial by Remark 2.6. Hence, since X is compact, \mathfrak{A}' is of finite type. Using [18, Lemma 2.6] we conclude that \mathfrak{A} is of finite type as a vector bundle. In particular, \mathfrak{A}_0 is of finite type as a vector bundle, since $\mathfrak{A}_0 = \mathfrak{A}|_{X_0}$. As \mathfrak{A}_0 is a $M_2(\mathbb{C})$ -bundle, this implies by [18, Proposition 2.9] that \mathfrak{A}_0 is also of finite type as a C^* -bundle; a contradiction.

On the other hand, the C(X)-algebra A of Example 3.6 also admits a C(X)-valued C.E.F.I.. This follows from the following more general fact:

Proposition 3.7. Let A be a continuous unital C(X)-algebra. If r(A) = 2, then there exists a conditional expectation $E: A \to C(X)$ such that the map $2 \cdot E - id_A$ is positive. In particular, K(A, C(X)) = r(A) in this case.

In order to prove Proposition 3.7, let us first make the following observation:

Lemma 3.8. Let A be a unital C(X)-algebra and let $a \in A_{sa}$. For each point $x \in X$ let $\lambda_{\max}(a)$ and $\lambda_{\min}(a)$ respectively denote the largest and the smallest numbers in

the spectrum of a_x . Then the functions $x \mapsto \lambda_{\max}(a_x)$ and $x \mapsto \lambda_{\min}(a_x)$ are upper semicontinuous on X. Furthermore, these functions are continuous on X, whenever A is a continuous C(X)-algebra.

Proof. This follows directly from the equations

$$\lambda_{\max}(a_x) = \|\|a\| 1_x + a_x\| - \|a\| \quad \text{and} \quad \lambda_{\min}(a_x) = \|a\| - \|\|a\| 1_x - a_x\|.$$

Proof of Proposition 3.7. As r(A) = 2, any fibre A_x is isomorphic to \mathbb{C} , $\mathbb{C} \oplus \mathbb{C}$ or $M_2(\mathbb{C})$. Therefore, for each point $x \in X$ we can choose a unital embedding $\varphi_x : A_x \hookrightarrow M_2(\mathbb{C})$. For $a \in A$ and $x \in X$ we define

$$E(a)(x) := \frac{1}{2} \operatorname{tr}(\varphi_x(a_x)).$$

Obviously E(a) is a C(X)-linear map. If $a \in A_{sa}$, note that

(3.8)
$$E(a)(x) = \frac{1}{2}(\lambda_{\min}(a_x) + \lambda_{\max}(a_x))$$

for all $x \in X$. By Remark 3.8, E(a) is a continuous function on X for all $a \in A_{sa}$. As A is the linear span of A_{sa} , we conclude that $E(a) \in C(X)$ for all $a \in A$. Therefore, E defines a C. E. from A onto C(X). Further, by (3.8) for all $a \in A_+$ and $x \in X$ we have

$$2 \cdot E(a)(x) \mathbf{1}_x = (\lambda_{\min}(a_x) + \lambda_{\max}(a_x)) \cdot \mathbf{1}_x \ge a_x.$$

This shows that the map $2 \cdot E - \mathrm{id}_A$ is positive, so that K(A, C(X)) = 2 by Theorem 1.4.

Let A be a unital C^{*}-algebra and let \hat{Z} be the maximal ideal space of Z(A). We may consider A as a $C(\check{Z})$ -algebra, with respect to the action

$$f \cdot a := \mathcal{G}^{-1}(f)a \quad (f \in C(X), \ a \in A),$$

where $\mathcal{G}: Z(A) \to C(\check{Z})$ is the Gelfand transform. We say that A is quasi-standard if A is a continuous $C(\check{Z})$ -algebra and each (Glimm) ideal $J_x = C_x(\check{Z})A$ is primal (see [2]).

Corollary 3.9. For a unital C^* -algebra A the following conditions are equivalent:

- (i) There exist a C.E. $E: A \to Z(A)$ such that the map $2 \cdot E id_A$ is positive.
- (ii) A is either commutative or quasi-standard and 2-subhomogeneous.

Proof. (i) \Rightarrow (ii). Suppose that there exists a C.E. $E : A \to Z(A)$ such that the map $2 \cdot E - \operatorname{id}_A$ is positive. Then by Theorem 1.4 A is a continuous $C(\check{Z})$ -algebra and $r(A_x) \leq 2$ for all $x \in \check{Z}$. In particular, A as a C^* -algebra is n-subhomogeneous, where $n \in \{1, 2\}$. Hence, by [13, Proposition 4.1] every Glimm ideal of A is primal. Also, n = 1 if and only if A is commutative.

(ii) \Rightarrow (i). If A is commutative we have nothing to prove, so suppose that A is quasi-standard and 2-subhomogeneous. Then by [9, Corollary 1, p. 388] for each point $x \in X$ we have

$$r(A_x) = \sum_{[\pi_x] \in \widehat{A_x}} \dim \pi_x \le 2$$

It remains to apply Proposition 3.7.

Remark 3.10. At the end of this paper we note that every separable continuous unital C(X)-algebra A admits a faithful C.E. $E : A \to C(X)$ (see e.g. [5]). In particular, this result applies to continuous subhomogeneous unital C(X)-algebras, when X is second-countable. In this case for each point $x \in X$, the map $E_x :$ $a_x \mapsto E(a)(x)$ defines a faithful state on A_x , so Lemma 3.2 implies $K(E_x) < \infty$. However, this does not imply that E is of finite index. That is, it may happen that $\sup_{x \in X} K(E_x) = \infty$. Consider for instance the following example:

- Let X be the closed compact subset $\{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$ of [0, 1].
- Let A be the continuous C(X)-subalgebra of $C(X) \oplus C(X)$ consisting of all pairs $(f,g) \in C(X) \oplus C(X)$ such that f(0) = g(0).
- Let $E: A \to C(X)$ be a C.E. fixed by the relations

$$E(f \oplus g)\left(\frac{1}{n}\right) = \begin{cases} \frac{n}{n+1}f(\frac{1}{n}) + \frac{1}{n+1}g(\frac{1}{n}) & \text{if } n \text{ is odd} \\ \\ \frac{1}{n+1}f(\frac{1}{n}) + \frac{n}{n+1}g(\frac{1}{n}) & \text{otherwise} \end{cases}$$

where $(f, g) \in A$.

Then E is a faithful C.E. which is not of finite index. Indeed, one has

$$E(f \oplus 0)\left(\frac{1}{2n}\right) = \frac{1}{2n+1}f\left(\frac{1}{2n}\right)$$

for all $f \in C_0(X \setminus \{0\})$ and all integers $n \in \mathbb{N}$. Consequently, a convenient constant K would satisfy $K \ge 2n + 1$ for all $n \in \mathbb{N}$, which is impossible.

We end this paper with some unresolved problems:

Problem 3.11. Is the converse of Theorem 1.4 also true? Moreover, does every continuous subhomogeneous unital C(X)-algebra A admit a C.E. $E : A \to C(X)$ such that the map $r(A) \cdot E - id_A$ is positive? In particular, do we always have K(A, C(X)) = r(A)?

References

- R. J. Archbold, Density theorems for the centre of a C*-algebra, J. London Math. Soc. (2), 10 (1975), 189–197.
- R. J. Archbold and D. W. B. Somerset, *Quasi-standard C^{*}-algebras*, Math. Proc. Cambridge Philos. Soc, **107** (1990), 349–360.
- M. Baillet, Y. Denizeau, J-F Havet, *Indice d'une espérance conditionnelle*, Compositio Math. 66 (1988), 199–236.
- B. Blackadar, Operator Algebras. Theory of C*-Algebras and von Neumann Algebras, Encycl. Math. Sciences 122, Springer-Verlag, Berlin-Heidelberg, 2006.
- E. Blanchard, Déformations de C*-algèbres de Hopf, Bull. Soc. Math. France 124 (1996), 141–215.
- D. P. Blecher and C. Le Merdy, Operator algebras and Their modules, Clarendon Press, Oxford, 2004.
- 7. P.J. Cohen, Factorization in group algebras, Duke Math. J. 26 (1959), 199–205.
- 8. C. Delaroche, Sur les centres des C*-algèbres, Bull. Sc. Math., 91 (1967), 105–112.
- 9. J. M. G. Fell, The dual spaces of C*-algebras, Trans. Amer. Math. Soc. 94 (1960), 365-403.
- 10. J. M. G. Fell, The structure of algebras of operator fields, Acta Math., 106 (1961), 233–280.
- M. Frank and E. Kirchberg, On Conditional Expectations of Finite Index, J. Oper. Theory 40 (1998), 87–111.
- I. Gogić, Derivations which are inner as completely bounded maps, Oper. Matrices, 4 (2010), 193–211.
- I. Gogić, On derivations and elementary operators on C*-algebras, Proc. Edinb. Math. Soc. (2), 56 (2013), 515–534.

- 14. V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), 1–25.
- 15. I. Kaplansky, Normed algebras, Duke Math. J., 16 (1949), 399–418.
- H. Kosaki, Extension of Jones theory on index to arbitrary factors, J. Funct. Anal. 66 (1986), 123–140.
- A. Pavlov and E. V. Troitsky, *Quantization of branched coverings*, Russ. J. Math. Phys. 18 (2011), 338–352.
- N. C. Phillips, Recursive subhomogeneous algebras, Trans. Amer. Math. Soc. 359 (2007), 4595–4623.
- M. Pimsner, S. Popa, Entropy and index for subfactors, Ann. Scient. Ec. Norm. Sup. 19 (1986), 57–106.
- S. Popa, Classification of Subfactors and Their Endomorphisms, Conf. Board Math. Sci. (Reg. Conf. Ser. Math.) 86, Amer. Math. Soc., Providence, R.I., 1995.
- 21. M. Takesaki, Theory of Operator Algebras I, Springer, 1979.
- Y. Tomiyama, On the projection of norm one in W^{*}-algebras, Proc. Japan Acad. 33, (1957), 608–612.
- 23. Y. Watatani, Index for C*-subalgebras, Mem. Amer. Math. Soc. 83 (1990), no 424.
- D. P. Williams, Crossed Products C*-Algebras, Mathematical Surveys and Monographs 134, Amer. Math. Soc., Providence, RI, 2007.

Institut de Mathématiques de Jussieu, Bâtiment Sophie Germain, Case 7012, F-75205 Paris cedex 13

 $E\text{-}mail\ address:$ Etienne.Blanchard@math.jussieu.fr

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ZAGREB, BIJENIČKA 30, 10000 ZAGREB, CROA-TIA, AND DEPARTMENT OF MATHEMATICS AND INFORMATICS, UNIVERSITY OF NOVI SAD, TRG DOSITEJA OBRADOVIĆA 4, 21000 NOVI SAD, SERBIA

E-mail address: ilja@math.hr