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LOCAL AND GLOBAL PROPER INFINITENESS FOR

CONTINUOUS C(X)-ALGEBRAS

ETIENNE BLANCHARD

Abstract. All unital continuous C∗-bundles with properly infinite fibres are prop-
erly infinite C∗-algebras if and only if the full unital free product T2 ∗C T2 of two
copies of the Cuntz extensions T2 generated by two isometries with orthogonal ranges
is a K1-injective C∗-algebra ([BRR08, Theorem 5.5], [Blan10, Proposition 4.2]). We
show in this article that there is a state ψn with faithful GNS representation on the
Cuntz extension Tn such that the reduced unital free product (Tn, ψn) ∗C (Tn, ψn) is
K1-injective for all n ≥ 3.

1. Introduction

The classification programme of nuclear C∗-algebras through K-theoretical invari-
ants launched by G. Elliott ([Ell94]) led A. Toms and W. Winter to introduce the
strong self-absorption property for simple unital C∗-algebras ([TW07]). This notion is
a pretty rigid one: Any separable unital continuous C(X)-algebra A the fibres of which
are isomorphic to the same strongly self-absorbing C∗-algebra D is a trivial C(X)-
algebra provided the compact Hausdorff base space X has finite topological dimension.
(The strongly self-absorbing C∗-algebra D tensorially absorbs the Jiang-Su algebra Z
([Win09]). Hence, the C∗-algebra D is K1-injective ([Ror04]) and the C(X)-algebra A
satisfies A ∼= D⊗C(X) ([DW08]).) But I. Hirshberg, M. Rørdam and W. Winter have
built a non-trivial unital continuous C∗-bundle over the infinite dimensional compact
product Π∞

n=0 S
2 such that all its fibres are isomorphic to the strongly self-absorbing

UHF algebra of type 2∞ ([HRW07, Example 4.7]). More recently, M. Dădărlat has
constructed in [Dad09, §3] for all pair (Γ0,Γ1) of discrete countable torsion groups a
unital separable continuous C(X)-algebra A such that:

– the base space X is the compact Hilbert cube X = X of infinite dimension,
– all the fibres Ax (x ∈ X) are isomorphic to the strongly self-absorbing Cuntz
C∗-algebra O2 generated by two isometries s1, s2 satisfying 1O2 = s1s

∗
1 + s2s

∗
2 ,

– Ki(A) ∼= C(Y0,Γi) for i = 0, 1 , where Y0 ⊂ [0, 1] is the canonical Cantor set.

These K-theoretical conditions imply that the C(X)-algebra A is not a trivial one. But
this argument does not anymore work when the stringy self-absorbing algebra D is the
Cuntz algebra O∞ ([Cun77]), in so far as K0(O∞) = Z is a torsion free group.

In this note, we attack this trivialization problem for unital continuous C(X)-
algebras with fibres O∞ in a different way: All unital continuous C(X)-algebras with
properly infinite fibres are properly infinite C∗-algebras if and only if the full unital
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free product A = T2 ∗C T2 of two distinct copies of the unital extension T2 of the Cuntz
algebras O2 by the compact operators ([Cun77]) is a K1-injective C∗-algebra, i.e. the
canonical map from U(A)/U0(A) to K1(A) is injective (Corollary 4.3). That free prod-
uct A unitally embeds in the free product T2 ∗C T3 ([ADEL04]) and works by M. Rieffel
([Rief83], [Rief87]), K. Dykema, U. Haagerup, M. Rørdam ([DHR97], [Roh09]) enable
us to prove that at least some reduced quotient B of T2 ∗C T3 is a unital K1-injective
C∗-algebra which contains the algebraic unital free product T2 ⊛C T3 of the two Cuntz
extensions T2 and T3 (Proposition 5.2).

2. Notations

We present in this section the main notations which are used in this article.

Definition 2.1. ([Dix69], [Kas88], [Blan97]) Let X be a compact Hausdorff space and
let C(X) be the C∗-algebra of continuous function on X .

– A unital C(X)-algebra is a unital C∗-algebra A endowed with a unital morphism
of C∗-algebra from C(X) to the centre of A.

– For all closed subset F ⊂ X and all a ∈ A, one denotes by a|F the image of a
in the quotient A|F := A/C0(X \ F ) · A. If x ∈ X is a point in X, one calls
fibre at x the quotient Ax := A|{x} and one write ax for a|{x}.

– The C(X)-algebra A is said to be continuous if the upper semicontinuous map
x ∈ X 7→ ‖ax‖ ∈ R+ is continuous for all a ∈ A.

Definition 2.2. ([Pim95]) Let X be a compact Hausdorff space.
a) The full Fock Hilbert C(X)-module F(E) of a Hilbert C(X)-module E is the direct
sum of Hilbert C(X)-module

F(E) :=
⊕

m∈N

E(⊗C(X))m , (2.1)

where E(⊗C(X))m :=

{

E ⊗C(X) . . .⊗C(X) E (m terms) if m ≥ 1 ,
C(X) if m = 0 .

b) The Pimsner-Toeplitz C(X)-algebra T (E) of a full Hilbert C(X)-module E, i.e. with
non-zero fibres, is the unital subalgebra of the C(X)-algebra LC(X)(F(E) ) of adjointable
C(X)-linear operator acting on F(E) generated by the creation operators ℓ(ζ) (ζ ∈ E),
where:

− ℓ(ζ) (f · 1̂C(X)) := f · ζ = ζ · f for f ∈ C(X) and
− ℓ(ζ) (ζ1 ⊗ . . .⊗ ζk) := ζ ⊗ ζ1 ⊗ . . .⊗ ζk for ζ1, . . . , ζk ∈ E if k ≥ 1 .

(2.2)

Remarks 2.3. a) ([Cun81], [BRR08]) For all integer n ≥ 2, the C∗-algebra Tn := T (Cn)
is the universal unital C∗-algebra generated by n isometries s1, . . . , sn satisfying the
relation

s1s
∗
1 + . . .+ sns

∗
n ≤ 1 . (2.3)

b) A unital C∗-algebra A is properly infinite if and only if one the following equivalent
conditions holds ([Cun77], [Ror03, Proposition 2.1]):

– A contains two isometries with mutually orthogonal range projections,
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– A contains a unital copy of the simple C∗-algebra O∞ .

3. Local proper infiniteness

Let (C∗(Z),∆) be the unital Hopf C∗-algebra ([Wor95]) generated by a unitary u with
spectrum T := {z ∈ C ; z∗z = 1} (often written S1) and with coproduct ∆(u) = u⊗u.

If X is a compact Hausdorff space and E is a separable Hilbert C(X)-module with
non-zero fibres, there is only one coaction αE of (C∗(Z),∆) on the Pimsner-Toeplitz
C(X)-algebra T (E) such that αE

(

ℓ(ζ)
)

= ℓ(ζ)⊗ u for all ζ ∈ E, i.e.

T (E) → T (E)⊗ C∗(Z) = C(T, T (E))
ℓ(ζ) 7→ ℓ(ζ)⊗ u = (z 7→ ℓ(zζ) )

(3.1)

Equation (3.1) implies that the fixed point C(X)-subalgebra TC(X)(E)
αE under this

coaction is the closed linear span TC(X)(E)
αE =

[

C(X).1 +
∑

k≥1 ℓ(E)
k · (ℓ(E)k)∗

]

.

Besides, the following local proper infiniteness property holds.

Proposition 3.1. ([Blac04]) Let X be a compact Hausdorff space and let E be a
separable Hilbert C(X)-module with infinite dimensional fibres.

If x is any point in X, then there is a closed neighbourhood F ⊂ X of x such that
the restriction T (E)|F of the Pimsner-Toeplitz C(X)-algebra T (E) is properly infinite,
i.e. there is a unital ∗-homomorphism O∞ → T (E)|F .

Proof. Let ζ ∈ E be a norm 1 section satisfying ‖ζy‖ = 1 for every point y in a closed
neighbourhood F ⊂ X of the point x. Denote by πF the quotient ∗-homomorphism
C(X) → C(X)/C0(X \ F ) ∼= C(F ).

(1) There is an isomorphism of Hilbert C(F )-module E|F
∼= C(F ) · ζ ⊗πF

1⊕E ′
|F ,

where E ′ is the orthocomplement of ζ in the Hilbert C(X)-module E.
(2) There is an isomorphism of C(F )-algebra

T (E)|F = C∗ < T (E)αE
|F , ℓ(ζ)|F >∼= (T (E)αE)|F ⋊N ,

where the action of the semigroup N on the C(F )-algebra T (E)αE
|F is given by

a 7→ ℓ(ζ)|F · a · ℓ(ζ)∗|F .

(3) The restriction T (E)|F is properly infinite by [Blan13, Lemma 6.1].

�

Remarks 3.2. a) We can also prove Proposition 3.1 thanks to the semiprojectivity of
the Cuntz C∗-algebra O∞ ([Blac04, Theorem 3.2]).

b) The restriction T (E)|F is properly infinite if the closed subset F ⊂ X is perfect
(i.e. without any isolated point) and there is a section ζ ∈ E with ‖ζx‖ ≥ 1 for all
points x ∈ F .
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4. Global proper infiniteness

Proposition 3.1 of the present paper, Proposition 2.5 of [BRR08] and section 6 of
[Blan13] entail the following:

Proposition 4.1. Let X be a second countable perfect compact Hausdorff space and
let A be a separable unital continuous C(X)-algebra with properly infinite fibres.

1) There exist:

(a) a finite integer n ≥ 1,

(b) a covering X =
o

F1 ∪ . . . ∪
o

Fn by the interiors of closed balls F1, . . . , Fn,
(c) unital embeddings of C∗-algebra σk : O∞ → A|Fk

(1 ≤ k ≤ n ).

2) The tensor product Mp(C)⊗ A is properly infinite for all large enough integers p.

3) For all i, j in {1, . . . n}, there is a unitary ui,j ∈ U(A|Fi∩Fj
) such that

σi(sm)|Fi∩Fj
= ui,j · σj(sm)|Fi∩Fj

for all m ∈ N.

Proof. 1) For all point x ∈ X, the semiprojectivity of the C∗-subalgebra O∞ →֒ Ax

([Blac04, Theorem 3.2]) implies that there are a closed neighbourhood F ⊂ X of the
point x and a C(F )-linear unital embedding O∞ ⊗ C(F ) →֒ A|F The compactness of
the topological space X enables to conclude.

2) derives from Proposition 3.1, [BRR08, Proposition 2.7] and [Ror97, Proposition 2.1].

3) One sets ui,j :=
∑

m∈N σi(sm)|Fi∩Fj
· σj(sm)

∗
|Fi∩Fj

([Blan13, Proposition 6.3]). �

Remark 4.2. Assertion (2) alone does not imply that the C∗-algebra A is properly
infinite: There exists a unital C∗-algebra A which is not properly infinite, but such
that M2(C)⊗ A is properly infinite ([Ror03, Proposition 4.5]).

Note the following link with the K1-injectivity for properly infinite C∗-algebras.

Corollary 4.3. Let 0, 1 denote the two canonical unital embeddings of the C∗-algebra
T2 in the full unital free product A := T2 ∗C T2 and let u ∈ U(T2 ∗C T2) be a K1-trivial
unitary such that 1(s1) = u · 0(s1) ([BRR08, Lemma 2.4]).

1) The following conditions are equivalent:

(a) The full unital free product T2 ∗C T2 is K1-injective.
(b) The unitary u ∈ U(T2 ∗C T2) belongs to the connected component U0(T2 ∗C T2).
(c) Every separable unital continuous C(X)-algebra A with properly infinite fibres

is a properly infinite C∗-algebra.

2) If the C∗-algebra T2 ∗C T2 is K1-injective, then the Pimsner-Toeplitz algebra T (E)
of any Hilbert C(X)-module E with fibres of dimension at least 2 is properly infinite
and there is an isomorphism of C(X)-algebra T (E) ∼= T (E)αE ⋊N .

Proof. 1) (a)⇒(b) A unital C∗-algebra A is K1-injective if and only if every unitary
v ∈ U(A) is homotopic to 1A in the group U(A). Hence, (b) is a special case of (a).
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(b)⇒(c) Take a finite covering X =
o

F1 ∪ . . . ∪
o

Fn of the compact space X such that
there are unital embeddings σk : T2 → A|Fk

(1 ≤ k ≤ n). Set Gk := F1 ∪ . . . ∪ Fk ⊂ X
for all 1 ≤ k ≤ n and let us construct by induction isometries wk ∈ A|Gk

such that the
two projections wkw

∗
k and 1|Gk

− wkw
∗
k are properly infinite and full in A|Gk

:

– If k = 1, the isometry w1 := σ1(s1) has the requested properties.

– If 1 ≤ k ≤ n−1 and the isometry wk ∈ A|Gk
is already constructed, then Lemma 2.4 of

[BRR08] implies that there exist a unital homomorphism of C∗-algebra πk : T2 ∗C T2 →
A|Gk∩Fk+1

and a K1-trivial unitary uk+1 ∈ U(A|Gk∩Fk+1
) satisfying:

– πk(0(s1)) = wk |Gk∩Fk+1
and

– πk(1(s1)) = σk+1(s1)|Gk∩Fk+1
= uk+1 · wk |Gk∩Fk+1

.

If condition (b) holds, the unitary uk+1 can even be taken in U0(A|Gk∩Fk+1
), so that

it admits a unitary lifting zk+1 ∈ U0(A|Fk+1
) by Lemma 2.1.7 of [LLR00]. Let wk+1 ∈

A|Gk+1
be the only isometry satisfying the two constraints:

wk+1|Gk
= wk and wk+1|Fk+1

= (zk+1)
∗ · σk+1(s1) .

It verifies that the two projections wk+1w
∗
k+1 and 1|Gk+1

−wk+1w
∗
k+1 are properly infinite

and full in A|Gk+1
.

The proper infiniteness of the projection wnw
∗
n ∈ A|Gn

= A implies that the unit
1A = w∗

n ·wnw
∗
n ·wn is also properly infinite in A, i.e. A is a properly infinite C∗-algebra.

(c)⇒(a) The C∗-algebra D :={f ∈ C([0, 1], T2∗CT2) ; f(0) ∈ 0(T2) and f(1)∈1(T2) } is
a unital continuous C([0, 1])-algebra the fibres of which are all properly infinite. Thus,
condition (c) implies that D is a properly infinite C∗-algebra, a statement equivalent
to the K1-injectivity of the full free product T2 ∗C T2 ([Blan10, Proposition 4.2]).

2) All the fibres of the C(X)-algebra T (E) are simple and properly infinite. Thus, the
C∗-algebra T (E) is properly infinite as soon as condition (c) of assertion 1) holds. One
can then construct by induction isometries wk ∈ T (E)|Gk

(1 ≤ k ≤ n) such that:

– the projections wkw
∗
k and 1|Gk

− wkw
∗
k are properly infinite and full in A|Gk

,
– there is an isomorphism of C(Gk)-algebra T (E)|Gk

∼= T (E)αE
|Gk
⋊adwk

N .
�

Remarks 4.4. a) The isometry wn ∈ T (E) built in assertion 2) cannot belong to the
subspace ℓ(E) ⊂ T (E) in general. Indeed, if X is the compact Hilbert cube of infinite
topological dimension and E is the non-trivial Hilbert C(X)-module constructed by
J. Dixmier and A. Douady ([DD63], [BK04a, Proposition 3.6]), then there exist by
Proposition 3.1 finitely many sections ζ1, . . . .ζn in E such that

T (E) = C∗ < T (E)αE , ℓ(ζ1), . . . , ℓ(ζn) > .

But there is no ζ ∈
∑

1≤k≤nC(X) ·ζk ⊂ E such that T (E) = C∗ < T (E)αE , ℓ(ζ) > since:

– any section ζ ∈ E satisfies ζx = 0 for at least one point x ∈ X ([DD63, 14],
[BK04a, Proposition 3.6]) and

– C∗ < (T (E)αE )x, ℓ(ζ)x >∼= T (Ex)
αEx  T (Ex) ∼= O∞ .
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b) If A denotes the universal UHF-algebra with K1(A) = Q, there is a non-trivial
unital continuous C(X)-algebra D with Dx

∼= O∞ ⊗ A for all x ∈ X ([Dad09]). But is
there a non-trivial unital continuous C(X)-algebra with fibres isomorphic to O∞?
Note that K0(O∞ ⊗ A) = Q 6= Z = K0(O∞) .

5. A K1-injective quotient

The universal Cuntz extension T2 generated by two isometries with orthogonal ranges
unitally embeds in the Cuntz extension T3 ([Cun81, Lemma 3.1]). Accordingly, the full
unital free product T2 ∗C T2 unitally embeds in the free product T2 ∗C T3 ([ADEL04,
Proposition 2.4]). We show in this section that at least some quotient of T2 ∗C T3 is a
simple K1-injective C

∗-algebra which contains the algebraic unital free product T2⊛CT3.

Let ℓ2(N) be the Hilbert space of al sequences ξ = (ξk) ∈ C
N which satisfy ‖ξ‖2 =

∑

k |ξk|
2 < ∞ and take an orthonormal basis {e0, e1, e2, . . .} on ℓ2(N). Define for all

integer n ≥ 2:

– the n isometries sn,1, . . . , sn,n in B(ℓ2(N)) satisfying sn,i · ek = enk+i (k ∈ N),
– the Cuntz extension Tn := C∗(sn,1, . . . , sn,n) ([Cun77]),

– the state ψn(a) =
1
n

n
∑

i=1

〈ei, a · ei〉 on the C∗-algebra Tn ⊂ B(ℓ2(N)),

– the unitary un := sn,1s
∗
n,2 + . . . + sn,ns

∗
n,1 + p ∈ Tn ⊂ B(ℓ2(N)), where p is the

rank 1 projection p = 1−
∑

i sn,is
∗
n,i = θe0,e0 in B(ℓ2(N)).

Lemma 5.1. 1) ψn(a) = ψn(u
∗
naun) for any operator a ∈ Tn and ψn((un)

j) = 0 for
any integer j ∈ {1, . . . , n− 1},

2) The state ψn on Tn has a faithful GNS representation.

3) The restriction of the state ψn to the C∗-subalgebra C∗(un) ⊂ Tn is faithful.

Proof. 1) The unitary un satisfies (un)
n = 1 and (un)

j · e1 = en−j+1 for all 1 ≤ j ≤ n.
Thus, there exists an isomorphism αn : C∗(un) → C∗(Z/nZ) and

ψn(a) = 1
n

n
∑

i=1

〈(un)
i · e1, a (un)

i · e1〉

= 1
n

n
∑

i=1

〈(un)
i+1 · e1, a (un)

i+1 · e1〉 = ψn(u
∗
naun) .

We also have ψn

(

(un)
j
)

= 〈e1, (un)
j · e1〉 = 〈e1, en−j+1〉 = 0 for all j ∈ {1, . . . , n− 1}.

2) The C∗-algebra Tn is contained in B(ℓ2(N)) and the Hilbert space ℓ2(N) is the closure
of Tn · e0. Thus, if a ∈ Tn \ {0} is non-zero, there exists an element b ∈ Tn such that

0 < ‖ab · e0‖
2 = ‖abs∗n,1 · e1‖

2 = 〈e1, sn,1b
∗ · a∗a · bs∗n,1e1〉

=
n
∑

i=1

〈ei, sn,1b
∗ · a∗a · bs∗n,1ei〉

= n · ψn(sn,1b
∗ · a∗a · bs∗n,1) .
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3) The composition ψn ◦ α−1
n equals the only Haar state hn on the finite dimensional

Hopf C∗-algebra (C∗(Z/nZ),∆), which is faithful on C∗(Z/nZ). �

As a consequence, the following holds:

Proposition 5.2. Let (B, ψ) := (T2, ψ2) ∗C (T3, ψ3) be the reduced unital free product
defined by D. Voiculescu ([Voi85]).

1) The C∗-algebra B contains the algebraic unital free product generated by T2 and T3

2) The C∗-algebra B is simple and has stable rank 1.

3) The C∗-algebra B is K1-injective.

Proof. 1) This embedding result is essentially contained in Proposition 4.2 of [DS01].
But we include here the main steps of that proof for completeness. Define:

– the tensor product C∗-algebra B := T2 ⊗ T3,
– the state φ := ψ2 ⊗ ψ3 on the C∗-algebra B,
– the full countably generated Hilbert B-bimodule E := L2(B, φ)⊗ B,
– the full Fock Hilbert B-bimodule F(E) = B ⊕ E ⊕ (E ⊗ E)⊕ . . . ,
– the Pimsner-Toeplitz C∗-algebra T (E) generated in L(F(E)) by the creation
operators ℓ(ξ), ξ ∈ E ([Pim95]).

– the conditional expectation E : T (E) → B given by compression with the
orthogonal projection from FB(E) onto the first summand B ⊂ F(E) ([DS01]).

Take a unitary v in the C∗-subalgebra C∗(ℓ(Λφ1 ⊗ 1) ) ⊂ T (E) such that E(vj) = 0
for any non-zero integer j and let π2 : T2 → T (E), π3 : T3 → T (E) be the two unital
∗-morphisms π2(a) = v2(1 ⊗ a ⊗ 1T3)v

−2 and π3(a) = v3(1 ⊗ 1T2 ⊗ a)v−3. Then, the
algebraic amalgamated free product T2 ⊛C T3 studied by B. Blackadar ([Blac78]) and
G. Pedersen ([Ped94]) is (isomorphic to) the unital ∗-algebra generated by π2(T2) and
π3(T3) in T (E), whereas Voiculescu’s reduced unital free product (T2, ψ2) ∗C (T3, ψ3)
([Voi85]) is (isomorphic to) its closure (see e.g. [Blan09, Theorem 4.1]).

2) The previous Lemma and [BD01, Theorem 1.3] imply that there is a unital em-
bedding (C∗(Z/2Z), h2) ∗C (C∗(Z/3Z), h3) →֒ (B, ψ) = (T2, ψ2) ∗C (T3, ψ3), if h2 and
h3 denote the Haar states on the compact groups (C∗(Z/2Z,∆2) and C

∗(Z/3Z),∆3).
Hence, the reduced free product B is simple ([Av82, Proposition 3.1+its corollary])
and this unital C∗-algebra has stable rank 1 ([DHR97, Theorem 3.8]), i.e. the open
subset of invertible elements is dense in B.

3) With the notations of [Rief83], the set Lg1(B) of invertible elements is dense in
the stable rank 1 C∗-algebra B, so that this C∗-algebra B is K1-injective by [Rief83,
Proposition 1.6] and [Rief87, Theorem 2.10] . (A self-contained proof is also available
in Theorem 3.2.11 of [Roh09].) �

Remark 5.3. The same proof shows that the reduced free product (Tn1 , ψn1)∗C(Tn2 , ψn2)
is simple and K1-injective for all integers n1 ≥ 2 and n2 ≥ 3.

Question 5.4. Is the full free product T2 ∗C T3 also K1-injective?
Note that the full free products T2 ∗C T2 and T2 ∗C T3 unitally embed in the C∗-algebras
O3 ∗C O3 and O3 ∗C O4 ([ADEL04]).
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