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Département de Mathématique et Applications,
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Abstract

Numerical modelling of debris avalanches is presented here. The

model uses the long waves approximation, based on the small aspect
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ratio of debris avalanches, as in classical Saint-Venant models for shal-

low water. Depth-averaged equations using this approximation are de-

rived in a reference frame linked to the topography. Debris avalanches

are treated here as a dry granular flow with Coulomb-type behavior.

The numerical finite volume method uses a kinetic scheme, based on

the description of the microscopic behavior of the system, to define

numerical fluxes at the interfaces of a finite element mesh. The main

advantage of this method is to preserve the height positivity. The

originality of the present scheme stands in the introduction of a Dirac

distribution of particles at the microscopic scale, in order to describe

the stopping of a granular mass when the driving forces are under

the Coulomb threshold. Comparisons with analytical solutions for

dam-break problems show the efficiency of the method to deal with

significant discontinuities. The ability of the model to describe de-

bris avalanche behavior is illustrated here by schematic 1D numerical

simulations of an avalanche over simplified topography. Coulomb-type

behavior with constant and variable friction angle are compared in the

framework of this simple example. Numerical tests show that such ap-

proach does not only provide insights into the flowing and stopping

stage of the granular mass but it also allows us to observe interesting

behaviors, such as the existence of a fluidized zone behind a stopped

granular mass in specific situations, suggesting the presence of hori-

zontal surfaces in the deposited mass.

Key-words: avalanche modelling, Coulomb friction, Saint-Venant

equations, finite volume kinetic scheme.

1 Introduction

Granular avalanches such as rock or debris flows regularly cause large
amounts of human and material damages. The numerical simulation of gran-
ular avalanches should provide a useful tool for investigating, within realistic
geological contexts, the dynamics of these flows and their arrest phase and
for improving the risk assessment of such natural hazards. Computational
models must however be able to correctly capture several features such as
the formation of interacting surges [Iverson, 1997].

The physics and rheology of granular avalanches are indeed challenging
problems and the subject of an active research [e.g. Hunt, 1994; Laigle and

Coussot, 1997; Arattano and Savage, 1994; Macedonio and Pareschi, 1992;
Cheng-Lun et al., 1996; Whipple, 1997; Iverson, 1997]. Despite the lack
of a clear physical understanding of avalanche flows, useful basic behaviors
of granular avalanches can be derived from experimental approaches [e.g.
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Pouliquen, 1999; Douady et al., 1999]. During a granular avalanche, the
characteristic length in the flowing direction is generally much larger than
the vertical one, i.e. the avalanche thickness. Such a long waves scaling ar-
gument has been widely used in the derivation of continuum flow models for
granular avalanches [e.g. Hunt, 1985; Iverson, 1997, Iverson and Denlinger,
2001; Jenkins, 1999; Jenkins et al., 1999; Savage and Hutter, 1989; Hutter et
al., 1995; Harbitz, 1998; Douady et al., 1999]. This leads to depth-averaged
models governed by generalized Saint-Venant equations. These models pro-
vide a fruitful paradigm for investigating the dynamics and the extent of
granular avalanches in the presence of smooth topography [e.g. Hutter et

al., 1995; Naaim et al., 1997; Pouliquen, 1999]. It is worth to mention that
by construction these flow models do not address the problem of the initia-
tion and destabilization phases of an avalanche, see Aranson and Tsimring

[2001] for models describing these processes. Granular surface flow models
are closely related to other Saint-Venant models used in ocean and hydraulic
engineering to describe both wave propagation, hydraulic jumps and open
channel flows among others.

Without going into detailed rheological assumptions, which would be
rather uncertain due to the lack of a physical understanding of the actual
forces acting in debris avalanches, it is of interest here to emphasize some of
the characteristics that make such flows quite specific.
The first characteristic is that granular media have the ability to remain
static (solid) even along an inclined surface. This observation is related by
Coulomb to some macroscopic solid-like friction and the system is able to flow
only when the driving force reaches a critical value. In classical Coulomb’s
friction, the friction coefficient remains constant [e.g. Hutter et al., 1995;
Naaim et al., 1997]. More evolved friction models, which assume a friction
coefficient that depends on both the avalanche mean velocity and thickness,
has been recently proposed [e.g. Pouliquen, 1999; Douady et al., 1999] based
on laboratory experiments and theoretical assumptions. These models have
been shown quite useful to explain the geometry of the flow in the presence
of topography as well as the observed runout of granular avalanches. In both
cases, the existence of a macroscopic friction threshold leads to nonsmooth
dynamics that has to be handled within appropriate mathematical and nu-
merical formulations.
The second characteristic is that topography along which the avalanche is
flowing can be quite steep and rough. Long waves approximation has there-
fore to be derived in a reference frame locally tangent to the bedrock or to
the free surface of the flow, in contrast with the Galilean reference frame
used in classical Saint-Venant models for hydraulic engineering. The defini-
tion of such a tangent frame of reference is not obvious for a realistic earth
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topography and is still a challenge problem. Strong variations of the bottom
topography introduce a stiff source term in the governing flow equations, that
strongly influences the properties of the models and leads to the occurrence
of new steady states. When taking into account a Coulomb-type friction and
a realistic bottom topography, the source term becomes not only stiff during
the flow but also nonsmooth and shocks are expected to develop in finite time
regardless of the initial conditions. These difficulties have long hindered the
development of realistic models for debris avalanches.

Computational methods developed in geophysics for solving the govern-
ing conservation laws of debris avalanches have mostly focused on the res-
olution of shock waves and surges. They are often based on fractional step
methods and high resolution approximate Riemann solvers, like the Harten-
Lax-vanLeer (HLL) solver [e.g. Toro, 1997]. Most of these methods are
based on conservative nonoscillatory finite differences [e.g. Gray et al., 1999;
Wieland et al., 1999; Tai, 2000; Tai et al., 2002] or finite volumes which have
the nice property of being conservative with respect to the flow height [e.g.
Naaim et al., 1997; Laigle and Coussot, 1997; Denlinger and Iverson, 2001].
They are based on an Eulerian formulation, a Lagrangian formulation [e.g.
Zwinger, 2000] or a Lagrangian-Eulerian operator splitting [e.g. Mangeney et

al., 2000]. Even though these Riemann methods present significant improve-
ments over the early Lagrangian finite difference methods [e.g. Savage and

Hutter, 1989, 1991; Greve et al., 1994], they do not preserve height positivity.
Specific numerical development has to be introduced in the wetting-drying
transition, where the system loses hyperbolicity, and generally an artificial
small height has to be introduced in the regions where no fluid is present (see
Heinrich et al., 2001).

We consider here an alternative numerical scheme to compute debris
avalanches, based on the kinetic interpretation of the system. Kinetic schemes
have been proposed by Audusse et al. [2000] and Bristeau et al. [2001] to
compute Saint-Venant equations in hydraulic problems. A survey of the
theoretical properties of these schemes can be found in Perthame [2002]. Re-
cently, kinetic schemes have been extended to include stiff source terms [e.g.
Botchorishvilli et al., 2000; Perthame and Simeoni, 2001]. Kinetic schemes
have been shown to preserve the height positivity and to be able to treat the
wetting-drying transition. However, classical kinetic schemes do not allow
liquid-solid transitions, associated with a nonsmooth friction. The idea of
the present scheme is to introduce a “zero-temperature” kinetic approxima-
tion when the driving force is under the Coulomb threshold.

We first present the basic equations and the conservation laws which
govern the evolution of granular avalanches along a realistic topography. In
particular, by using classical scaling arguments for surface flows, we derive
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the depth-averaged Saint-Venant equations in a reference frame linked to
the bed topography. Then we review some minimal assumptions, inspired
from experiments, on the characteristics of the frictional behavior of granular
avalanches. Then we present a numerical scheme based on a finite volume
approximation of the governing set of conservation laws. At this stage, we
introduce a kinetic solver which takes into account the existence of a friction
threshold. The accuracy of this kinetic scheme is assessed against the classical
dam-break problem over an inclined plane. Finally, some of the potentialities
of the kinetic scheme are illustrated by simulating a debris avalanche over
a simple bed topography. Comparisons between models with constant and
nonconstant friction are discussed based on the runout, the shape of the
deposit and the mechanism of the stopping phase.

2 Equations

Debris avalanches are described here within a continuum theoretical frame-
work, as an incompressible material with constant density [e.g. Savage and

Hutter, 1989; Iverson and Denlinger, 2001]. The evolution is therefore gov-
erned at time t ≥ 0 by the mass and momentum conservation laws,

∇ · u = 0, (2.1)

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇ · σ + ρg, (2.2)

where u(x, y, z, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)) denotes the three-
dimensional velocity vector inside the avalanche in a (x, y, z)-coordinate sys-
tem that will be discussed later, σ(x, y, z, t) is the Cauchy stress tensor, ρ is
the mass density and g the gravitational acceleration. The bottom boundary,
or bed, is described by a surface ψb(x, y, z, t) = z − b(x, y) = 0 and the free
surface of the flow by ψs(x, y, z, t) = z−s(x, y, t) = z−b(x, y)−h(x, y, t) = 0,
where h(x, y, t) is the depth of avalanche layer.
A kinematic boundary condition is imposed on the free and bed surfaces,
that specifies that mass neither enters nor leaves the free surface or the base,

dψs

dt
|s =

(

∂ψs

∂t
+ u · ∇ψs

)

|s = 0, (2.3)

dψb

dt
|b =

(

∂ψb

∂t
+ u · ∇ψb

)

|b = 0, (2.4)

as well as a stress free-boundary condition at the surface, neglecting the
atmospheric pressure,

σ · ns = 0, (2.5)
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Figure 1: Reference frame (x, y, z) linked to the topography and Galilean
reference frame (x̃, ỹ, z̃) with θ the steepest slope angle.

where ns denotes the unit vector normal to the free surface.

Depth-averaging of these equations and some shallow flow assumptions
require the choice of an appropriate coordinate system. During the flow, the
avalanche thickness is much smaller than its extent parallel to the bed. In
the case of significant slopes, the shallow flow assumption is more significant
in a reference frame linked to the topography and the classical shallow water
approximation relating horizontal and vertical direction is not appropriate.
As in Denlinger and Iverson [2001], the equations are written here in terms
of a local orthogonal Cartesian coordinate system in which the z-coordinate
is normal to the local topography. We define a local x-axis corresponding to
the projection of an arbitrary fixed x̃-direction in the local tangent plane to
the topography and y = z ∧ x (Figure 1).
Note that the choice of an appropriate reference frame is not straightforward
when dealing with real complex topography and may lead to nonorthonormal
coordinate systems as in Heinrich et al. [2001], Assier-Rzadkiewicz et al.

[2000] and Sabot et al. [1998]. The variation in space of a local coordinate
system introduces errors in the calculation of the derivatives and require slow
variation of the bedrock. The equations developed in a coordinate system
linked to the topography are not directly applicable in a fixed reference frame
as it was performed by Naaim et al. [1997] and Naaim and Gurer [1998]:
appropriate rotations have to be used to transform properly topography-
linked equations in a fixed reference frame [see Douady et al., 1999].

In the reference frame linked to the topography (Figure 1), the equations
of mass and momentum in the x- and y-direction, derived by integration of
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the Navier-Stokes equations (2.1)-(2.2) with boundary conditions (2.3)-(2.4)
and (2.5), read

∂h

∂t
+ div (hū) = 0, (2.6)

∂

∂t
(hū) +

∂

∂x
(hu2) +

∂

∂y
(huv) = γxgh+

1

ρ

∂

∂x
(hσxx) +

1

ρ

∂

∂y
(hσxy) +

1

ρ
Ttx,

(2.7)

∂

∂t
(hv̄) +

∂

∂x
(huv) +

∂

∂y
(hv2) = γygh+

1

ρ

∂

∂x
(hσxy) +

1

ρ

∂

∂y
(hσyy) +

1

ρ
Tty,

(2.8)

where ū = (ū, v̄) denotes the depth-averaged horizontal flow velocity in the
reference frame (x, y, z) defined below, h is the fluid depth, γi are coefficients
(function of the local slope) defining the projection of the gravity vector along
the i-direction and Tti = σiz|b represents the traction at the base of the flow.
A small aspect ratio ǫ = H/L, where H and L are characteristic dimensions
along the z-axis and in the xOy plane respectively, is then introduced in
the depth-averaged x- and y-equations (2.7)-(2.8) and in the nonaveraged
z-equation obtained from the z-projection of equation (2.2). An asymptotic
analysis with respect to ǫ [e.g. Gray et al., 1999] leads to neglect the accel-
eration normal to the topography in the z-equation, leading to

σzz = ρgγz (h− z) , (2.9)

where γz = cos θ, with θ defined as the angle between the vertical axis and
the normal to the topography (Figure 1). The shape of the vertical profile of
the horizontal velocity in debris avalanche flows is still an open question. The
conservation of the initial stratigraphy, sometimes observed in the deposits
of a debris avalanche, has led to the assumption that all the deformation is
essentially located in a fine boundary layer near the bed surface, so that the
horizontal velocity is approximately constant over the depth [e.g. Savage and
Hutter, 1989; Naaim et al., 1997]. More recently, laboratory experiments on
granular flows suggest a linear profile of the horizontal velocity [e.g. Azanza,
1998; Douady et al., 1999]. A weak influence of the vertical profile of the
horizontal velocity has been observed by Pouliquen and Forterre [2002] for
granular flows over inclined plane. We note that, in the locally tangent frame
of reference, simple assumptions for the velocity profile (i.e. constant or linear
profile) can be made unlike in the Galilean fixed reference frame. We assume
here a vertically constant velocity so that uiuj = ūiūj. In the following, the
overline will be dropped and (u, v) will represent the mean velocity field.
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3 Flow and friction law

3.1 Simple friction law

A relation deduced from the mechanical behavior of the material has to
be imposed between σij, Tti, u and h in order to close equations (2.6)-(2.7)
and (2.8). We consider here the minimal model, by using the hydrostatic
assumption, i.e. σij = 0, i 6= j and σxx = σyy = σzz. The depth-averaged
mass is then considered as an effective material submitted to empirical fric-
tions, introduced in the traction term Tti in a way similar to the experimental
approach by Pouliquen [1999].

Dissipation in granular materials is generally described by means of a
Coulomb-type friction law, relating the tangential traction Tt on the bed to
the normal stress Tn = σzz|b through a factor µ = tan δ involving the dynamic
bed friction angle δ, namely

‖Tt‖ ≤ σc = µ‖Tn‖,

which is acting opposite to the velocity. The value of σc defines the upper
bound of the admissible stresses. In the coordinate system considered above,
using the equation (2.9), we have

σc = µρgγzh.

The resulting Coulomb-type behavior can be summarized as follows,

‖Tt‖ ≥ σc ⇒ Tti = −σc
ui
‖u‖ , (3.1)

‖Tt‖ < σc ⇒ u = 0, (3.2)

with i = x, y.

3.2 Flow variable friction law

Laboratory experiments [see Pouliquen, 1999] have shown that laws in-
volving constant friction angle are restricted to granular flows over smooth
inclined planes or flows over rough bed with high inclination angles. The
assumption of constant friction angle seems to fail for granular flows over
rough bedrock in a range of inclination angles for which steady uniform flows
can be observed [Pouliquen, 1999]. In this range, the frictional force is able
to balance the gravity force, indicating a shear rate dependence.
Pouliquen [1999] proposed to choice an empirical friction coefficient µ as
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function of the Froude number ‖u‖/
√
gh and the thickness h of the granular

layer, in the form

µ(‖u‖, h) = tan δ1 + (tan δ2 − tan δ1) exp

(

−βh
d

√
gh

‖u‖

)

, (3.3)

where δ1, δ2 and d are characteristics of the material which can be measured
from the deposit properties. In particular, d is a characteristic length of the
friction law, which is scaled on the mean diameter of particles; in the case of
spherical glass particles used in these laboratory experiments d is of the order
of the diameter of the beads and β = 0.136 [Pouliquen, 1999]. Equation (3.3)
provides a friction angle, ranging between two values δ1 and δ2, depending
on the values of the velocity and the flow thickness. The friction is higher for
small values of the thickness and high values of the velocity, contrary to the
function proposed by Gray et al. [1999] where lowest elevations (i.e. the rear
and the front) are subject to small friction. What this empirical law means
in terms of microscopic forces is still an open problem. Hydraulic models
using this flow law has been shown to be able to predict the spreading of a
granular mass from released to deposit [Pouliquen and Forterre, 2002].

Finally, if ‖Tt‖ ≥ σc, the granular mass is flowing following the dynamical
equations

∂

∂t
(hū) +

∂

∂x

(

hū2
)

+
∂

∂y
(hūv̄) = γxgh+

∂

∂x
(gγz

h2

2
)− µgγzh

ux
‖u‖ , (3.4)

∂

∂t
(hv̄) +

∂

∂x
(hūv̄) +

∂

∂y

(

hv̄2
)

= γygh+
∂

∂y
(gγz

h2

2
)− µgγzh

uy
‖u‖ , (3.5)

and, if ‖Tt‖ < σc, the granular mass stops, i.e. u = 0.

4 Numerical Model

4.1 Finite volume method

The model developed here is based on the classical finite volume approach
for solving hyperbolic systems, using the concept of cell-centered conservative
quantities. This type of methods requires the formulation of the equations
in terms of conservation laws. The system of equations (2.6) and (3.4)-(3.5)
can be rewritten as

∂U

∂t
+ div F(U) = B(U), (4.1)
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with

U =





h
qx
qy



 , F(U) =







qx qy
q2x
h
+ g

2
h2 qxqy

h
qxqy
h

q2y
h
+ g

2
h2






, (4.2)

B(U) =





0
ghγx − σxz|b
ghγy − σyz|b



 , (4.3)

where q = hu is the material flux.
The equations are discretized on general triangular grids with a finite

element data structure, using a particular control volume which is the median
based dual cell (Figure 2a). The finite element grid is appropriate to describe
variable topography and refinement is performed when strong topographic
gradients occur. Dual cells Ci are obtained by joining the centers of mass of
the triangles surrounding each vertex Pi. We also use the following notations:

• Ki, set of nodes Pj surrounding Pi,

• |Ci|, area of Ci,

• Γij, boundary edge belonging to cells Ci and Cj,

• Lij, length of Γij,

• nij, unit normal to Γij, outward to Ci.

If Pi is a node belonging to the boundary Γ of the numerical domain, we join
the centers of mass of the triangles adjacent to the boundary to the middle
of the edge belonging to Γ (see Figure 2b).

Let ∆t denote the time-step, Un
i is the approximation of the cell-average

of the exact solution at time tn = n∆t, n ∈ N, i.e.

Un
i ≃ 1

|Ci|

∫

Ci

U(tn, x)dx,

and B(Un
i ) is the approximation of the cell-average of the exact source term,

B(Un
i ) ≃

1

|Ci|

∫

Ci

B(U(tn, x))dx.

Then, the finite volume scheme reads

Un+1

i = Un
i −

∑

j∈Ki

αij F
(

Un
i ,U

n
j ,nij

)

−∆tB (Un
i ) , (4.4)
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Figure 2: Triangular finite element mesh: (a) dual inner cell Ci, (b) dual
boundary cell Ci.

with

αij =
∆tLij

|Cij|
, (4.5)

and F
(

Un
i ,U

n
j ,nij

)

denotes an interpolation of normal components of the
flux F(U) ·nij along the edge Γij. The treatment of the boundary conditions,
namely the calculation of the boundary fluxes, using a Riemann invariant is
addressed in Bristeau et al. [2001].

The main difficulty is to compute numerical fluxes at the control volume
interfaces Γij and the overall stability of the method requires some upwinding
in the interpolation of the fluxes [see Audusse et al., 2000]. The computation
of these fluxes constitutes the major difference between the kinetic scheme
used here and Godunov-type methods, which are usually very accurate for
shock-capturing but not well suited to deal with vacuum front at the margins
of the avalanche where the system looses hyperbolicity (h = 0 corresponding
to dry soils). This drawback results from the lack of definable wave speeds
in advance of a flow front. Many shock-capturing upwind schemes produce
negative heights of water at these points and subsequently they break down
or become unstable. An artificial small height of fluid in the whole domain
has to be imposed to stabilize the scheme [e.g. Mangeney et al., 2000].
Tai [2000] and Tai et al. [2002] overcome this imperfection by tracking the
vacuum front. Denlinger and Iverson [2001] calculate the theoretical speed
of a flow front using the Riemann invariant of the wave emanating from the
front directed in the inner part of the mass.

We follow here an alternative approach to solve Saint-Venant equations
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by using a kinetic solver, which is intrinsically able to treat vacuum and is
appropriate to handle discontinuous solutions. These properties are of the
highest importance for gravitational flow modelling. One further important
property of this scheme is that it does not require any dimensional splitting.
Kinetic schemes might be one of the best compromise between accuracy, sta-
bility and efficiency for the resolution of Saint-Venant equations [see Audusse
et al., 2000]. To our knowledge, this type of schemes has never been applied
to avalanche flow modelling over slopping topography.

4.2 Kinetic formulation

The kinetic approach consists in using a fictitious description of the mi-
croscopic behavior of the system, in order to define numerical fluxes at the
interface of an unstructured mesh. In fact, the macroscopic discontinuities
disappear at the microscopic scale. We introduce here the main concepts
of the kinetic scheme used for this model; a more complete description and
deatils about its numerical implementation are done in Audusse et al. [2000]
and Bristeau et al. [2001]. The scheme will be discussed by omitting the
friction term, which is further introduced by using a semi-implicit scheme
(see Section 4.3). In this method, fictitious particles are introduced and the
equations are considered at the microscopic scale, where no discontinuities
occur. A distribution function M(t, x, y, ξ) of fictitious particles with micro-
scopic velocity ξ is introduced to obtain a linear microscopic kinetic equation
equivalent to macroscopic equation (4.1), with (4.2)-(4.3). The microscopic
density of particles present at time t in the vicinity ∆x∆y of the position
(x, y) and with velocity ξ is given by

M(t, x, y, ξ) =
h(t, x, y)

c2
χ

(

ξ − u(t, x, y)

c

)

, (4.6)

with “fluid density” h, “fluid temperature” proportional to

c2 =
gh

2
, (4.7)

and χ(ω) a positive even function defined on ℜ2 and satisfying
∫

ℜ2

χ(ω)dω = 1,

∫

ℜ2

ωiωjχ(ω)dω = δij, (4.8)

with δij the Kronecker symbol and ω = (ωi, ωj). This function χ is assumed
to be compactly supported, i.e.

∃ ωM ∈ ℜ such that χ(ω) = 0, for |ω| ≥ ωM . (4.9)
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Note that the rectangular shape of the distribution function χ imposed for
the fictitious particles would change in time if real particles where considered.

Simple calculations show that the macroscopic quantities are linked to
the microscopic density function by the following relations,

U =

∫

ℜ2

(

1
ξ

)

M(t, x, y, ξ)dξ, (4.10)

F(U) =

∫

ℜ2

(

ξ
ξ ⊗ ξ

)

M(t, x, y, ξ)dξ, (4.11)

Bi(U) = gγi

∫

ℜ2

(

1
ξ

)

▽ξ M(t, x, y, ξ)dξ, (4.12)

with i = x, y. These relations imply that the nonlinear system (2.6) and
(3.4)-(3.5) is equivalent to the linear transport equation for the quantity M ,
for which it is easier to find a simple numerical scheme with good properties,

∂M

∂t
+ ξ · ▽xM − g γ · ▽ξM = Q(t, x, y, ξ), (4.13)

for some collision term Q(t, x, y, ξ) which satisfies
∫

ℜ2

(

1
ξ

)

Q(t, x, y, ξ)dξ = 0. (4.14)

As usual, the collision term Q(t, x, y, ξ) in this kinetic representation of the
Saint-Venant equations, which relaxes the kinetic density to the microscopic
equilibrium M , is neglected in the numerical scheme, i.e. at each time-step
we project the kinetic density on M , which is a way to perform all the
collisions at once and to recover the Gibbs equilibrium without computing it
[see Perthame and Simeoni, 2001].

Finally, the discretization of this simple kinetic equation allows us to
deduce an appropriate discretization of the macroscopic system. A simple
upwind scheme is applied to the microscopic equation (4.13), leading to the
formulation of the fluxes defined in equation (4.4),

F(Ui,Uj,nij) = F+(Ui,nij) + F−(Uj,nij), (4.15)

F+(Ui,nij) =

∫

ξ·nij≥0

ξ · nij

(

1
ξ

)

Mi(ξ)dξ, (4.16)

F−(Uj,nij) =

∫

ξ·nij≤0

ξ · nij

(

1
ξ

)

Mj(ξ)dξ. (4.17)

The simple form of the density function (here a rectangle-type function Π)
allows analytical resolution of integrals (4.16)-(4.17) and gives the possibility
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to write directly a finite volume formula, which therefore avoids using the
extra variable ξ in the implementation of the code. The resulting numer-
ical scheme is consistent and conservative. Furthermore, it is proved that
the water height positivity is preserved under the Courant-Friedrichs-Levy
condition [see Audusse et al., 2000],

∆tmax (|uni |+ ωMc
n
i ) ≤

|Ci|
∑

j∈Ki
Lij

. (4.18)

In comparison with flood modelling, avalanche modelling introduces a
further difficulty relating to the property of granular media to be able to
remain static (solid) even with an inclined free surface. This equilibrium is
not intrinsically preserved by finite volume schemes and specific processing
has to be introduced in the numerical scheme for the particular case of kinetic
scheme, as it will be developed in the next section.

4.3 Friction

The friction is introduced in two steps. A first estimation of the numerical
fluxes q̃n+1

i is obtained by solving equation (4.4) without any friction term
and the flow thickness hn+1

i is calculated by solving explicitly the mass con-
servation (2.6). As friction does not change the direction of the velocity, we
impose that the corrected flux qn+1

i has the same direction of q̃n+1

i .
If the norm of the driving force q̃n+1

i /∆t is lower than the Coulomb threshold
σc/ρ = µgγz h

n+1

i , then the mass stops, i.e.

‖q̃n+1

i ‖ − µgγz h
n+1

i ∆t ≤ 0 ⇒ qn+1

i = 0. (4.19)

On the other hand, if the driving force q̃n+1

i /∆t is higher than the Coulomb
threshold, then the norm of the friction term σ|b is equal to σc.
Following Bristeau et al. [2001], we introduce a semi-implicit treatment of
the friction term. Equation (4.4), written in terms of the variable q, reads

qn+1

i =
(

‖q̃n+1

i ‖ − µgγz h
n+1

i ∆t
) q̃n+1

i

‖q̃n+1

i ‖ . (4.20)

This threshold-type behavior is generally not taken into account in numerical
models, due to the resulting discontinuity in the velocity field. Generally, the
magnitude of active and Coulomb friction forces is compared only for parts
of the flow where u 6= 0 [e.g. Mangeney et al., 2000; Eglit, 1983].

Due to the possible space variations of h, classical kinetic schemes do not
allow the mass stopping even though its velocity is equal to zero. In fact,
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for the kinetic scheme based on a rectangle-type distribution function χ as
in equation (4.6), perturbations propagate at velocity c̃ =

√
gh even though

the fluid is at rest because the “temperature” is not equal to zero.
In our case, perturbations linked to the h-gradient of a nonflat free surface
generate fluxes and the fluid never stops. On the opposite, the Coulomb cri-
terium imposes that, under a given threshold, a perturbation (of the surface
elevation, for example) do not propagates. It can be represented by a fluid
at “temperature” equal to zero, so that the local speed of propagation of the
disturbance relative to the moving stream is equal to zero. It can be obtained
by using a Dirac distribution for the function χ.

The idea of the present scheme is to introduce a “zero-temperature fluid”
with a Dirac-type density of particlesM when the fluid is under the Coulomb
threshold and a “nonzero-temperature fluid” using a rectangular-type density
of particles when the fluid is over the Coulomb threshold, so we have

‖q̃n+1

i ‖ − µgγz h
n+1∆t < 0 ⇒ M(t, x, y, ξ) = h(t, x, y)δ (ξ − u(t, x, y)) ,

(4.21)

‖q̃n+1

i ‖ − µgγz h
n+1∆t ≥ 0 ⇒ M(t, x, y, ξ) =

h(t, x, y)

c2
χ

(

ξ − u(t, x, y)

c

)

,

(4.22)

where the rectangular function χ given by Bristeau et al. [2001] reads

χ(ω) =
1

12
Π|ωi|≤

√
3
, i = 1, 2. (4.23)

The expression of the flux related to the edge Γij in the mass conservation
equation using (4.16) then reads

‖q̃n+1

i ‖ − µgγz h
n+1∆t < 0 ⇒ F+

h (Ui,nij) = hiui,nY (ui,n), (4.24)

‖q̃n+1

i ‖ − µgγz h
n+1∆t ≥ 0, ⇒ F+

h (Ui,nij) =
1

2
hiui,n +

√
3

4
hici +

1

4
√
3
hi
u2i,n
ci
,

(4.25)

where Y is the Heaviside distribution and ui,n is the velocity in the normal
direction of the edge Γij. Similar expressions are obtained for F−(Uj,nij).
Note that the Dirac distribution does not allow us to recover the momentum
equation. In fact, the flux calculated for the momentum equation using this
function reads

F+

m(Ui,nij) = hiu
2

i,nY (ui,n), (4.26)

without the pressure gradient due to the zero-temperature fluid. However,
when the fluid is under the Coulomb threshold, the momentum equation
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Figure 3: 1D mesh and dual cell Ci with center Pi (full circles denote the
points under the Coulomb threshold and stars the points above the Coulomb
threshold).

is replaced by q = 0, so that the Dirac-type function is only used for the
calculation of the fluxes in the mass conservation equation.

The first step of the numerical scheme is to evaluate the grid points that
are under the Coulomb threshold using q̃n+1

i . We look at the simple 1D case
(Figure 3) where the points P0, P1 and P2 are under the Coulomb threshold
(full circles) and the points P3 and P4 are above this threshold (stars). In
order to obtain the flux Fh,i = F+

h (Pi−1)+F
−
h (Pi) at the interfaceMi allowing

to satisfy conservation laws, the same distribution function has to be used in
both side of the interface: a rectangular distribution is imposed if one of the
two points Pi or Pi−1 is above the Coulomb threshold and a Dirac distribution
elsewhere. As a result, the flux through the interfaceM3 is calculated using a
rectangular function whereas the flux through the interface M2 is calculated
using the Dirac function. The propagation of the h-gradient is then allowed
to the right where the fluid is above the Coulomb threshold and forbidden to
the left where the fluid is under the Coulomb threshold, recalling the typical
solid-fluid transition of granular material. Numerical tests show that this
method is mass conservative.

The resulting 2D scheme consists in evaluating at time t the points under
the Coulomb threshold and in calculating at time t+ dt the flux Fh through
the interface Mij of a cell Ci

• using the rectangular distribution if one of the two points Pi and Pj

situated on both sides of this interface is above the Coulomb threshold;

• using a Dirac distribution if the two points Pi and Pj are under the
Coulomb threshold.

The numerical method is illustrated on the 2D mesh presented in Figure 4
where the points M1, M2, M3, P2, M10, M11 surrounding the point P1 are
under the Coulomb threshold. The fluxes Fh through the interfaces of the
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Figure 4: Triangular mesh and dual cell C1, C2, C3 and C4 (full circles
denote the points under the Coulomb threshold and stars the points above
the Coulomb threshold).

cell C1 is then calculated using the Dirac distribution, whereas in cell C4 all
the fluxes are calculated using the rectangular distribution. For the cell C2,
the surrounding points P3 and M8 being above the Coulomb threshold, the
fluxes Fh through the edges cutting P2M8, P2P3 are calculated using the
rectangular distribution, while the fluxes Fh through the edges cutting P2P1,
P2M3, P2M9, P2M10 are calculated using the Dirac distribution. With this
scheme, verifying the mass conservation at the machine accuracy, the fluid is
able to stop.

5 Validation

The precision and performance of the numerical model is tested by com-
paring numerical results with those of an analytical solution, which takes
into account a Coulomb-type friction on the base of the flow, provided the
angle of friction is smaller than the slope angle and the fluid never stops on
the inclined plane [see Mangeney et al., 2000].

The test case consists of the instantaneous release of a fluid mass of
1m high on a dry flat bottom, infinitely long in the negative x-direction.
The numerical domain ranges from 0m to 2000m. Note that the aspect
ratio of the geometry considered here is ǫ = 10−3, so that the long waves
approximation is valid. All 1D numerical experiments are carried out with
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the 2D model using the same number of points in the transversal direction
(101 points with the same space-step as in the flow direction).
From Figure 5 and Figure 6, showing the comparison between analytical
and numerical solution for two grid steps (dx = 20m and dx = 2m), it
can be observed that the numerical model provides a good representation
of the dam-break problem as well without and with friction law. The main
difference between analytical and numerical results is located at the front
position and at the corner of the dam, as it was observed in Mangeney et

al. [2000] with a Godunov-type numerical model. Note that the deviation
from the analytical solution is qualitatively the same with the Godunov-type
model and the kinetic model: the corner at the left discontinuity is rounded
and the position of the front is lower than the position of the analytical front
after a few seconds: the shock is smoothed, as usual with a first order scheme,
as it was observed in Audusse et al. [2000].
Finally, the results are expressed in terms of the mean relative error

dh =
Σ (h− ha)

2

Σh2a
, (5.1)

where ha is the analytical solution for h and Σ represents the sum over a
fixed interval including the points where 0 < h < h0. Figure 7 shows that,
when the space-step is reduced by a factor 10, the mean relative error is
reduced by a factor about 4, which is compatible with other general conver-
gence rates that can be proved for simple models in presence of singularities
(e.g. Perthame [2002]). Similar results are obtained when the error on hu is
considered.

6 One-dimensional simulation over simplified

topography

To illustrate the potentiality of the numerical model, we have performed
a series of numerical experiments using the friction laws described above
over simplified 1D geometry. As an example, let us consider an exponential
shape for the topography Z(x), with characteristic dimensions of the order
of the real topography of White River Valley in Montserrat island (Lesser
Antilles) where an extensively studied debris avalanche occurred 26 December
1997 [Sparks et al., 2002]. This debris avalanche with an estimated volume
of about 40 − 45 × 106m3 was caused by the failure of the upper south
flank of the Soufriere Hills Volcano. Geological and numerical studies of
this event have been performed and estimation of the thickness, velocity and
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Figure 5: (a) Fluid thickness h and (b) discharge flux hu versus distance,
obtained for δ = 0◦ and θ = 0◦ at time t = 37 s and t = 137 s, calculated
with the analytical solution (dotted lines) and with the numerical model for
dx = 20m (solid lines) and dx = 2m (dashed lines).
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Figure 6: (a) Fluid thickness h and (b) discharge flux hu versus distance,
obtained for δ = 0◦, δ = 1◦ and δ = 4◦ for inclination angle θ = 5◦ at time
t = 35 s, calculated with the analytical solution (dotted lines) and with the
numerical model for dx = 20m and dx = 2m (solid lines).
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Figure 7: Mean relative error ∆h for the dam-break problem for dx = 20m
(symbols) and and dx = 2m (solid lines with symbols) for inclination angle
of the bottom θ = 5◦ with various angle of friction δ = 0◦, δ = 1◦ and δ = 4◦

and mean relative error ∆h for θ = 0◦ (dx = 20m solid lines and dx = 2m
dashed lines).

runout distance of this debris avalanche are now available. The maximum
deposit thicknesses range from 60m to 100m. Front heights of about 20m
are observed at a distance of 200m from the shoreline. It can be inferred
from the observations that the avalanche travels approximately 3.5 km from
the center of the destabilized mass, in the reference frame linked to the
topography.

Let us investigate the influence of the various flow laws in the range
of parameters allowing the mass to stop around the position x = 4500m,
corresponding approximately to the observed runout of the Boxing Day debris
avalanche down the White River Valley. In the White River Valley, the
altitude decreases from 900m at the top of the avalanche with a maximum
slope inclination of 35◦ to the sea, with slope inclination of a few degrees at
the shore. The corresponding angle is defined by

θ(x) = θ0 exp
(

−x
a

)

, (6.1)

with θ0 = 35◦ and a = 1750m (Figure 8b). The summit is located at an
altitude of 950m with an initial slope of 35◦, the topography being almost
horizontal in the right part (Figure 8a). The results are presented in the
coordinate system (x,z) linked to the topography. The initial conditions
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Figure 8: (a) Bed topography in Cartesian coordinates (x̃, z̃) and initial
volume of the granular mass in topography-linked coordinates (x, z); (b) slope
angle θ(x) of the bed in degrees in the topography-linked coordinates (x, z).

are defined by the instantaneous release of a parabolic mass over a rigid
topography, represented in Figure 8a in the coordinate system (x,z) where

h(x, t = 0) = K
(

l − (x− x0)
2
)

, (6.2)

u(x, t = 0) = 0, (6.3)

with K = 1.26 × 10−3m−1, l = 1.6 × 105m2 and x0 = 500m. Initially, the
maximal thickness of the mass is 200m in the direction perpendicular to the
topography with a length of 800m, close to the estimations of the Boxing
Day debris avalanche destabilized mass. The numerical domain is discretized
using 880 points in the x-direction with a space-step of 6.25m.

6.1 Curvature effects

We note that equations (3.4)-(3.5) are obtained by neglecting the first
order curvature terms. At first order in 1D, curvature effects lead to an
additional friction force linked to centrifugal acceleration. According to the
scale analysis of Savage and Hutter [1989], this first order curvature effect
is taken into account by a term involving the curvature radius R of the bed
profile in the momentum equation

∂

∂t
(hū)+

∂

∂x
(hū2)+

∂

∂y
(hūv̄) = γxgh+

∂

∂x
(gγz

h2

2
)−µh(gγz+

u2

R
)
u

|u| . (6.4)
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When either µ or λ = L/Rc, where Rc is a characteristic value of the curva-

ture radius, or both are smaller than O(ǫ
1

2 ) and when u does not become too
large, then this term may be dropped in comparison with the others terms
[see Greve and Hutter, 1993].

Numerical tests confirm that the first order curvature effects involved in
the last term of equation (6.4) is not too large in our case, where the radius of
curvature is relatively high. Note that, in the present case, ǫ is of order 0.1,
µ = 0.27 for δ = 15◦ is of order ǫ

1

2 and λ is lower than 4× 10−3.
Figure 9 shows that the results with and without this curvature term are close
to each other for a simple friction law with δ = 15◦, especially during the flow.
Furthermore, the fluid stops almost at the same time (t = 86.4 s without
curvature effects and t = 86 s with curvature effects) and the maximum
elevation of the deposit is the same (hmax = 67.8m without curvature and
hmax = 68m with curvature). However, a difference of 156m (5% of the
deposit length) is observed in the runout distance.
When curvature effects are not taken into account, i.e. when the exponential
shape does not slow down the granular mass, the front is located further
away. The empirical nature of the friction angle in such a model is well
illustrated in this example. In fact, curvature effects are difficult to take into
account in 2D experiments. Dropping these effects leads to unverifiable error
in the determination of the well-fitted friction angle. In the following 1D
simulations, first order curvature effects have been also taken into account.

6.2 The Coulomb friction law

We first look at the results obtained by using the friction law with constant
angle. Sensitivity study is performed just by varying the value of this angle.
The avalanche deposit extends further for lower values of δ, as shown in
Figure 10, where the geometry of the deposits is obtained when the flow
comes to rest. A difference of approximatively 740m on the front position is
obtained when δ varies from 14◦ to 16◦, while a difference of approximatively
1060m when δ varies from 16◦ to 20◦. Furthermore, the length of the deposit
is larger and the maximum elevation lower when the friction angle decreases.
The deposit extends along 2900m when δ = 14◦ with a maximum elevation
h = 65m, while the extension is only 2290m when δ = 20◦ with a maximum
elevation h = 75m. It appears that only low values of the friction angle
around 15◦ are appropriate to reproduce the great mobility of real debris
avalanches, as it was observed in 2D simulation [see Heinrich et al., 2001].

The low value of δ is a consequence of the widely observed ability of
large avalanches to travel distances much larger than expected from classical
models of slope failure. Note that, dispite of the extreme simplification of this
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Figure 9: Fluid thickness h at t = 25 s, t = 45 s and t = 87 s (i.e. when the
fluid stops) with and without the curvature term for a simple friction law
with δ = 15◦. The dash-dotted lines represent the result without curvature
effect and the corresponding full lines those with curvature effect at the same
time. Note that the fluid stops approximatively at the same time.

test, the calculated values are in the range of the deposit elevation estimated
from geological observation [see Sparks et al., 2002]. The x-position of the
maximum elevation is situated toward the rear of the mass. In fact, with a
constant friction angle, in the accelerating stage, the fluid flows with higher
velocity near the front than near the rear due to a driving negative h-gradient.
The positive h-gradient near the downhill rear of the fluid plays a braking
role in the balance of forces, as it is illustrated in Figure 11. It is worth
pointing out that the force due to the pressure gradient (i.e. the h-gradient)
is relatively small compared to the other forces as well, at t = 25 s as at
t = 65 s in the rest of the mass. This feature may explain the weak effect of
the parameter kactpass involved in the pressure gradient when non-isotropy of
normal stresses is assumed [see Pouliquen and Forterre, 2002].

6.3 Pouliquen’s friction law

We propose to use here the more recent law developed empirically by
Pouliquen [1999] (see Section 3.2). Contrary to the one-parameter simple
friction law, three parameters have to be determined: two friction angles δ1,
δ2 and the coefficient d. Debris avalanches are composed of particles with
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Figure 10: Profile of the mass at the time when the fluid stops, for various
values of the friction angle δ using the simple friction law.

Figure 11: Forces involved in the x-momentum equation for a simple friction
law with δ = 15◦ versus distance (a) at time t = 25 s and (b) at t = 65 s.
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Figure 12: Fluid thickness at t = 25 s and when the fluid stops for various
values of d in the Pouliquen’s flow law, with δ1 = 13◦ and δ2 = 20◦, and for a
simple friction law with δ = 15◦. The dash-dotted lines represent the result
for the Pouliquen’s flow law and the corresponding full lines those for the
simple friction law.

sizes varying from less than one millimeter to tens of meters. It is therefore
difficult to estimate the value of d in the model. However, a value of d = 1.5m
allows the mass reaching x = 4500m for δ1 = 13◦ and δ2 = 20◦ (Figure 12).
The variation of δ with the position is represented in Figure 13 at the instants
t = 25 s and t = 65 s for d = 1, d = 1.5 and d = 2.

Note that for low value of d the results are similar to those obtained for
simple friction law with δ = 13◦ and for high values of d the results are close
to those obtained using a simple friction law with δ = 20◦. In this range of
values, the flow is governed by δ2 near the front and the rear of the flow and
by δ1 in the inner part of the mass. The friction angle evolves in time as a
function of the flow parameters (h, hu) as in Figure 13. Differences of more
than 1◦ are observed on δ when d-value goes from 1 to 2, leading to strong
differences in the deposit (Figure 12). Figure 12 also shows that the shapes
of the flowing mass at t = 25 s are similar for both various values of d and
for the simple friction law.

During the flowing stage, the friction force does not play a leading role,
as it is illustrated in Figure 14a at t = 25 s. During the deceleration stage,
the importance of the friction forces increases (Figure 14b) to the stopping
stage, where the friction forces balanced by the gravity force dominate the
other forces. Concerning the deposit, not only the runout distance changes
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Figure 13: Friction angle δ versus position x in Pouliquen’s flow law with
δ1 = 13◦ and δ2 = 20◦ and d = 1 (full lines), d = 1.5 (dotted lines) and d = 2
(dashed lines) at time t = 25 s and t = 65 s. At the rear and the front, i.e.
for small values of h, the friction angle tends to δ2.

Figure 14: Forces involved in the x-momentum equation for Pouliquen’s flow
law with δ1 = 13◦, δ2 = 20◦ and d = 1.5 versus distance at time (a) t = 25 s
and (b) t = 65 s.
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with d but also the shape. As d increases, the front becomes more marked
and the rear finer. Such a shape seems to be closer to real observed front
of avalanches. The shape of the deposit using Pouliquen’s friction law with
d = 1.5 is quite different from that obtained by simple friction law with
δ = 15◦ even though the runout distance is the same and the extension
of the deposit is similar (see Figure 12). The downhill part of the deposit
using this variable friction angle is 18m high at 250m from the rear and
35m high for constant friction angle. Contrary to simple friction law, the
maximum thickness is situated near the front for Pouliquen’s flow law, due
to low friction for high elevation in the inner part of the avalanche. In this
example, contrary to simple friction law, Pouliquen’s flow law can describe
front height of approximatively 20m at a distance of 200m from the runout
distance. As it was observed for simple friction law, the force due to the
pressure gradient is relatively small compared with the other forces as well
at t = 25 s as at t = 65 s, except at the front (Figure 14).

These simple 1D simulations are in agreement with the results obtained
using 2D simulations by Heinrich et al. [2001], where comparisons between
flows calculated by Coulomb and Pouliquen’s friction laws have shown the
importance of the dependence of the friction angle on the Froude number and
the flow height, suggesting a rate dependence in the mechanical behavior of
debris avalanches.

6.4 Mass stopping

The major originality of the model presented in this paper consists in the
introduction of the stopping mechanism in kinetic schemes. Let us look with
more details at this stopping stage, illustrated in Figure 15 and Figure 16 for
simple friction law and Pouliquen’s flow law respectively.

For the simple friction law (δ = 15◦) the mass stops at t = 86 s and for
the Pouliquen’s flow law (δ1 = 13◦, δ2 = 20◦ and d = 1.5) at t = 97.6 s. With
these rheological parameters, the runout distance for both simple friction
law and Pouliquen’s flow law is approximatively 4500m. With the constant
angle friction law, the front encountering low slope begins to stop. The
stopping propagates toward the rear of the mass until the whole fluid stops.
The asymmetric shape becomes more pronounced when the fluid stops, due
to this downward propagation of the stopping stage. Note that, with this
topography and with this initial released mass, the Coulomb threshold is
never reached in the rear of the flow for friction angle higher than δ = 23◦.
For such high friction, the front stops and this stopping propagates toward
the rear. However, the driving force and in particular the gravity near the
rear of the flow is still higher than the Coulomb threshold due to high slope
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Figure 15: Fluid thickness (full lines) versus distance at (a) t = 75 s, (b)
t = 80 s and (c) t = 87 s during the stopping stage for simple friction law
with δ = 15◦. A value of 0 is allocated to the fluid under the Coulomb
threshold and a value of 20 to the fluid above the Coulomb threshold.
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Figure 16: Fluid thickness (full lines) versus distance at (a) t = 85 s, (b)
t = 90 s and (c) t = 98 s during the stopping stage for Pouliquen’s flow
law with δ1 = 13◦, δ2 = 20◦ and d = 1.5. A value of 0 is allocated to the
fluid under the Coulomb threshold and a value of 20 to the fluid above the
Coulomb threshold.
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of the topography. In this case, the h-gradient may play a significant role
in controlling the balance of forces. As an example, at t = 70 s for δ = 24◦,
the whole fluid is stopping except a 150m long part in the rear of the mass.
In this region, the fluid is stopped by the downhill mass which is under
the Coulomb threshold. The presence of a fluidized zone behind a rigid
mass would be an interesting point to verify by comparing numerical results
derived from mathematical models with empirical or geological observation
of deposits. The stopping scenario is not the same for Pouliquen’s flow law,
for which the central part of the fluid is stopping first. In this case, the
friction angle is not constant, as it was observed in the previous section.
The difference in the stopping behavior of a debris mass controlled by simple
friction law or Pouliquen’s flow law can be a useful test to determine the
more appropriate flow law.

The presence of a fluidized zone behind a rigid mass is also observed,
for example, with rheological parameters δ1 = 12◦, δ2 = 20◦ and d = 10,
suggesting the existence of horizontal surfaces in the deposit. Further analysis
of this phenomenon requires the development of a model reproducing the
equilibrium of a fluid at rest [e.g. Perthame and Simeoni, 2001].

7 Conclusion

Numerical modelling of debris avalanches has been presented here based
on Savage and Hutter’s equations. Granular avalanche behavior has been
described using a Coulomb-type friction law with constant and flow variable
friction angle.

The numerical model is based on a kinetic scheme. The main idea is
to introduce two different descriptions of the microscopic behavior of the
system, suggested by the ambivalence of the fluid-solid behavior of granular
material. The resulting solver appears to be stable and preserves height
positivity, contrary to several Godounov-type methods. Efficiency of this
model has been tested by comparisons with analytical solution of dam-break
problems. The numerical scheme remains stable in spite of the introduction
of the discontinuous Coulomb criterium. Furthermore, the discretization on
a finite element mesh is well suited to simulate avalanches over real complex
topographies.

Preliminary 1D simulations on a simplified geometry have allowed us to
test the capacity of the numerical model and to compare constant and vari-
able angle friction laws. The shape of the deposit strongly depends on the
used friction law. Pouliquen’s flow law, with a friction angle depending on
the height and velocity, leads to steepest front of the granular deposit with
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more elongating rear. Furthermore the stopping stage differs depending on
the flow law. While the stopping propagates from the front to the rear when
a constant friction angle is used, the inner part of the mass begins to stop
when Pouliquen’s flow law is used. This feature may be a useful tool to de-
termine the best fitted flow law when comparing with experimental results.
In these oversimplified numerical tests, Pouliquen’s friction law appears to
be more appropriate to describe debris avalanches than a simple Coulomb
friction law, suggesting that frictional effects may play a significant role in
debris avalanche mechanics.
Numerical modelling of debris avalanches provides the only way to estimate
typical velocities and relative weight of the involved forces. The above anal-
ysis shows that the h-gradient force does not play a significant role in the
examples studied here, except at the rear and front of the granular mass.
The friction force begins to be a leading force only when the granular mass
approaches the stopping stage.

The numerical tests show the possible existence of a fluidized zone in the
deposit, under particular conditions. In such situations, part of the fluid
remains over the Coulomb threshold, subjected for example to high gravity
forces, and it is still blocked by the down slope deposit suggesting the exis-
tence of horizontal zones in the deposit. Observation of such features in real
or experimental deposits would be interesting and may provide information
on the mechanical behavior of a granular mass.
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