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ON UNITAL C(X)-ALGEBRAS AND C(X)-VALUED

CONDITIONAL EXPECTATIONS OF FINITE INDEX

ETIENNE BLANCHARD AND ILJA GOGIĆ

Abstract. Let X be a compact Hausdorff space and let A be a unital C(X)-

algebra, where C(X) is embedded as a unital C∗-subalgebra of the centre of A.
We consider the problem of characterizing the existence of a conditional expec-

tation E : A→ C(X) of finite index in terms of the underlying C∗-bundle of A

over X. More precisely, we show that if A admits a C(X)-valued conditional
expectation of finite index, then A is necessarily a continuous C(X)-algebra,

and there exists a positive integer N such that every fibre Ax of A is finite-

dimensional, with dimAx ≤ N . We also give some sufficient conditions on A
that ensure the existence of a C(X)-valued conditional expectation of finite

index.

1. introduction

Let B ⊆ A be two unital C∗-algebras with the same unit element. A conditional
expectation (abbreviated by C.E.) from A to B is a completely positive contraction
E : A→ B such that E(b) = b for all b ∈ B, and which is B-bilinear, i.e.

E(b1ab2) = b1E(a)b2

for all a ∈ A and b1, b2 ∈ B. By a result of Y. Tomiyama (see [22, Theorem 1] or
[4, Theorem II.6.10.2]), a map E : A→ B is a C.E. if and only if E is a projection
of norm one.

If E(a∗a) = 0 (a ∈ A) implies a = 0, E is said to be faithful. Every faithful
conditional expectation E : A → B introduces a pre-Hilbert B-module structure
on A, whose inner product is defined by

(1.1) 〈a1, a2〉E := E(a∗1a2) (a1, a2 ∈ A).

The notion of finite index was introduced by V. F. R. Jones [14] in order to
classify the subfactors of a type II1 factor. Soon afterwards H. Kosaki [16] extended
the Jones index theory to arbitrary factors. In order to generalize the results of
[14, 16], M. Pimsner and S. Popa introduced in [19, 20] a definition for conditional
expectations of finite index in the context of W ∗-algebras: There must exist a
constant K ≥ 1 such that the map K · E − idA is positive on A. Then, following
the idea of M. Baillet, Y. Denizeau and J.-F. Havet (see [3]), the index of E can
be defined in the following way: Since the map K · E − idA is positive, E defines
a (complete) Hilbert B-module structure on A, with respect to the inner product
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2 ETIENNE BLANCHARD AND ILJA GOGIĆ

(1.1). If {xi} is a quasi-orthonormal basis in A, the index of E is the sum
∑∞
i=1 x

∗
i xi,

with respect to the ultraweak topology.

Y. Watatani also considered C.E. of (algebraically) finite index, when the original
C∗-algebra A is a finitely generated Hilbert C∗-module over B (see [23]).

The results of M. Baillet, Y. Denizeau and J.-F. Havet in [3] also indicated that
there might occur some difficulties in order to extend the notion of ”finite index”
for conditional expectations of C∗-algebras with arbitrary centres. However, this
problem was solved by M. Frank and E. Kirchberg in [11]. The main result of their
paper is [11, Theorem 1]:

Theorem 1.1 (M. Frank and E. Kirchberg). For a C.E. E : A→ B, where B ⊆ A
are unital C∗-algebras with the same unit element, the following conditions are
equivalent:

(i) There exists a constant K ≥ 1 such that the map K · E − idA is positive.
(ii) There exists a constant L ≥ 1 such that the map L · E − idA is completely

positive.
(iii) A becomes a (complete) Hilbert B-module when equipped with the inner

product (1.1).

Moreover, if
K(E) := inf{K ≥ 1 : K · E − idA is positive},

L(E) := inf{L ≥ 1 : L · E − idA is completely positive},
with K(E) =∞ or L(E) =∞ if no such number K or L exists, then

K(E) ≤ L(E) ≤ bK(E)cK(E),

where b·c denotes the integer part of a real number.

The importance of this result is that it gives the right general definition for
conditional expectations on C∗-algebras to be of finite index:

Definition 1.2. If B ⊆ A are two unital C∗-algebras with the same unit element,
then a C.E. E : A → B is said to be of finite index (abbreviated C.E.F.I.) if E
satisfies one of the equivalent conditions of Theorem 1.1.

In this case the index value of E can be calculated in the enveloping von Neumann
algebra A∗∗ (see [11, Definition 3.1]).

For a unital inclusion A ⊆ B of unital C∗-algebras we introduce the following
constant

K(A,B) := inf{K(E) : E : A→ B is C.E.F.I.},
with K(A,B) =∞, if no such C.E.F.I. exists. This constant will play an important
role in this paper.

More recently, A. Pavlov and E. Troitsky considered in [17] the problem of
existence of a C.E.F.I. E : C(Y ) → C(X) for a unital inclusion ϕ : C(X) ↪→
C(Y ) of unital commutative C∗-algebras. The main result of their paper is [17,
Theorem 1.1], which shows that such a C.E.F.I. exists if and only if the transpose
map ϕ∗ : Y → X is a branched covering. This means that ϕ∗ is an open map
with uniformly bounded number of pre-images (i.e. supx∈X |ϕ−1

∗ (x)| < ∞). This
result motivated A. Pavlov and E. Troitsky to define the noncommutative branched
coverings, as unital inclusion B ⊆ A of unital C∗-algebras such that there exists a
C.E.F.I. from A to B (see [17, Definition 1.2]).
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Using the above inclusion ϕ : C(X) ↪→ C(Y ) we may consider C(Y ) as a C(X)-
algebra. Then the map ϕ∗ is open if and only if C(Y ) is a continuous C(X)-
algebra, and ϕ∗ has uniformly bounded number of pre-images if and only if C(Y ) is
subhomogeneous C(X)-algebra. This means that there exists a positive integer N
such that every fibre C(Y )x of C(Y ) is finite-dimensional with dimC(Y )x ≤ N (see
Section 2). Therefore, we can restate [17, Theorem 1.1] in terms of C(X)-algebras
as follows:

Theorem 1.3 (A. Pavlov and E. Troitsky). Let A be a unital commutative C(X)-
algebra, where C(X) is embedded as a unital C∗-subalgebra of A. Then A admits
a C(X)-valued C.E.F.I. if and only if A is a continuous subhomogeneous C(X)-
algebra.

The purpose of the present paper is to consider a possible extension of Theo-
rem 1.3 to the case when A is an arbitrary (not necessarily commutative) unital
C(X)-algebra. The necessary condition for the existence of a C(X)-valued C.E.F.I.
appears to be identical to the one of Theorem 1.3:

Theorem 1.4. Let A be a unital C(X)-algebra, where C(X) is embedded as a unital
C∗-subalgebra of the centre of A. If A admits a C(X)-valued C.E.F.I., then A is
a continuous subhomogeneous C(X)-algebra. Moreover, in this case the following
inequality holds:

K(A,C(X)) ≥ r(A),

where r(A) is the rank of A, i.e.

r(A) = max

 ∑
[πx]∈Âx

dimπx : x ∈ X

 .

We shall prove Theorem 1.4 in Section 3. At the moment we do not know if the
converse of Theorem 1.4 also holds. However, if all the fibres of a continuous unital
C(X)-algebra A are ∗-isomorphic to the same finite-dimensional C∗-algebra (i.e. A
is a homogeneous C(X)-algebra), then there exists a unique C.E. E : A → C(X)
such that the map r(A) · E − idA is positive (Proposition 3.4). In particular, we
have the equality K(A,C(X)) = r(A) in this case. Also, a direct consequence of
this fact is that any unital C(X)-algebra A which can be embedded as a C(X)-
subalgebra of some continuous homogeneous unital C(X)-algebra also admits a
C(X)-valued C.E.F.I.. However, this embedding condition is not necessary for the
existence of such C.E.F.I.. Indeed, there exists a continuous unital C(X)-algebra
A over a second-countable compact Hausdorff space X with fibres M2(C) or C
which admits a C(X)-valued C.E.F.I., but which cannot be embedded as a C(X)-
subalgebra into any continuous homogeneous unital C(X)-algebra (Example 3.6).
At the end of this paper we also show that any continuous unital C(X)-algebra A
of rank 2 admits a C.E. E : A → C(X) such that the map 2 · E − idA is positive
(Proposition 3.7). In particular, the equality K(A,C(X)) = r(A) also holds in this
class of C(X)-algebras.

2. Notation and preliminaries

Throughout this paper A will be a C∗-algebra. We denote by Asa and A+ the
self-adjoint and the positive parts of A. The centre of A is denoted by Z(A). By
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Â and Prim(A) we respectively denote the spectrum of A (i.e. the set of all classes
of irreducible representations of A) and the primitive spectrum of A (i.e. the set of
all primitive ideals of A), equipped with the Jacobson topology. By a dimension

of [π] ∈ Â, which is denoted by dimπ, we mean the dimension of the underlying
Hilbert space of some representative of [π].

Let X be a compact Hausdorff space. For each point x ∈ X let

Cx(X) := {f ∈ C(X) : f(x) = 0}
be the corresponding maximal ideal of C(X).

Definition 2.1. A C(X)-algebra is a C∗-algebra A endowed with a unital ∗-
homomorphism ψA from C(X) to the centre of the multiplier algebra of A.

Remark 2.2. Given f ∈ C(X) and a ∈ A, we write fa for the product ψA(f) · a if
no confusion is possible.

There is a natural connection between C(X)-algebras and upper semicontinuous
C∗-bundles over X. We first give a formal definition of such bundles:

Definition 2.3. Following [24] by an upper semicontinuous C∗-bundle we mean
a triple A = (p,A, X) where A is a topological space with a continuous open
surjection p : A → X, together with operations and norms making each fibre
Ax := p−1(x) into a C∗-algebra, such that the following conditions are satisfied:

(A1) The maps C ×A → A, A×X A → A, A×X A → A and A → A given in
each fibre by scalar multiplication, addition, multiplication and involution,
respectively, are continuous (A×X A denotes the Whitney sum over X).

(A2) The map A → R, defined by norm on each fibre, is upper semicontinuous.
(A3) If x ∈ X and if (aα) is a net in A such that ‖aα‖ → 0 and p(aα) → x in

X, then aα → 0x in A (0x denotes the zero-element of Ax).

If ”upper semicontinuous” in (A2) is replaced by ”continuous”, then we say that A
is a continuous C∗-bundle.

By a section of an upper semicontinuous C∗-bundle A we mean a map s : X → A
such that p(s(x)) = x for all x ∈ X. We denote by Γ(A) the set of all continuous
sections of A. Then Γ(A) becomes a C(X)-algebra with respect to the natural
pointwise operations and sup-norm.

On the other hand, given a C(X)-algebra A, one can always associate an upper
semicontinuous C∗-bundle A over X such that A ∼= Γ(A), as follows. Set Jx :=
Cx(X) ·A and note that Jx is a closed two-sided ideal in A (by Cohen factorization
theorem [7], [6, Theorem A.6.2])). The quotient Ax := A/Jx is called the fibre at
the point x, and we denote by ax the image in Ax of an element a ∈ A. Let

A :=
⊔
x∈X

Ax,

and let p : A → X be the canonical associated projection. For a ∈ A we define the
map â : X → A by â(x) := ax, and let Ω := {â : a ∈ A}. Since for each a ∈ A we
have

‖ax‖ = inf{‖ [1− f + f(x)] · a‖ : f ∈ C(X)},
the norm function x 7→ ‖ax‖ is upper semicontinuous on X. Hence, by Fell’s theo-
rem [24, Theorem C.25] there exists a unique topology onA for which A := (p,A, X)
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becomes an upper semicontinuous C∗-bundle such that Ω ⊆ Γ(A). Moreover, by
Lee’s theorem [24, Theorem C.26], Ω = Γ(A), and the generalized Gelfand trans-
form G : a ∈ A 7→ â ∈ Γ(A), is an isomorphism of C(X)-algebras, from A onto
Γ(A).

Definition 2.4. Let A be a C(X)-algebra. If all the norm functions x 7→ ‖ax‖
(a ∈ A) are continuous on X, we say that A is a continuous C(X)-algebra.

Note that the C(X)-algebra A is continuous if and only if A is continuous as a
C∗-bundle.

The C∗-algebra A is said to be

- (n-)homogeneous (n ∈ N), if dimπ = n for all [π] ∈ Â,
- (n-)subhomogeneous (n ∈ N), if sup[π]∈Â dimπ = n.

We shall now define the similar notions for C(X)-algebras. To do this, first recall
that if D is a finite-dimensional C∗-algebra, then there is a finite number of central
pairwise orthogonal projections p1, . . . , pm ∈ Z(D) with

∑m
i=1 pi = 1D, such that

(2.1) D = p1D ⊕ · · · ⊕ pmD,
and each piD is ∗-isomorphic to the matrix algebra Mni(C) (see e.g. [21, Theorem
I.11.9]). We define the rank of D as

r(D) :=

m∑
i=1

ni =
∑

[π]∈D̂

dimπ.

Definition 2.5. Let A be a C(X)-algebra. We say that A is

- homogeneous all the fibres ofA are ∗-isomorphic to the same finite-dimensional
C∗-algebra.

- subhomogeneous if there exists a positive integer N such that every fibre
Ax of A is finite-dimensional with dimAx ≤ N .

Remark 2.6. Let A be a C(X)-algebra.

(i) A is subhomogeneous if and only if

r(A) := sup{r(Ax) : x ∈ X} <∞
As in the finite-dimensional case, we call the number r(A) the rank of A.

(ii) If A is continuous and homogeneous, then by [10, Lemma 3.1] the underly-
ing C∗-bundle A is locally trivial.

3. Results

Remark 3.1. If A is a unital C(X)-algebra, we always assume in this section that
the map ψA : C(X) → Z(A) is injective, so that we can identify C(X) with the
unital C∗-subalgebra ψA(C(X)) of Z(A).

In order to prove Theorem 1.4 we shall need the following two auxiliary results.

Lemma 3.2. Let D be a unital C∗-algebra. Then K(D,C) := K(D,C1D) <∞ if
and only if D is finite-dimensional. In this case we have:

(i) The constant K(ω) is finite for every faithful state ω on D, which we iden-
tify with the corresponding faithful C.E.

d ∈ D 7→ ω(d) · 1D ∈ C · 1D (d ∈ D).
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(ii) K(D,C) = r(D). Moreover, there exists a unique state τ on D such that

(3.1) r(D) · τ(d)1D ≥ d for all d ∈ D+.

Proof. The equivalence K(D,C) <∞⇔ dimD <∞ follows from [13, Lemma 4.5].
Hence, suppose that D is finite-dimensional and let ω be a faithful state on D. The
proof will now proceed in two steps.

Step 1. Assume that D is simple, i.e. D = Mn(C) for some n. If tr(·) is the
standard trace of Mn(C), then there exists a strictly positive matrix a ∈ Mn(C)
with tr(a) = 1 such that

ω(d) = tr(ad) (d ∈Mn(C)).

Let a = u∗ · diag(λ1, . . . , λn) · u be a diagonalisation of a, where u ∈ Mn(C) is a
unitary and λ1, . . . , λn > 0 are the eigenvalues of a. Then for all d ∈ Mn(C) one
has

(3.2) ω(u∗du) = tr(au∗du) = tr(uau∗d) = tr(diag(λ1, . . . , λn)d).

The constant K(ω) is by definition the smallest K ≥ 1 satisfying

(3.3) K · ω(d)1D ≥ d for all d ∈ D+.

Thus, (3.2) and (3.3) for rank 1 projections in D imply that

K(ω) = max{λ−1
i : 1 ≤ i ≤ n}.

As 1 = ω(1) =
∑n
i=1 λi, one has K(ω) ≥ n for any faithful state ω on D. Also,

K(ω) = n if and only if ω = τ := 1
n tr(·). In particular, if D = Mn(C), we have

K(D,C) = r(D) = n, and τ is the unique state on D satisfying (3.1).

Step 2. Suppose that D is an arbitrary finite-dimensional C∗-algebra. We de-
compose D as in (2.1). For each 1 ≤ i ≤ m

ωi(pid) :=
1

ω(pi)
· ω(pid) (d ∈ D)

defines a faithful state on piD. By Step 1 we have ni ≤ K(ωi) < ∞ for all
1 ≤ i ≤ m. Put

Kω := max

{
K(ωi)

ω(pi)
: 1 ≤ i ≤ m

}
.

We claim that K(ω) = Kω. Indeed, for all d ∈ D+ we have

Kω · ω(d)1D =

m∑
i=1

Kω · ω(pi)ωi(pid)1D ≥
m∑
i=1

K(ωi) · ωi(pid)pi

≥
m∑
i=1

pid = d,

which shows K(ω) ≤ Kω. On the other hand, for each d ∈ D+ we have

[ω(pi)K(ω)] · ωi(pid)pi ≥ pid ,

so that

(3.4) ω(pi)K(ω) ≥ K(ωi) (1 ≤ i ≤ m).
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This shows K(ω) = Kω, as wanted. Also,

K(ω) =

m∑
i=1

ω(pi)K(ω) ≥
m∑
i=1

K(ωi) ≥
m∑
i=1

ni = r(D) ,

so that K(D,C) ≥ r(D).

It remains to show that there exists a unique state τ on D satisfying (3.1). To
do this, suppose that r(D) = n, and for each 1 ≤ i ≤ m let τi be the only faithful
tracial state on piD ∼= Mni(C). Define the state τ on D by

(3.5) τ(d) :=
1

n

m∑
i=1

ni · τi(pid) (d ∈ D).

As τ(pi) = ni
n and K(τi) = ni for all 1 ≤ i ≤ m, we have K(τ) = Kτ = n. In

particular, K(D,C) = n = r(D).

To show the uniqueness of this state τ , suppose that ω is another state on D
with K(ω) = n. Then using (3.4) we have

m∑
i=1

K(ωi) ≤
m∑
i=1

ω(pi)K(ω) = K(ω) = n.

But since K(ωi) ≥ ni and
∑m
i=1 ni = n, we must have K(ωi) = ni for all 1 ≤ i ≤ m.

By the uniqueness part of Step 1 we conclude that

(3.6) ωi = τi for all 1 ≤ i ≤ m.

Also, Kω = K(ω) = n and K(ωi) = ni imply ω(pi) ≥ ni
n for all 1 ≤ i ≤ m. Since

ω is a state on D and
∑m
i=1 pi = 1D, we must have

(3.7) ω(pi) =
ni
n

for all 1 ≤ i ≤ m.

Finally, (3.6) and (3.7) imply that

ω(d) =

m∑
i=1

ω(pi)ωi(pid) =
1

n

m∑
i=1

ni · τi(pid) = τ(d),

for all d ∈ D, which finishes the proof. �

Proposition 3.3. Let A be a unital C(X)-algebra. If A admits a faithful C(X)-
valued C.E., then A is a continuous C(X)-algebra.

Proof. This can be deduced from [5, Section 2]. For completeness, we include a
short proof of this fact. It suffices to show that all norm functions x 7→ ‖ax‖
(a ∈ A) are lower semicontinuous on X. To prove this, let E : A → C(X) be a
faithful C.E. and let L2(A,E) be the completion of the pre-Hilbert C(X)-module A,
with respect to the inner product (1.1). For a ∈ A let Φ(a) : L2(A,E)→ L2(A,E)
denote the continuous extension of the left multiplication map a1 7→ aa1 (a ∈ A).
Since E is faithful and since

〈Φ(a)(a1), a2〉E = 〈aa1, a2〉E = E(a∗1a
∗a2) = 〈a1, a

∗a2〉E
= 〈a1,Φ(a∗)(a2)〉E ,
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for all a1, a2 ∈ A, the map Φ defines an injective C(X)-linear morphism from A to
the C(X)-algebra BC(X)(L

2(A,E)) of bounded adjointable C(X)-linear operators

on L2(A,E). Therefore, for a ∈ A and x ∈ X we have

‖ax‖ = ‖Φ(a)x‖
= sup{|〈Φ(a)(a1), a2〉E(x)| : a1, a2 ∈ A, ‖a1‖E = ‖a2‖E = 1}
= sup{|E(a∗1a

∗a2)(x)| : a1, a2 ∈ A, ‖a1‖E = ‖a2‖E = 1 }.
In particular, the function x 7→ ‖ax‖ is a supremum of continuous functions x 7→
|E(a∗1a

∗a2)(x)| (‖a1‖E = ‖a2‖E = 1), so it must be lower semicontinuous on X. �

Proof of Theorem 1.4. Let E : A→ C(X) be a C.E.F.I.. As the conditional expec-
tation E is faithful, Proposition 3.3 implies that the C(X)-algebra A is continuous
(note that in this case (A, 〈·, ·〉E) is already a complete Hilbert C(X)-module by
Theorem 1.1). It remains to show that each fibre Ax (x ∈ X) is finite-dimensional
and satisfies r(Ax) ≤ K(E). Indeed, for a fixed point x ∈ X and ε > 0,

ωx : ax 7→ E(a)(x)

defines a state on a fibre Ax satisfying

(K(E) + ε) · ωx(ax)1x ≥ ax
for all ax ∈ (Ax)+. Lemma 3.2 now yields r(Ax) ≤ K(E), as wanted. �

We shall now give some sufficient conditions on a continuous unital subhomoge-
neous C(X)-algebra A to ensure the existence of a C(X)-valued C.E.F.I..

Proposition 3.4. Every continuous homogeneous unital C(X)-algebra A admits
a unique C.E. E : A → C(X) such that the map r(A) · E − idA is positive. In
particular, K(A,C(X)) = r(A) in this case.

Proof. The construction of such a C.E. E : A → C(X) can be deduced from the
proof of [13, Lemma 4.6]. But we include here the main steps of the proof for
completeness. By assumption all fibres of A are ∗-isomorphic to a fixed finite-
dimensional C∗-algebra D. Suppose that r(D) = n, and let τ be a state on D
defined by (3.5). It is easy check that τ is invariant under the group Aut(D) of
∗-automorphisms of D. Since the C(X)-algebra A is continuous and homogeneous,
its underlying bundle A is locally trivial by Remark 2.6. Hence, there exists an
open covering {Uα} of X such that Φα : A|Uα ∼= Uα ×D, where

- Φα is an isomorphism of C∗-bundles, and
- A|U is the restriction bundle over a subset U ⊆ X.

Fix an element a ∈ A. For x ∈ X choose an index α such that x ∈ Uα, and define

E(a)(x) := τ(Φα(ax)).

Since τ is invariant under the group Aut(D), the value E(a)(x) is well defined, and
the local triviality of A implies that the function E(a) : x 7→ E(a)(x) is continuous
on X. It is now easy to see that the map E : a → E(a) defines a C(X)-valued
C.E.F.I. on A. Moreover, by (3.1) we have

n · E(a)(x)1x ≥ ax, for all a ∈ A+ and x ∈ X.
Thus, the map n · E − idA is positive and E is the only C.E. with this prop-
erty (Lemma 3.2). In particular, K(A,C(X)) ≤ r(A), so Theorem 1.4 yields that
K(A,C(X)) = n. �
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Corollary 3.5. If the unital C(X)-algebra A admits a C(X)-linear embedding into
some homogeneous continuous unital C(X)-algebra A′, then A admits a C(X)-
valued C.E.F.I..

Proof. By Proposition 3.4 there exists a C.E. E′ : A′ → C(X) of finite index. Then
the restriction E′|A : A→ C(X) defines a convenient C.E.F.I.. �

Note that the embedding condition of Corollary 3.5 is not necessary for the
existence of a C(X)-valued C.E.F.I.. Indeed, in Example 3.6 we show that there
exists a continuous unital C(X)-algebra A of rank 2 which does not admit a C(X)-
linear embedding into any continuous homogeneous unital C(X)-algebra. On the
other hand, a direct consequence of Proposition 3.7 is that A admits a C(X)-valued
C.E.F.I..

To do this, first recall that a C∗-algebra A is said to be central if it satisfies the
following two conditions:

(i) A is quasi-central (i.e. no primitive ideal of A contains Z(A));
(ii) If P,Q ∈ Prim(A) and P ∩ Z(A) = Q ∩ Z(A), then P = Q

(see [1, 8, 12, 15]). By [8, Proposition 3] a quasi-central C∗-algebra A is central if
and only if Prim(A) is Hausdorff.

Example 3.6. By [18, Example 3.5] there exists a continuous M2(C)-bundle A0

over the second countable locally compact space X0 :=
⊔∞
n=1 CPn, where CPn

is the complex projective space of dimension n, which is not of finite type (that
is, X0 does not admit a finite open cover {Ui} such that each restriction bundle
A0|Ui is trivial, as a C∗-bundle). Let A0 be the C∗-algebra Γ0(A0) consisting of
all continuous sections of A0 which vanish at infinity. Then A0 is a 2-homogeneous
C∗-algebra with Prim(A0) = X0. In particular A0 is a central C∗-algebra with
centre C0(X0). Let X := X0 t {∞} be the one-point compactification of X0, and
let A be the minimal unitisation of A0. By [8, Proposition 3] (or [12, Proposition
3.12]) A is also a central C∗-algebra with Prim(A) = X and centre C(X). In
particular, by [4, II.6.5.8] all norm functions x 7→ ‖ax‖ (a ∈ A) are continuous
on X, so that A is a continuous unital C(X)-algebra with fibres Ax = M2(C)
(x ∈ X0) and A∞ = C. Suppose that A is C(X)-subalgebra of some continuous
homogeneous C(X)-algebra A′. Then the underlying C∗-bundle A of A over X is a
C∗-subbundle of the underlying C∗-bundle A′ of A′ over X. Since A′ is continuous
and homogeneous, A′ is locally trivial by Remark 2.6. Hence, since X is compact,
A′ is of finite type. Using [18, Lemma 2.6] we conclude that A is of finite type
as a vector bundle. In particular, A0 is of finite type as a vector bundle, since
A0 = A|X0

. As A0 is a M2(C)-bundle, this implies by [18, Proposition 2.9] that A0

is also of finite type as a C∗-bundle; a contradiction.

On the other hand, the C(X)-algebra A of Example 3.6 also admits a C(X)-
valued C.E.F.I.. This follows from the following more general fact:

Proposition 3.7. Let A be a continuous unital C(X)-algebra. If r(A) = 2, then
there exists a conditional expectation E : A→ C(X) such that the map 2 ·E − idA
is positive. In particular, K(A,C(X)) = r(A) in this case.

In order to prove Proposition 3.7, let us first make the following observation:

Lemma 3.8. Let A be a unital C(X)-algebra and let a ∈ Asa. For each point x ∈ X
let λmax(a) and λmin(a) respectively denote the largest and the smallest numbers in
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the spectrum of ax. Then the functions x 7→ λmax(ax) and x 7→ λmin(ax) are
upper semicontinuous on X. Furthermore, these functions are continuous on X,
whenever A is a continuous C(X)-algebra.

Proof. This follows directly from the equations

λmax(ax) = ‖‖a‖1x + ax‖ − ‖a‖ and λmin(ax) = ‖a‖ − ‖‖a‖1x − ax‖.

�

Proof of Proposition 3.7. As r(A) = 2, any fibre Ax is isomorphic to C, C ⊕ C
or M2(C). Therefore, for each point x ∈ X we can choose a unital embedding
ϕx : Ax ↪→M2(C). For a ∈ A and x ∈ X we define

E(a)(x) :=
1

2
tr(ϕx(ax)).

Obviously E(a) is a C(X)-linear map. If a ∈ Asa, note that

(3.8) E(a)(x) =
1

2
(λmin(ax) + λmax(ax))

for all x ∈ X. By Remark 3.8, E(a) is a continuous function on X for all a ∈ Asa.
As A is the linear span of Asa, we conclude that E(a) ∈ C(X) for all a ∈ A.
Therefore, E defines a C. E. from A onto C(X). Further, by (3.8) for all a ∈ A+

and x ∈ X we have

2 · E(a)(x)1x = (λmin(ax) + λmax(ax)) · 1x ≥ ax.

This shows that the map 2·E−idA is positive, so that K(A,C(X)) = 2 by Theorem
1.4. �

Let A be a unital C∗-algebra and let Ž be the maximal ideal space of Z(A). We
may consider A as a C(Ž)-algebra, with respect to the action

f · a := G−1(f)a (f ∈ C(X), a ∈ A),

where G : Z(A)→ C(Ž) is the Gelfand transform. We say that A is quasi-standard
if A is a continuous C(Ž)-algebra and each (Glimm) ideal Jx = Cx(Ž)A is primal
(see [2]).

Corollary 3.9. For a unital C∗-algebra A the following conditions are equivalent:

(i) There exist a C.E. E : A→ Z(A) such that the map 2 ·E − idA is positive.
(ii) A is either commutative or quasi-standard and 2-subhomogeneous.

Proof. (i) ⇒ (ii). Suppose that there exists a C.E. E : A → Z(A) such that the
map 2 · E − idA is positive. Then by Theorem 1.4 A is a continuous C(Ž)-algebra
and r(Ax) ≤ 2 for all x ∈ Ž. In particular, A as a C∗-algebra is n-subhomogeneous,
where n ∈ {1, 2}. Hence, by [13, Proposition 4.1] every Glimm ideal of A is primal.
Also, n = 1 if and only if A is commutative.

(ii) ⇒ (i). If A is commutative we have nothing to prove, so suppose that A
is quasi-standard and 2-subhomogeneous. Then by [9, Corollary 1, p. 388] for each
point x ∈ X we have

r(Ax) =
∑

[πx]∈Âx

dimπx ≤ 2.

It remains to apply Proposition 3.7. �
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Remark 3.10. At the end of this paper we note that every separable continuous
unital C(X)-algebra A admits a faithful C.E. E : A → C(X) (see e.g. [5]). In
particular, this result applies to continuous subhomogeneous unital C(X)-algebras,
when X is second-countable. In this case for each point x ∈ X, the map Ex :
ax 7→ E(a)(x) defines a faithful state on Ax, so Lemma 3.2 implies K(Ex) < ∞.
However, this does not imply that E is of finite index. That is, it may happen that
supx∈X K(Ex) =∞. Consider for instance the following example:

- Let X be the closed compact subset {0} ∪ { 1
n : n ∈ N} of [0, 1].

- Let A be the continuous C(X)-subalgebra of C(X) ⊕ C(X) consisting of
all pairs (f, g) ∈ C(X)⊕ C(X) such that f(0) = g(0).

- Let E : A→ C(X) be a C.E. fixed by the relations

E(f ⊕ g)

(
1

n

)
=


n
n+1f( 1

n ) + 1
n+1g( 1

n ) if n is odd

1
n+1f( 1

n ) + n
n+1g( 1

n ) otherwise

where (f, g) ∈ A.

Then E is a faithful C.E. which is not of finite index. Indeed, one has

E(f ⊕ 0)

(
1

2n

)
=

1

2n+ 1
f

(
1

2n

)
for all f ∈ C0(X \{0}) and all integers n ∈ N. Consequently, a convenient constant
K would satisfy K ≥ 2n+ 1 for all n ∈ N, which is impossible.

We end this paper with some unresolved problems:

Problem 3.11. Is the converse of Theorem 1.4 also true? Moreover, does every
continuous subhomogeneous unital C(X)-algebra A admit a C.E. E : A → C(X)
such that the map r(A) · E − idA is positive? In particular, do we always have
K(A,C(X)) = r(A)?
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