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Abstract

In order to enrich the modelling of fluid flows, we investigate in this paper a coupling between
two models dedicated to distinct regimes. More precisely, we focus on the influence of the Mach
number as the low Mach case is known to induce theoretical and numerical issues in a compressible
framework. A moving interface is introduced to separate a compressible model (Euler with source
term) and its low Mach counterpart through relevant transmission conditions. A global steady
state for the coupled problem is exhibited. Numerical simulations are then performed to highlight
the influence of the coupling by means of a robust numerical strategy.

1 Introduction

Numerical simulations of fluid mechanics phenomena, are of great interest in the framework of society
issues such as the prevention of natural hazards (tsunamis, ...), the design of water-based facilities
(nuclear reactors, ...), tests for new medical treatments (modelling of blood, ...) or the quest for
new energy sources (water-turbines, ...). Each one of these fluid flows has some specific features
(Reynolds number, Mach number, Froude number, ...) corresponding to specific regimes (viscous
flows, compressible flows, ...) and requiring specific numerical handlings. Designing an efficient
numerical strategy must thus take into account those specific regimes. The resulting code must not
only be accurate at the specific conditions it is designed for, but also be robust when flow conditions
evolve over a wider range. Indeed, even if standard configurations correspond to small values of a
given parameter, the code must be able to cope with unusual situations where this parameter increases
dramatically.

In the present work, we focus on Mach-parametrized fluid flows. We recall that the Mach number
is the ratio between the flow velocity and the speed of sound. This characteristic number ranges
from 0 (e.g. incompressible flows) to large values (hypersonic flows) with a large spectrum of quite
different behaviours. In particular, the issue of low Mach number flows has long been addressed in the
literature. From a theoretical point of view, the formal convergence of solutions to a given compressible
(mostly barotropic) model towards solutions to the related incompressible system was proven in the
periodic/infinite domain case by Klainerman & Majda [27,28]| for well-prepared initial conditions. The
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case of general initial conditions was studied by Schochet [42]. The extension to bounded domains was
achieved by Desjardins et al. [15]. The conclusion drawn in these works is that the initial existence
of too large variations of pressure persist and damage the convergence with the Mach number. This
inaccuracy also occurs from a numerical point of view [13,21,22, 48] where spurious pressure and
velocity waves appear. This is not the only specific numerical issue. Indeed, the disparity of orders
of magnitude of the Mach number results in a large range of time scales which mainly influences the
computations. On the one hand, explicit schemes are over-constrained by an acoustic CFL condition.
On the other hand, implicit schemes may help improve efficency without any stability condition but at
the expense of accuracy as phenomena at the flow time scale might disappear due to a too large time
step.

Several numerical strategies have been proposed to tackle this issue by adapting either compressible or
incompressible solvers to the low Mach regime. The latter case essentially consists in deriving an elliptic
equation for p [6,26,37]. As for compressible solvers, many approaches have been studied: a classical
one like in [29] consists in a time splitting method with an implicit treatment of the acoustic part
and an explicit one for the material part. In [21,22], Guillard and his co-workers blame the numerical
dissipation of the numerical instabilities at low Mach number. Modifications of standard Riemann
solvers are thereby derived through an asymptotic expansion with respect to the Mach number injected
into the discrete formulation. In [13], Dellacherie performed an analysis similar to Schochet [42]: relying
on the decomposition of differential operators into fast and slow parts, the author compared kernels of
continuous and discrete operators. We also mention an intermediate approach [11] where the Hodge
decomposition is used to single out the incompressible part within the compressible model and the work
of Chalons et al [7] where a numerical scheme is designed in an asymptotic-preserving framework.

There are some industrial frameworks where attention is drawn to steady states. Stationary states can
be useful to provide information about the system as well as to initialize computations for stability
studies. That is why transient states could be less important. Most common techniques to fasten
the convergence towards these states rely on preconditioning (see for instance [25,35,47| mainly for
combustion applications). On the one hand, pseudo-unstationary simulations can be carried out for
systems that admit the same steady states as the studied model, with viscous effects [35] or without [47].
On the other hand, the Mach number transformation presented in [25] consists in a change of variables
D — P — Dref Where pp.y is chosen such that the resulting pressure variable is positive and the speed of
sound is lowered in order to relax the time constraint.

The aforementioned approaches to low Mach regimes rely on a modification of standard numerical
schemes. A significantly different strategy consists in modifying the equations thanks to an asymptotic
expansion with respect to the Mach number. A natural idea would make the compressible model
replaced by its incompressible counterpart insofar as it is its (singular) limit. Nevertheless, such models
cannot account for large density/temperature variations that are present even for slightly compressible
flows. Asymptotic expansions enable to construct a hierarchy of intermediate models (depending on the
order of terms that are kept on) that preserve thermodynamic effects. Pioneering works were devoted
to the modelling of combustion. See papers from Sivashinsky [45], Majda and co-workers [32,33], where
low Mach models were derived. We also mention more recent works in the nuclear framework [4,5,12].
These models are characterized by a filtering out of the acoustic waves [39] whose consequence is the
co-existence of two pressure fields. A non-homogeneous divergence constraint replaces the classical
energy equation (or the continuity equation). A major consequence is thus the change of nature of
the system of PDEs: for instance, the low Mach model derived from the hyperbolic Euler equations
is elliptic-hyperbolic as detailed below. The resulting model can then be simulated by means of new
numerical strategies. Notice that unsteady solutions of 1D versions of these low Mach number models
can often be explicitly expressed [5,45]. More general models are derived in [29] with 1 time / 2 space
scales (a third pressure field is then necessary in the modelling) and in [43] with 2 time / 2 space scales
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Figure 1: Coupling strategy

depending on characteristic time / length scales of the underlying experiment.

Although the aforementioned new models yield a good balance between physical content and compu-
tational performance, they might become unrelevant. Indeed, nothing ensures that the overall system
would remain in the regime we are focusing on. The heat release for example might make the velocity
field increase so that the local Mach number could not be considered small anymore. Even if the failure
of our main assumption is localized in time/space, it has to be taken into account. That is why we
investigate in this paper a new pathway in modelling low Mach number flows which incorporates the
parent compressible model. Actually, we aim at coupling the compressible Euler equations with its low
Mach number approximation through an interface moving according to the order of magnitude of the
Mach number (see Figure 1).

Interfaces are inherent in fluid mechanics. We give a brief overview of thin interfaces below.! They raise
several modelling, mathematical and numerical issues, such as the location of the interfaces, information
that can be specified across (transmission conditions), the well-posedness of the coupling problem or the
guarantee that the numerical treatment of the transmission conditions would not generate unphysical
phenomena. Interface modelling can be split into two main categories:

e Physical interfaces: the interface corresponds to a discontinuity surface or to a change of physical
properties of the flow. For example, a bubbly flow can be modelled by means of different PDEs
for each phase [1|. The interface matches the surface of the bubble. More generally, it occurs in
multiphysics problems where fluids have significantly different behaviours within the flow.

The same model can also be used on each side of the interface but characterized by distinct
parameters. For instance, in [9], the interface is prescribed by the discontinuity of the diffusion
coefficient of an elliptic equation. It is handled by means of suitable interpolation operators in
the framework of a finite-difference method. In [3,19,20], 1D conservation laws are involved with
different fluxes: only differs the equation of state between the two domains. Coupling is achieved
by an intermediate state approach relying on a Riemann problem at the fixed interface. However
models can be completely different when the physics is: pioneering papers concern the coupling
between Stokes and Darcy equations for the modelling of porous media [31,36]. Models are cou-
pled by heuristic transmission conditions like the Beavers—Joseph-Saffman condition. Likewise,
HEM/HRM coupling is investigated in |2]: in a subdomain, thermodynamic equilibrium is as-
sumed, which legitimates the use of the HEM model. Notice that the HRM model can be seen
as a relaxation of the previous one, which dictates the numerical strategy.

o Fictitious interfaces: they are concerned with modelling or computational issues. Contrary to
the previous type, these interfaces are not motivated by any physical discrepancy. Transmission

! Diffuse interfaces are not evoked in this paper.



conditions are thereby mainly based on continuity requirements. For example, domain decom-
position methods (the reader could refer to [41]) rely on the creation of arbitrary interfaces.
The original domain is split in order to fasten computations through a parallelization procedure.
These techniques inspired subsequent works aimed at modelling flows with different regimes.
In [17,18], a steady advection-diffusion equation is studied. The diffusion coefficient is assumed
to be small in a part of the domain where the simple advection equation is considered. The
strategy consists in optimizing the transmission conditions in the Fourier space.

This kind of interfaces are generally involved in the modelling of complex systems like in the
nuclear industry [3|. Several codes corresponding to different loops must be coupled to obtain a
solution to the overall problem. Interfaces are then located at the junction of the loops but do
not rely on specific physical behaviours. For instance in [24], the coupling between a 1D model
(for a pipe) and a 2D one (for the core) is realized.

No matter what the kind of interfaces, two mathematical approaches can be contemplated in proceeding
the analysis of the coupling. In the first one, the coupling problem is considered as a whole: if both
systems of PDEs can be interpreted as deriving from the same parent model, this latter is solved over
the whole domain and specific post-treatments are then carried out in each subdomain to recover the
correct behaviour. Interfaces are implicitly included in the formulation. This is in particular the case
when one system is a relaxation of the other (like in [2]).

The second approach consists in considering two Initial Boundary Value Problems (IBVP), one for each
subdomain. Transmission conditions are used as boundary conditions on both sides of the interface
in order to close each IBVP. The issue of well-posedness not only requires the well-posedness of each
IBVP individually, but also relies on a suitable handling of transmission conditions. From a numerical
point of view, dedicated schemes can be used in each subdomain but the way the two schemes are
coupled is a major issue.

In the present work, we investigate the second approach through relevant transmission conditions (see
Figure 1). This enables to use specific numerical schemes for each part to make advantage of the
properties of each model. We assess the overall numerical strategy by focusing on steady states insofar
as they are of great interest in the nuclear industry. Moreover, this enables to yield new explicit
solutions to both models which is not possible in the unsteady case. As it will be seen in the core of
the paper, naive strategies do not lead to satisfying results due to instabilities and the robustness of
algorithms due to the interface is a key point.

The two main contributions of this paper are on the one hand the construction of a steady solution of
the coupled problem (Prop. J) for this choice of interfacial conditions by means of the resolution of a
single algebraic equation (4.5); on the other hand, we propose a robust and stable algorithm (§ 5.2) that
enables to simulate unsteady solutions of the coupled problem.

The paper is organized as follows: the underlying models are presented in Section 2 as well as their 1D
formulations. The coupling strategy is then detailed relying upon the continuity of physical variables.
Each model is studied separately in Section 3 in order to provide a better understanding of the limiting
process as the Mach number goes to 0. This study includes explicit expressions for steady solutions
to both systems of PDEs. These steady states are useful to assess the relevance of the transmission
conditions chosen previously, which is achieved in Section 4 where a coupled steady state is constructed.
Section 5 then consists of the design of an algorithm for the coupled problem based on two specific
numerical schemes in the unsteady case. Some coupling simulations are finally carried out and results
are compared to the aforementioned steady states.



2 Models

In the sequel, @ C R? d € {1,2,3}, will denote the physical domain which will be divided into two
parts depending on the order of magnitude of the Mach number. However, in order to investigate each
model independently, we introduce a general bounded domain w C R?.

2.1 Basic equations

To describe the motion of the underlying fluid, we present two models set in . The first model consists
of the standard Euler equations with an energy source term

HW +V - F(W) = &, (2.1a)
with
p pu 0
W= |pu]l, FW)=|pu®u+pl |, ®=10]|. (2.1b)
pE (PE +p)u ®

The source term enables both to enrich the modelling (see below) and to provide nontrivial steady
states. The equation of state used to model the fluid properties and to close the system is the ideal
fluid law:?

p 15
E=(-1)-4+ = T > 1.
(=2 Sl T >

The second model is derived from the previous one (2.1) under the hypothesis that the Mach number
is “small”. Although the Euler equations (2.1) are still valid, they can be simplified by taking into
account the order of magnitude of the Mach number. Indeed, some terms become negligible as the
Mach number goes to 0. A formal asymptotic expansion (wrt the Mach number) is then carried out
in (2.1) similarly to [12,29,33,45|. The resulting system keeping only terms of order 0 is

Op+V-(pu) =0, (2.2a)

O(pu) + V- (pu®@u)+ Vr =0, (2.2b)
1 ®(t,xe) YT —-1P(¢)

V-u-¥ PO T PH) (2.2¢)

Compared to [29], the right hand side of (2.2¢) is more general due to the energy source term.

As classically observed in similar approaches, the asymptotic expansion results in a decoupling of the
pressure:

o the thermodynamic pressure P which is involved in the equation of state and corresponds to
order 0;

e the dynamic pressure w that appears in the momentum equation and corresponds to the second-
order term.

This fact also implies a change of nature of the equations which turn elliptic-hyperbolic instead of
purely hyperbolic. The main consequence is that acoustic waves are filtered out. Hence remaining
waves are travelling at the material velocity.

2 Instead of the standard Euler constant -, we introduce Y := % which is more convenient in the present study.



Another remark is that System (2.2) seems to be incomplete as there are more unknowns than equations
due to the extra variable w. An additional equation is then required. In this direction, we notice that
a direct integration of (2.2¢) leads to

7;((;)) (T —mer (T;u) /w Pt @) de /aw“ o d") | (2:3)

This equality provides a relation between the mean pressure and the boundary conditions on the
velocity. Two cases must be considered:

e Either pressure P is known from the underlying experiment and (2.3) provides a constraint upon
the boundary velocity (which may induce a coupling strategy);

e Or the velocity is prescribed on the boundary and (2.3) is an ordinary differential equation that
enables to compute the pressure.

In the sequel, we shall always consider that one of these cases is matched which provides the required
closure equation.

2.2 IBVP in the 1D case

We detail here initial (IC) and boundary conditions (BC). From now on, we focus on dimension 1 with

@ = (a,b).
The two previous models respectively reduce to
Op + 0z(pu) =0, (2.4a)
B (pu) + 9x(pu® + p) =0, (2.4b)
O(pE) + 0 (pEu + pu) = @, (2.4c)
and to
Op + 0z(pu) =0, (2.5a)
/
Dot = i(;(j)) - TT 1 77)9((;))’ (2.5)
Or(pu) + 0z (pu? + ) = 0. (2.5¢)

In the framework of nuclear modelling, ® models the heating of the coolant fluid due to fusion reactions
in the reactor core. Moreover, we are interested in the following boundary conditions

p(t, a) = Qe(t)a (2.6&)
u(t,a) = u(t), (2.6b)
p(t, b) = Ps(t)> (2.60)

where g, u. and P, are some positive functions.

As for initial conditions, in accordance with (2.6) we impose

p(0,z) = oo(), (2.7a)
u(0, z) = ug(z), (2.7b)
p(0,z) = ps, (2.7¢)

where 9o, up and p, are some data which are compatible with BC (2.8), i.e. such that go(z = a) =
0e(t =0), up(z = a) = u.(t = 0) and ps = Ps(0). These two models are studied in Section 3.



2.3 The coupled problem

Models like (2.2) have been introduced for two main reasons: first, they are hoped to produce less
expensive algorithms; secondly, they enable to tackle the issue of numerical instabilities due to the low
Mach number. As the Mach number is commonly assumed to be small in nuclear processes [12,38], it
seems natural to make use of System (2.5) in the framework of the present study. However, as accidental
events may occur, the Mach number may increase dramatically so that it cannot be assumed to be
small anymore.

That is why an adaptive strategy is considered here. We introduce two domains: 2 = (0, L) models
the core of the nuclear reactor (L is thus the length of the core) and w(t) = (0, a(t)) is the subdomain
of Q0 where the Mach number is small. Here « is a given number such that 0 < o < L. The tuning of
a will be discussed in the numerical part of this paper (see Section 5).

We are interested in the coupling between the low Mach number model (2.5) set in w(t) = (0, a(t))
and the Euler system (2.4) set in Q\w(t) = (a(t),L). BC at the boundary of  are

p(t,0) = 0.(1), (2.52)
u(t,0) = uc(t), (2.8b)
p(t, L) = ps. (2.8¢c)
The point is to provide transmission conditions on Jdw(t) N Q = {a(t)} to connect Systems (2.4)

and (2.5). Several strategies may be classically contemplated such as the continuity of physical vari-
ables, conservative variables or fluxes.

We propose to couple the two systems through the following continuity conditions

p* (t,a= (1)) = p* D (t,a* (1)), (2.9a)
@9 (a7 (1)) = uD (¢, at (1)), (2.9b)
73(2'5)(t) - p(2~4) (t, at (t))7 (2.9¢)
and
79 (t,a” (1)) = 0. (2.9d)

The exponent denotes the system to which the variable is a solution. Condition (2.9d) comes from the
fact that 7 is known up to a constant. To fix it, we decided to rely on the asymptotic development
where 7 is the 2nd-order term. The boundary condition is thus supported by the Oth-order term P
through (2.9¢). This strategy is depicted on Figure 2.

This choice relies on the particular boundary conditions that are considered in the present study
(imposed upon physical variables). Moreover, we emphasize that no physical phenomenon (which
may induce discontinuities) is expected to happen at the fictitious interface (w(t) is chosen so that no
acoustic effect is predominant in its vicinity). The theoretical study of this strategy is presented in
Section 4 and numerical applications in Section 5.

3 Unsteady and steady solutions of individual models

From now on, we assume that the source term is constant ®(¢,x) = ®9 > 0. Extensions to ® = &(z)
are straightforward (see Corollary 3 for example).

Before establishing the coupling strategy, we wish to better understand the properties of each model and
especially the influence of the asymptotic expansion on steady states. We thus do not investigate
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Figure 2: Setting of the coupling problem

the coupling in this section but we study each system independently from each other in
w = (a,b) together with BC (2.6).

3.1 Unsteady solutions

The nature of the Euler equations which form a hyperbolic system of PDEs induces numerous difficul-
ties. In particular, boundary conditions are imposed by the sign of characteristic fields which is not
known a priori. The regularity of solutions is also influenced by hyperbolicity, as discontinuities may
form in finite time no matter how smooth the data [8,44]. An extensive literature has been devoted to
the well-posedness of Euler equations but some problems are still open. Likewise, few explicit solutions
are known except for simple Riemann problems [46]. Hence, few things can be stated about unsteady
solutions for the compressible model (2.4).

On the contrary, the mathematical structure of the low Mach number system (2.5) is different from the
Euler equations as it is hyperbolic-elliptic. A main consequence in 1D is that we can provide explicit
unsteady solutions similarly to [4,5]:

Proposition 1. System (2.5) together with BC (2.6) and IC (2.7) has a unique solution given by

PN (t, x) = ge(t") - [77; Séi))} o exp [—(I;O(Hs(t) - Hs(t*))} :
if there exists t* € (0,t) such that x(t*;t,z) =0, (3.1a)
(r-1/7
p"M (¢, x) = 00 (x(0;t, z)) [P:((é))] exp [_?(Hs(t) - HS(O))} :
otherwise, (3.1b)
P(t) = Ps(t), (3.1c)
u™M(t, ) = ue(t) + [T;fso(t) — TT_ ! zzgﬂ (x —a). (3.1d)

II; denotes a primitive function of 1/Ps and x is the characteristic flow given by (3.3).

Proof. On the one hand, we notice that (3.1c) is a direct consequence of BC (2.6¢). On the other hand,
Eq. (2.5b) can be directly integrated applying BC (2.6b) which yields (3.1d).



The velocity field being known, we can compute the density by applying the method of characteristics
to Eq. (2.5a). Let x be the characteristic flow associated with «™™, i.e. solution to the ODE

d
d% = uM™M (7, x(1)),

x(t) = x.

(3.2)

Due to classical smoothness results [10], the solution of this ordinary differential equation (ODE)
depends continuously on ¢ and x which are considered as parameters. That is why the solution to (3.2)
is denoted by x(7;t,z) in the sequel (or simply x(7) if no confusion is possible). Thanks to (3.1d),
ODE (3.2) reads

—®IL5(7) + (T — 1) lnP;(T)} }/

{[Xm _ g exp [ ¢ BolLy () + (T — 1) 1n7>s<7)} |

= ue(T) exp [— T

A direct integration leads to

Ps(t)}(T—l)/T |:q)0
exp

it =a+ - a) | 240 P - )]

+ /t " (o) [z‘zgii](rl)ﬂexp [?(Hsv)—ns(o))} do. (3.3)

LM(

Setting o(7) = p"™ (7, x(7; ¢, z)) and using the divergence constraint (2.5b), Eq. (2.5a) can be written

(Y = 1D)Py(r) = Po

Q,(T) = _Q(T)afuLM (7—7 X(T7 t? .’IJ)) = TPS(T) Q(T)
Hence: (T—1)/1
735 (’7’) - (I)O
LM . — . - —
P rtrita)) = plta) - | e | - )
Two cases must be considered depending on (¢, x):

e cither the characteristic curve 7 — x/(7;¢, x) reaches the boundary = = a for some t*(¢, x) € (0, ?),
i.e. x(t*;t,z) = 0 which, due to (2.6a), leads to (3.1a);

e or the characteristic curve lies in w for all 7 € (0,¢). Then, for 7 = 0, we obtain (3.1b).

O]

Remark 1. Solution (3.1) is a generalization of [4, Prop. 3.1] for variable output pressure and inlet
velocity. Indeed, when Ps(t) = ps and ue(t) = U, the previous expressions can be made explicit. We
have

Hence

Po (X(07t7$)) €Xp [_%] s th < 23;5 In (1 =+ T;{J)soﬁe (l’ - CL)> )
Pt x) = pe(t*(t, z))

P Y

otherwise.




3.2 Steady solutions

As we have no explicit unsteady solutions for the compressible equations, we cannot analyze the
influence of the low Mach number assumption. This made us focus on steady states in order to provide
a qualitative study. Thus we assume in this section that g, and u. are some constants and that

Ps(t) = ps-

3.2.1 Compressible model

Contrary to the unsteady case, we are able to derive in this paragraph explicit expressions for steady
solutions to System (2.4) supplemented with BC (2.6). The derivation of such solutions for the Euler
equations in the transonic case and their physical/numerical stability have been studied for example
in [16] (in the case ® = 0, without energy and with variable area).

D, := geu. denotes the inflow rate. We introduce the following nondimensionalized coefficients

~ Psle = Q(I)OQg(b - a)
Ps = D2 ’ @ = D3 : (34)

In the sequel, ~ will denote variables without dimension. We also recall that T > 1.

Proposition 2. Let us assume that the physical and boundary data satisfy the inequality

Ds > % 1+ 2T(I)_ 1 (H1)
Then System (2.4) set in (a,b) with boundary conditions (2.6) admits the following steady state
T(pe +1) + \/(Tﬁe —TH1)2 - (27 — 1)p2=2
pocli) = e 2, + 1 + G-t ’
Poo() = mlzgnge [(T ~ 1)@+ 1)+ /(0P — T+ 1)2— (27 - 1)5;5_—3] , (3.5)
kuoo(m) = (2](1361)96 [T(ﬁe +1) - \/(Tﬁe —T+1)2— (2T — 1)5;5_—3} :

where B, i= (T = 1)(1 = py) +/(Yps = T + 1) + .

Notice that pso(a) = %.

Corollary 1. Hypothesis (H1) corresponds to a subsonic configuration, i.e. the Mach number max, Mo,

associated with (3.5) is lower than 1.

Proposition 3. Let us assume that the data satisfy the inequalities
~ (Y —1)? . T-1 ®
b < — |1 H2
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where p = ;{r;_ll (1 —4/1- (?rti_l)lrz&)) Then System (2.4) set in (a,b) with boundary conditions (2.6)
admits the following steady state

T+ 1) = (TR = T+ 1)2 - (20 — 1B
Poo(T) = Qe QTﬁe—Fl—i—‘i% )

. Dg ~ ~ Fr—a 3.6
P®) = T, {(T ~1)(Fe +1) — /(TP — T +1)2 - (27 - 1)‘1>ba] , (3.6)
Uso(¥) = (2lee1)ge {T(ﬁe +1) 4/ (The = T +1)2 — (27 - 1)59,;_;;} ,

where pe := (LT —1)(1 — ps) — \/(Tﬁs —-T+1)%+ Q.

Corollary 2. Hypothesis (H2) corresponds to a supersonic configuration, i.e. the Mach number
max,; Moo () associated with (3.6) is greater than 1.

Corollary 3. When ® depends on the space variable (but is still positive), the previous propositions
(2 and 3) hold with ® and {=2 replaced respectively by

202 [° . 2(y)dy
D;”/a O(y) dy and fi

Remark 2. Steady states (3.5) and (3.6) are not known in the literature to our knowledge. Due to the
source term ®, they are not trivial. However, they are smooth functions of ® (and thus of ®¢) and when
Dy — 0, we recover the standard trivial steady state for the Euler system, i.e. (poo, Uoo, Do) = (0c, te, Ps)

from Prop. 2 for ps > % and from Prop. 3 for 0 < ps < %

As stated in Prop. 2 and Prop. 3, we cannot always exhibit a steady state. The domain of existence
is drawn on Figure 3. Let us make some comments about this graph. The dashed line corresponds
to the sonic line. Above this line (dotted area), the flow is subsonic and a steady state can always be
computed. The location of boundary conditions is then in accordance with the eigenvalues associated
with the Euler system, which are u — ¢, u and u + ¢ where c is the speed of sound. There are two
positive eigenvalues (and two input BC) and a negative one (and one output BC).

Below the sonic line, this statement does not hold anymore (3 positive eigenvalues) and we could expect
to have no steady state. However, there exists a small domain (dashed area) in the supersonic part.
As the trivial state (ge,ue,ps) is a stationary solution when ®; = 0 no matter what the regime of
compressibility (see Rem. 2), this area looks like a continuous extension in the vicinity of these trivial
states.

We make two other remarks about the results of this section. The first one is about uniqueness: as it
will be detailed below, the proof goes to show that (3.5) is the unique smooth subsonic steady solution.
The second one is that these solutions are some steady solutions but we do not state that they are
asymptotic solutions: there is no proof that any unsteady solution would converge as t — +oo towards
(3.5). Large time behaviour of solutions to Euler equations is indeed an open question which is not
treated in this paper.
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rT-1 2
TQeue_l_

T—1 2 |7
27 —1 Qelle

()

0

(r=1)2 oeud
2Y—1 2(b—a)

Figure 3: Existence of a steady state in the (®g,ps) domain: the dotted area corresponds to Prop. 2
(Mo < 1) and the hatched domain to Prop. 3 (Ms > 1)

Proof of Prop. 2 and 3. We use a shooting method by tuning the inflow pressure p. = po(z = a) so
that (2.6¢) is satisfied. Let us set

~ _ DPele

pe - Dg .

Integrating (2.4) over (a,z) and taking BC (2.6a-2.6b) into account, the steady states satisfy the
equalities

Poo(T)Uoo(x) — De = 0, (3.7a)
pOO(x)uOO($)2 - Qeug eroo(x) —Pe =0, (37b)
Y Poo (7)o () + 3 poo (2)Uoo (2)? — TPette — 2 0cu? = p(z — a). (3.7¢)

Assuming poo(z) > 0, Eq. (3.7a) yields

D,
Uoo(T) = . 3.7a’
2 poo(T) S
Due to this relation, (3.7b) reads
1 1
Doo (T :pe—Dg( —>. 3.7’
(z) @) 2 (3.7b7)

Inserting relations (3.7a’) and (3.7b’) into (3.7¢) and multiplying by p2,, we obtain the following
quadratic equation for pso

poo()? <<T>‘Z “o iy 2sz;> 9T 0u(1 4 P)pes () + 22T — 1) = 0.

Then, provided that N
(2T — 1)@ < (Yp. — T +1)%, (3.8)

12



the solution is real-valued and reads

T(Fe+1) £ /(e — T +1)2 - (27 — )32
2Tp, + 1 + dL=2 '

a

Poo (:E) = Qe

The +-sign is determined by the boundary condition ps(a) = ge. Indeed:

T(Pe+1)£|Tpe — T +1]
2Tpe +1 '

Poo(@) = e

The requirement poo(a) = g, is thus satisfied depending on the sign of Tp, — T + 1. More precisely,
we have

T(Fe+1) +/(Che — T+ 1)2 - (27 — 1)de=s
Qe ~ = ) if ﬁe 2 %7
2Ype + 1+ @5=¢
poo(@) = — (3.9a)
T(pe+1) - \/(Tﬁe — T4 1)2- (27 - 1)pz=e
Oe — = , otherwise.
2Ype + 1+ GF=2
Consequently (see Appendix A.1), inserting (3.9a) into (3.7b’)
Poo(T) =
De P T-1
a1 |(T—De+1 The — T+1)2— (27 — Dd2=e| | if p, > L1,
(2T_1)Qe|:< )(p+)+\/(l? +1) ( ) b—a:| i pe 2 =7
D2 (3.9b)
m {(T —DPe+1) - \/(Tﬁe -T+1)2— (27 - 1)q)3(f_s] , otherwise.

The shooting method then consists in choosing pressure p. such that ps(b) = ps in order to match
BC (2.6¢). To do so, we notice that

Poo(b) = ps (g%b;’) (2Y = 1)ps — (T = 1)(pe + 1) = i\/(Tﬁe =T +1)2 (27 - 1)&)

Squaring both sides of the latter equality shows that p. is necessarily a solution to the equation

P24+ 2(T = 1)(Ps — Dpe — 2T — 1)p2 + 2(T — 1)p, — & = 0. (3.10)
Then
ﬁfz(Tfl)(lfﬁs)i\/(Tﬁs—TH)Hi). (3.11)
We can verify that
+ [ﬁgc - Tgl} >0, (3.12a)
(TPE =T +1)2> (2T —1)d. (3.12b)

In fact, on the one hand, (3.12a) is equivalent to £A4(X;) > 0 where

T ~
‘ - ~
AL (Y) .——YzlziT 1 Y-+ & and Xeg=7T—Tps — 1.

We easily check that Ay has indeed the sign of + over R. On the other hand, (3.12b) comes from the
equality (see Appendix A.2)

(T —T+1)2-(2Y - 1)® = [TXS + (T — 1)/ &2 +<T>]2. (3.13)

13



Hence (3.12a) determines the solution in (3.9) through the selection of the relevant case (first case:
Pe = DI; second case: p. = p, ) while (3.12b) ensures that Hyp. (3.8) holds.

Conversely, let us verify that Solution (3.9) together with p given by (3.11) is indeed a physically
admissible solution to System (2.4) with BC (2.6). First, we check the positivity of pZ . It is obvious
for pt, as the sum of positive terms due to (3.12a) which implies that pf > % > 0. For pg,, the
numerator is minimal at x = a and the positivity is also a consequence of (3.12a).

We then ensure that p% (z = b) = p,. We deduce from (3.9b) for = b, from (3.11) and (3.13)

Lo (C-)D? ~ Ik -
b)) = — 22— (T — 1)(1 — p;s 1+ X2 4+D+ | ——X, £/ X2+ ).
PEG) = gy, (T D05 #1222 4 B |y k47
We remark that

e pi (b) = ps if and only if

T ~ P
— X, < —\/ X2+ D Xy < —(T -1 H1). .14
T 1% < VAZ+ O = X, < —( ) 5T 1 <~ (H1) (3.14)

As pZ is monotone decreasing, we observe that pt (z) > ps > 0 for all z which ends the proof of
Prop. 2 as (3.5) is indeed a physical solution.

e p(b) = ps if and only if

T - )
— X >\ AZ+P —= X >(T-1
TV > (T =\ v 7

- T-1 P
< p5<p*::T 1-— 5T 1

(3.15)

Hence the right part of (H2). Notice that the positivity of ps implies that we have
<27 —1.

As p7, is monotone-increasing with respect to x, we must then take care of the positivity of
P, = po(a) — or equivalently of po — in order to ensure that p ., remains positive over (a,b). p,
defined by (3.11) increases as a function of ps then decreases. Indeed, as

G ) = (T —1) -1l XL
\/(Tﬁs—‘r+1)2+<5
v

7)) = - e <o,

[(Tﬁs ~YT+1)2+ cﬂ Y

we induce that (p.)" is monotone-decreasing and we verify that (p.)'(px) = 0 with p,. defined
by (3.15). Function p_ thus admits a maximum at p.. The corresponding maximal value

AT B2 et $
Pe \Px) = 7 ¥ \2r—1

is positive if and only if P < (2TT—_1)12 < 2Y — 1. Under that condition, the domain of positivity of

Pe wrt ps reads [p, H] — see Fig. 4 — where p, § are solutions to p(X) =0 <= (2T — 1)X2 —
2(YT -1)X + & = 0. Given that p < p. < p and ps < px according to (3.15), we deduce that
(3.6) is a physically admissible solution for ps € (g, D« )-

14



55 0 g 5* 5] +00
Pe (Ps)
" / 0/ \
<0 —00

Figure 4: Variations of p_ (ps) = (¥ — 1)(1 — ps) — \/(Tﬁs —T+1)2+ ®
O

Proof of Corollary 1, page 10 and Corollary 2, page 11. Under the hypotheses of Proposition 2, the
local Mach number is given by

_ (@) _(Y-1\"* D
Moo(2) = =5 _( T > Poo(T)Poo ()

(T-1)poo(x)
@37y (T — 1>1/2 [poo(x) t —1/2
R 1+p0) -1 .
( T Qe ( b )

As poo from (3.5) decreases (see Appendix A.1), we deduce that M, is monotone-increasing with
respect to x and is thus maximal at x = b. Moreover

Mao(b) =

(T —1)Deuco(b)
Tps

_ 1/2 —
(3.5) <M> \/r@j 1) = OB - T 12— 27 - D). (3.16)

We deduce from (3.11)" and (3.13) that the square root above in (3.16) is equal to

\/(T DX+ D)+ T+ T A2+ — ITXS + (T —1)y/ &2 +cf>‘
= \/(2T —1) [Xs + 144/ &2 +E>]

We recall that we set Xy = T — 1 — Yp, < 0. Using again (3.14) through /X2 + & < —%XS, we
obtain from (3.16)

T-1\"% / X, T-1 1/2\/ T—Yps—1
< — g B ———— .
Moo (z) < Moo(b) < ( 5 ) 1 T 1 ( 5 > 1 T 1

As for the second case (Prop. 3), the same calculations hold except that M, is monotone-decreasing
and is thus minimal at = b. Under (H2), we obtain similarly Mo (z) > Mo (b) > 1. O
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3.2.2 Low Mach number model

Similarly to Section 3.1, explicit expressions for steady solutions to the low Mach number model (2.5)
can be easily derived. This results from direct integrations of the equations.

Lemma 1. The steady solution associated with System (2.5) reads, according to Notations (3.4)

LM Oc 00
po (@) = oy = = ;
- 1 & x—
It pp(z—a) 141340
pIgOM(:B) = pS)
: 2 (3.17)
W(I;OM(:E) = Qeue%(b - J,‘) = Qezue T‘Iis 2:75’
= 5 o
kugg\/[(aj) T e (1 + Tpsoue (I' - CL)) = Ue 1 + %Tﬁs ﬁ) .

Remark 3. This result easily extends to the case ® = ®(x) similarly to Corollary 3 by taking o =

292 r—a

= f:@(y) dy and by replacing =2 by

[ o) dy
JPa(y) dy

Remark 4. Unlike the compressible case, the low Mach number model has no restriction: it always
admits a steady state and has a mathematical meaning no matter what the underlying Mach regime. If
the Mach number increases, the model is still well-posed but looses its physical legitimacy (see Figures 6
and 7). As an ezample, we notice that d,uBM > 0 for any ®y > 0 while the sign of Oyus depends of
the regime of compressibility: it is positive in the subsonic case (Prop. 2) and negative in the supersonic
case (Prop. 3).

Remark 5. [t is straightforward that the unsteady solution given in Remark 1 converges to the steady
one specified in Lemma 1 when pe(t) PR Pe-
— 400

3.2.3 Link between the two regimes

It is now possible to understand the balance between the different terms in System (2.4) in the zero
Mach limit. It will be useful to design actual low Mach situations by means of relevant values for
parameters ®q and p;.

To do so, we formally work out the limit in (3.5) from Prop. 2 as the Mach number goes to 0. The
asymptotic low Mach number assumption consists in stating that

Ve (a,b), us(x)* =0 <§Z‘;g;> . (3.18)

In particular, we deduce from (3.18) at t =a and x =b

oo5) (i)

(we recall that pe := poo(a)) or equivalently

1 =0 an LZO a
= =o(l) and e = o(1). (3.19a)

3Solution (3.6) is not concerned as it corresponds to a supersonic configuration.
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Given (3.7b) for x = b, we have

~ ~ D 1
Pot 2 =p+1 — 1+‘k~::%<1+~>.
Poo (D) Poo(b)Ps  Ps Pe
The asymptotics (3.19a) provide
Peﬁ— Ds _ o(l) <= Der~ Ps. (3.19b)
S

Given the expression of p., this reads

T-1 T-1 2 9
—— T+ ( — —T) + = = o(1).
Ds ¢ Ps p? )

From (3.19a) and (3.19b), we deduce that 1/ps = o(1). Then, due to T = O(1), the latter relation

yields
2 o & ~2
—T+4/7T +p§ =o(l) = & =o0(p7). (3.19¢)

Asymptotics (3.19) is in accordance with Hyp. (H1). Inserting (3.19) into (3.5), we prove that po from
Prop. 2 converges to piM from Lemma 1 as the Mach number goes to 0. The convergence of ps, and
Uso follows.

In conclusion, we have:

Lemma 2. A low Mach number configuration corresponds to the case where

2

Ds > geuz and Py <« Pis'
(b — a)oeue

We then perform some comparisons between steady states for the two models. We take standard
values for pressurized water reactors (PWR): ¢ = Om, b = 42m, T = 1.74, o = 735kg - m~3
and u, = 5m -s~!. For each case, we represent the profile of the power density, the Mach number
associated with the compressible steady solution and the comparisons between low Mach /compressible
steady densities and velocities.

Case 1. For standard values of the exit pressure and the power density (estimates from Lemma 2
are satisfied), we note on Figure 15 that both solutions match as the Mach number is about
5-1072. In this standard configuration, the low Mach number model turns out to provide a good
asymptotic.

Case 2. When the pressure is divided by 100 as in the case of a depressurization incident, the Mach
number can no longer be considered small (see Figure 6) and a significant discrepancy appears.
In particular, the velocity field is largely overestimated by the low Mach number model.

Case 3. We show on Figure 7 the case of a more sophisticated profile for ® with two different orders of
magnitude within the core (for instance when control rods are in an intermediate position). The
Mach number is of order 1 in the highest part of the reactor which induces different behaviours
for steady states: in the highest part for the velocity and in the lowest part (although the Mach
number is small) for the density. This can be accounted for by the global effect of the elliptic
divergence constraint (2.5b) and by the hyperbolic effect of the Euler system (2.4) (upwinding
information due to the negative eigenvalue).
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Figure 6: Case 2.

$g=170-10W -m~3, p, = 155 - 10° Pa
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Figure 9: Influence of the Mach number upon the approximation error

Case 4. We present on Figure 8 a supersonic configuration suited to Prop. 3 with smaller values of p;
and ®5. We notice different monotonicities of solutions and the low Mach number state is clearly
not relevant in this case.

We emphasize on Figure 9 the correlation between the Mach number and the quality of the approxima-
tion of the compressible model by the low Mach one. To do so, we take standard values as previously
and ps = 155-10° Pa. To make the Mach number vary, we take ®q in the range [10%,10] W-m~3. We
remark on the figure that errors have the same behaviour whatever the underlying variable. Roughly,
for Mach numbers under 0.1, all errors are lower than 1072.

4 Steady solutions of the coupled problem

This section is devoted to the analysis of the coupling (2.4-2.5) through the transmission conditions
(2.9). From now on, we assume that « is a constant lying in (0, L).

For the sake of clarity, we introduce two more notations:

e Given the conservative state W, the pressure is computed through the relation p = II(W).

e Conversely, if the physical variables (p,u,p) are known, the conservative is recovered by W =
W(pa u, p)

A naive strategy to construct an unsteady solution to the coupling problem consists in applying an
iterative algorithm through the interface (see Figure 2): we first notice that the solution (3.1) of the
low Mach number model (2.5) can be parametrized by P. Given P¥(t), this solution for z = « is
injected in (2.9a) and (2.9b) which form the boundary conditions for the compressible model (2.4) over
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(a, L) together with (2.8¢). In a subsonic framework, the Cauchy problem in the compressible domain
admits a solution over some time interval. This solution also depends on P¥(t) and is denoted by
W(t, x; PP (t)) Then the resulting compressible pressure can be used to update the low Mach pressure
PkF1(t) through the boundary condition (2.9¢).

The iterative procedure thus comes down to solving the fixed-point equation
P(t) =11 (W(t,a®;P(1)), (4.1)

which corresponds to the transmission condition (2.9¢). Nevertheless, as the unsteady compressible
Euler equations cannot be explicitly solved in this case, the fixed-point problem (4.1) cannot be made
explicit. We cannot thus state about the well-posedness of the coupling.

To go further, we get interested in steady states associated with the coupling (2.4-2.5) by using results
from Section 3.2. More precisely, we intend to couple:

e solutions from Lemma 1 for (a,b) = (0, «) and some interfacial pressure p, imposed at z = o ;

e and solutions from Prop. 2 for (a,b) = (o, L) and some interfacial density and velocity o, and

U, imposed at z = o ™.

As it will be detailed in the sequel, this procedure comes down to determining the sole parameter p,,

(00 = P () and u, = uM(a) depend explicitly on p,).

We first focus on assumptions on global parameters ps, ®g, g and u, so that such a steady state
might exist and then we specify the computation of the interfacial pressure which guarantees that the
transmission conditions (2.9) are satisfied.

In accordance with previous notations, we set

~ DsOe ~ Pale G 20y Lo?
ps - Dg Y pa - Dg 9 - Dg .

4.1 Assumptions upon parameters

We consider the low Mach number solution (3.17) for (a,b) = (0, «) and a certain unknown interfacial
pressure p, used as a boundary condition at £ = «. The density at the interface is thus equal to

LM 1Y 0
o= R e) = — = (4.2)
T ¥Dpe 1t ovsT

We then consider the compressible solution (3.5) for (a,b) = (a, L) and g, replaced in (3.4-3.5) by 04.*
The existence of this solution relies on the assumption (H1) adapted for the new set of parameters, i.e.

Yps0a 20002 (L — ) T d L—a d «o
_PsCa oy, 2200 1) LI S 12 %50, (Ha
x-noz - N er—opp T rvy—1» \ar—1V 1@ g O (He)

Q(Ohﬁa)

A major remark is that p from (3.5) is monotone-decreasing. Consequently, we necessarily have

Pa > Ds- (4.3)

4D, = D. as the flow rate is constant in the low Mach number area.
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Figure 10: Variations of ¢(a) = TLN \ 51— /L 2Tp5

Since Q(c,-) is monotone-increasing, in order that (H,) be satisfied, it is sufficient to ensure that
Q(a, ps) > 0. This last requirement reads for « given in (0, L)

~>1f—1 - ) L—a+ - d L—a
Ps = 7oy or—1V L ox—1\V 1L

Notice that for a = 0, we recover (H1).

However, as the position of « is not settled on and as we aim at highlighting the influence of «, we
shall not make use of the inequality above and we enforce a more restrictive hypothesis upon ps so
that it does not depend on «, namely py is such that

Vae(0,L), g(a) := Q(a,ps) > 0. (Hp,)

q is a € -function over (—oo, L) with

! ) )
@) =50\ er—nu= o) T 9TLp,

Two cases are thus to be considered depending on the sign of o* such that ¢'(a*) =0, i.e.

22
w1 P )
2T —-1)®
Y —1 | &
<0 = P> Fy(P) = T ST 1

e If parameters p, and @ are such that a* < 0 (see Figure 10a), (Hp,) reduces to

We mention that

_ ~ T-1 P
q(0) >0 <= pS>F_(<I>)._T 1+ 5T 1

e Otherwise if a* > 0 (see Figure 10b), (Hj,) implies

o1 T(3Y —1) ®
Q(a)_QﬁS((T )(Tf—l) — 2ps — T)>O
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Ps

Figure 11: Constraints upon ps

or equivalently

_ . T—12T-1 3T—1 -
V> P (d) = ——— 14 /1 ).
b > Fi(2) = — 3T—1< +\/ T oner—1 )

Curves ¢, 6o and €} of functions F_, Fy and F. are depicted on Figure 11. Notice that these three
curves intersect at the same point corresponding to ® = %\/2'1“ -1

To sum up, (Hj,) holds provided that

Ps > max{F_(®), Fp(®)}  or  F (D)< ps < Fy(P).

These inequalities reduce to

~ - rT-1
N N F (®), ifd<-——2T -1,
Ps > Fy(®) = T (4.4)

F (®), otherwise.

Hence we can state that if parameters p; and ® verify (4.4), (H,) is satisfied for any « € (0, L), which
means that there exists a compressible steady state in («, L) for any p,, > ps. Notice that in particular,
if (4.4) holds, then we have p, > F_(®) which is nothing but (II1): this ensures the existence of a
compressible steady state over (0, L). This state will be used as a reference state for comparisons.

Let us now get interested in the choice of py.

4.2 Computation of p,

For now, we have constructed a steady state over (0,L) made of a low Mach number part and a
compressible part. This global steady state has by construction continuous density and velocity com-
ponents but nothing is known about the pressure as the choice of p, was free. To end up with the
construction of the steady solution, we also impose the continuity of the pressure. More precisely, the
transmission condition (2.9¢) reads

D? OaPs OaPs 2 (I)OQ2 (L - a)
o= —"[(T—-1)(1— T —T+1 PR
e = o ( )( D2>+\/< D? +> * D}

€ €
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The right term is deduced from p, (Prop. 2) adapted to new parameters (i.e. g, instead of g.). This
equality is the steady counterpart of (4.1). Coming back to nondimensionalized notations and using
the expression (4.2) for g4, the previous equality reads

2
_ _ _ o
pi‘%—('f—l) 1—p7% = Tpi‘})—“rjtl + o La.
[0 6] [0
DS o DS o LS o

Squaring both sides of the equality, we obtain after some algebra the following cubic equation

0= B +2(T = 1)(Bs — VP2 + [~ 2T = 152 + 2T = s — (1= 77 ) & Ba +

T—1a~_
—op,. (4.
YL ps- (4.5)

T L

Thus, we showed that deriving steady solutions for the overall coupled problem set in Section 2.3 comes
down to solving a single algebraic equation whose solutions correspond to the interfacial pressure.

We denote by B, the polynomial function (with respect to p,) involved in the right hand side in (4.5).
Let us mention first two algebraic remarks about B:

® ‘L, admits three complex roots whose product is equal to —%%5@ < 0 (and at least one real
root).
0 Pu(ps) = —(1-9) p, < 0. As Pa(z) 252 400, this shows that there exists at least one

real root in the interval (ps, +00).
Let us prove that there are exactly three real roots to this equation.

e If there were one real positive root and two complex conjugated roots (see Figure 12a), the
product of these roots would be positive. This is contradictory with Remark @ above.

e If there were one double real negative root and one real positive root (see Figure 12b), the product
would be positive which is still absurd.

e If there were one real negative root and one real double positive root (see Figure 12¢), the
function would be positive over (0,+o00) which is contradictory with the fact that B, (ps) < 0 —
see Remark @ above.

e In the 3 real root case, the roots can be located

o either all of them in (ps, +00) — see Figure 12d: this is impossible since the product would
be positive;

o or two of them in (ps, +00) and one in (—o0,0) — see Figure 12e: this is not compatible with
Pa(ps) < 0

o or one negative root, one lying in (0, ps) and one lying in (ps, +00) — see Figure 12f. This is
the correct case.

Given (4.3), the value we are looking for is thus the largest root denoted ﬁa > ps. This shows the
following lemma:

Lemma 3. Under Hyp. (4.4), for any a € (0, L), there exists a unique solution p?a to equation (4.5)
which corresponds to a physically admissible state.
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Figure 12: Possible configurations for polynomial 3, (given that there is at least one root in (ps, +00))
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Notice that the Cardano’s method yields some expressions for the three roots which are useless given
their complexity. We provide some properties of this interfacial pressure and especially the influence
of a. The proof of the following corollary is given in Appendix B.

Corollary 4. Let us define the function p: a — ]%a'

1. p is conlinuous and monotone-decreasing over (0, L).
2. p varies between ps and p..

3. The reciprocal of p is defined over (ps,p) by

_ YLp®d —p)(p—pe)
(T) p+(T_1)ﬁs

P '(p)

In conclusion, we managed to construct a unique steady solution of the coupled problem set in Sec-
tion 2.3 through the chosen transmission conditions:

Proposition 4. Under hypothesis (4.4), there exists a unique physical steady solution to the cou-
pled problem between System (2.5) over (0,«) with BC (2.8a-2.8b) and System (2.4) over («, L) with
BC (2.8¢) through transmission conditions (2.9).

Of course, this result does not prove the well-posedness of this model. This rather hints that the
coupling strategy (2.9) is relevant in the steady case.

Remark 6. Although this coupled steady state is continuous, it is never of class €1(0,L). Indeed, we
find out that

PR (e) _L—aTpy=T+1
(@) = L xp, ot T
« 2L

5 Numerical strategies

This section is devoted to the simulation of unsteady solutions of the coupled problem (2.4-2.5) with
IC (2.7), BC (2.8) and transmission conditions (2.9). Several strategies can be contemplated: a first
one would consist in applying the same scheme in the whole domain and to project the solution onto
a relevant space (constant thermodynamic pressure P and velocity field such that d,u — ®/(YTP) is
constant) through a relaxation approach. This will not be studied in this paper. A second method
relies on the coupling of two different schemes dedicated to the two specific regimes.

The domain (0, L) is discretized by means of a homogeneous Cartesian grid z;_;/, = (i — 1)Aux,
1<i<N,Ax = ﬁ for some N € Z% . The cell (l’i_l/g, xi+1/2) is named C; and its center is denoted
by x;.

As for the time discretization, let At™ > 0 be the n-th time step to be determined later and t"*! =
t" + At". In the framework of finite volume methods, *}' denotes the value of variable * at time ¢" and
cell C;.

This part is organized as follows. As in the theoretical section, we first focus on the two specific schemes
separately (§ 5.1). The very coupling is studied after (§ 5.2).
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5.1 Dedicated schemes
5.1.1 Compressible scheme

The hyperbolic system of conservation laws with source term (2.4) supplemented with BC (2.6) over
(a,b) = (0, L) is classically discretized by means of a Ist-order explicit finite-volume method
n+1 n A" n n n n
Wi = Wz - E (‘F(Wz ) i+l) - F( i+17Wi )) ) (51)
where unknowns are located at the center of the cells. The numerical flux F is any consistant, homo-
geneous and Lipschitz-continuous flux stable under the CFL condition

Corr - Ax
< =
ALS W, W

In the sequel, we choose Copr, = 0.5 and A\(W,, W,.) = max{|ug| + ¢, |ur| + ¢-}. The choice of the
numerical flux (and the analysis of the corresponding scheme) is not the topic of this paper and is thus
left to the reader. All simulations in the sequel are performed by means of the Rusanov scheme.

5.1.2 Low Mach scheme

To simulate System (2.5) with BC (2.6) over (a,b) = (0,L), we use a staggered grid (p and 7 are
located at the center of the cells and u at the boundaries of the cells) like in the MAC scheme for
incompressible fluids [23]. We decouple the equations thanks to an explicit strategy. Knowing A¢",

(PP )1<i<n—10 (u?*1/2)1<z‘<N’ (M) 1<i<n—1 and P, the algorithm reads

® p"*!is computed by means of a standard finite-volume formulation

At™
1
Pt = o = S [ Fa ol o) = S a0

@ Pt g prescribed by the boundary condition: P! = P (¢ +1);

® Depending of the availability of the data, we compute either the exact value of P.(t"!) or

an approximation (for instance by means of an explicit 1st-order scheme %) denoted by

[zp/]n+1;
@ The velocity is computed by a direct integration of (2.5b)

n+1 (tn—i-l) _

Ui_1/g = Ue O () dx.

T —1 [Pt 1 Ti-1/2
T et 2T ypas /0

The choice of the numerical flux f] /2 is free and may be imposed by conservativity considerations

(see below). However, we choose for the subsequent simulations the upwind flux

n 3 n
peuy g Ay 5 >0,

fz‘n—1/2(P£7 pr) = {

pTu;.ll/Q, if u?*1/2 < 0.
It is stable under the CFL condition
Ccrr - Ax

At <
[Julloo
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In that case, it is possible to determine the asymptotic numerical state (assuming u. and Py converge
to U, and ps as t — +00). According to Step @, we have

1 Tit1/2
Tp/o ®(z) do = UEOM(%H/Q) > 0.
S

Then, the asymptotic numerical density is deduced from Step ® with the upwind flux:

o =
Uit/ = Ue T

D,
— = pSM (@41 2) = PN (wi) + O(Ax).
Uit1/2

oo, 00 _ o o _ oo
Pi Uiy1j2 = Picili—1jp = De = pi =

The consistency error comes for the staggering procedure in the mesh.

5.1.3 Comparisons

We compare the two schemes proposed in the previous sections by simulating a situation where the
asymptotic Mach number is small, namely Case 1. (§ 3.2.3). Corresponding steady states (for the low
Mach and the compressible models) are very close as shown on Figure 15.

We represent on Figure 13a the compressible steady state as well as the numerical solutions obtained
by means of the compressible (§ 5.1.1) and low Mach (§ 5.1.2) schemes with N = 51. The initial
conditions are u®(x) = u. + 10z, p°(x) = oo and p°(z) = ps. Although the Mach number is small
asymptotically, it is not the case all along the simulation (about 0.2 at the beginning with this set of
initial data).

At time t = 0.5 s, the numerical solutions do not evolve anymore. We observe that the steady state
seems to be an asymptotic state as both numerical solutions got closer. However, the asymptotic
numerical solution provided by the compressible solver is much less accurate than its low Mach coun-
terpart. The accuracy is investigated on Figure 13b. As expected, the low Mach scheme is much more
efficient (=~ 380 iterations to reach the asymptotics) than the compressible solver (~ 4580 iterations).
This is due to the respective CFL conditions.

We notice that there is no (acoustic) oscillation for the low Mach scheme which is accounted for by the
fact that the acoustic waves have been filtered out in the derivation of the model. On the contrary,
oscillations occur for the compressible pressure (but not for the density) which oscillates around the
steady state.

Thus, the low Mach solver in a low Mach regime turns out to be both accurate and efficient with a
higer rate of convergence towards the asymptotic state. The unsteady behaviour may lack in physical
content but this provides a reliable approximation.

5.2 Design of a stable coupling algorithm

We now derive a strategy to couple the two numerical states constructed previously. A first strategy
would consist in applying what is described at the beginning of Section 4, i.e. in solving the fixed-point
problem (4.1) at each time iteration but this seems to be expensive from a computational point of view.
We rather simulate the models with an explicit handling of the transmission conditions. In the sequel,
the resulting scheme is referred to as the hybrid scheme.

We first investigate the case where a(t) = ag. «q is chosen so that the steady Mach number associated
to the steady solution (3.5) satisfies

Mo, () <S8 forz € (0,ap),
>S8 forz e (ag, L),
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Figure 13: Comparisons of the compressible (§ 5.1.1) and the low Mach (§ 5.1.2) schemes in a low
Mach number regime
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Figure 14: Location of numerical unknowns

where S is the threshold under which the low Mach number assumption is valid.

Let I := 1+ 3% be the index of the first cell of the compressible domain — see Figure 14. «p is set such
that {2 is an integer.”

Low Mach and compressible variables are located as prescribed in the design of specific schemes (see
§ 5.1 and Figure 14).

Let us assume we are given (“?71/2) (3,7 ) <icr—1> P"and (W}),.,cn_;- On the one hand,

1<i<I’
the explicitness of the scheme enables to deal with the compressible part first. On the other hand, it
is necessary to handle this part first as the low Mach computation requires P! and/or unfll /2 The

I
algorithm that we propose thereby reads as follows:

@ We first solve (2.4) by means of the lst-order finite-volume method (5.1) over [ag, L].

The handling of the boundary conditions must now be specified. Two possibilities arise similarly
to the modelling of interfaces described in the introduction:

(a) Either we consider that the compressible domain is the very prolongation of the low Mach
number domain which means that Scheme (5.1) naturally applies to cell C; with

n W n W n u?—S o T u?—l 2 n
I =F(Wi,W7) and W7, =W (Pl—p / 5 2 p ) . (5.2a)

(b) Or we consider x = o as a kind of boundary and we use the spirit of [14]. More precisely,
the transmission between the two subdomains is achieved by setting

U7 30 T UL 19
2

.27 — Pl

(5.2b)
to take into account the sign of eigenvalues of the hyperbolic problem: this strategy cor-
responds to the resolution of the Euler equations (2.4) in (g, L) together with boundary
conditions for p and v at x = g and for p at x = L.

‘7:}1—1/2 = F(Wi_1, W7) and Wi =W (PTIL—M

As for the handling of the boundary conditions at the exit of the domain, it is a major numerical
issue. Indeed, to get an accurate value of the numerical outlet pressure, an analysis of the
compressible scheme must be carried out but it is not the topic of this paper (see [14]).

5We assume that oy is rational which is not restrictive as ag is a modelling parameter.
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@ We then handle the low Mach number subdomain. To solve the transport equation (2.5a) over
(t",t"t1), we use an implicit or explicit standard scheme (which can be compatible with the
one used in Step @ if one wants to ensure the conservation of mass) or a numerical method of
characteristics (using the nonconservative formulation — see [40]). The time step induced by the
previous stage is still convenient for the present one since there is only a material wave (slower
than the acoustic wave in this context). For the boundary conditions, values for p;_;/, are
available at time t” and ¢"*! and may be used depending on the explicitness of the scheme.
According to (2.9¢), we compute the new thermodynamic pressure by the 2nd-order interpolation

3pn+1 _n+l
formula Pt = % To compute the velocity, we would like to apply the same

procedure as in § 5.1.2, which requires an approximation of P’(t"*1). Attempts to approximate
this quantity by means of finite-difference formulae turned out to lead to numerical instabilities.
That is why it is necessary to apply a different approach.

Our algorithm relies on the compatibility equation (2.3). Setting ﬁ?fllﬂ =3 (3u7}+1 - u?Ill)
which is computed thanks to the compressible step, we compute
1 /. 1 @0 (T —1)P
= o0 <u?j11/2 —u(t"H) - Tpntl /0 ®(x) dl’) ~ —W(twl)- (5.3)
Hence
n+1 n+1 n+1 1 Fim1/2
Ui_1/2 :ue(t )+7’] ZT; 1/2+W 0 (I)(.T) dz.

This strategy turned out to provide stable results which are shown in the following section.

We do not mention the computation of 7 since in dimension 1, the momentum equation (2.5¢)
is decoupled from the other equations and is thus only a postprocessing for .

The position of the interface ag is arbitrary and could imply additional numerical errors. Even if is
legitimate for large times as it is based upon the steady Mach number, it can be no longer the case
for short times. Indeed, the Mach number can be large in the unsteady regime and a fixed interface
may not be relevant. That is why we get interested in a moving interface approach. o™ is tuned by
the levet set equal to a given threshold S of the current Mach number M7 computed in each cell.

The algorithm detailed above can directly be adapted. Index I™ is updated at each time step. At

the end of each iteration, the current conservative state is reconstructed in both subdomains. In
no U

particular, in the low Mach domain, we set W' = W (p”, %J’”). In the computation of

(2
7"+, an explicit handling is achieved by replacing ag in (5.3) by o™ and I by I™.

5.3 Numerical results

We focus on a configuration where the steady state is not entirely in the low Mach regime. Compared
to the standard data of Case 1., @ is increased and ps decreased. Steady solutions are depicted on
Figure 15a. The Mach number ranges from 0.04 to 0.23 and we observe that the velocity is over-
estimated under the low Mach approximation.

The compressible scheme (§ 5.1.1) and the hybrid strategy (§ 5.2) are applied to this case and results
are compared on Figure 15b. The hybrid scheme is assessed both in the fixed and the moving interface
setup. We first mention that strategies (5.2a) and (5.2b) provide quite similar results in the fixed
interface case but the pure low Mach flux (5.2a) induces oscillations of the interface when the latter is
no longer fixed. That is why we recommend the use of strategy (5.2b). Secondly, we do not observe any
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noticeable difference between results for the fixed and moving interface approaches at convergence (in
time). Making the interface evolves seems more relevant in the unsteady regime as the Mach number
increases till 0.9 in the course of the computation.

Compared to the compressible scheme, the hybrid strategy is much more accurate (see Figure 15¢)
although it only differs over a small part of the domain, i.e. a quarter of the domain with oy = 0.8.
We recall that the scheme is the same in the other part.

Sensitivity of the numerical errors with respect to the parameters of the hybrid strategies (ayg if fixed,
S if moving) is investigated on Figure 16. We clearly observe that in both studies, a minimum can
be reached for each variable (density, velocity and pressure) but not with the same minimizer. It is
then hard to determine a priori the best value for ag or S. The error can be multiplied by 2, 3 or 4
depending on the value of the parameter. However, tuning S to 0.1 seems to be a good compromise
as seen on Figure 9.

6 Conclusion

1D computations of fluid flows have been investigated in this work considering the influence of the Mach
number upon the robustness of the underlying scheme. Compressible schemes may present difficulties
to converge in time when the Mach number becomes small. That is why we developed a coupling
strategy to incorporate specificities of Mach regimes.

We first focused on a low Mach model which offers many advantages compared to the compressible
system it is resulting from: it is possible to derive explicit expressions for both steady and unsteady
cases, numerical solutions are accurate in the steady regime and the corresponding algorithm is efficient
due to a less restrictive stability condition. The link between steady solutions of both models is then
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studied in order to better understand the influence of the Mach number.

Secondly, we got interested in configurations where the low Mach hypothesis does not hold in the whole
domain of computation for physical reasons. To deal with this issue, we proposed a coupling approach
which relies on the resolution of each model in its relevant domain together with transmission conditions
through the interface. This strategy turned out to provide a global steady state for the coupling problem
and a robust algorithm which forms a first stage in the study of low Mach — compressible flows. Notice
that the inaccuracy of compressible solvers is not investigated in the present work (see [14]).

Several perspectives must however be examined in future works. First of all, we must make the code
robust to appearances/disappearances of a regime as the results above only concern situations where
both models are present throughout the computation. Second of all, the handling of time steps must
be improved. Indeed, the acoustic CFL condition is imposed in the low Mach domain which is not
necessary. The efficiency can thus be enhanced by means of a subcycling strategy (material time step
in the low Mach domain, acoustic time step in the compressible part). Third of all, this approach must
be extended to dimension 2. Two issues are raised: on the one hand, the continuity condition imposed
on the thermodynamic pressure is no more valid in 2D as it is constant on one side of the interface and
variable all along the other side. On the other hand, the decoupling between the momentum equation
and the others does not hold anymore and the computation of the dynamic pressure becomes a major
point.

A Derivation of Formulae

A.1 Equality (3.9b)

From (3.9a), we have

06 2Ype + 1+ pL=2

Poo(T) TFe +1) + \/(Tﬁe ~TH1)2 - (27 - 1)p2=2

(277 + 1+ 35=2) (T(ﬁe +1)F \/(The = T +1)2 — (27 - 1)5;;3)

T2(pe +1)2 = (TP — T+ 1)2 + (27 — 1)P =2

oY —1

—Qa

<T(ﬁe +1)F \/(’rp; — Y4+ 1)2— (27 — 1)&»“2 - “) .

Hence, from (3.7b’), we deduce (3.9b).

A.2 Equality (3.13)

As Xy =T — Yp, — 1, we deduce from the expression (3.11) of pF that

(Tpe —T+1)2— (2T - 1)®
= {r(r — (1 =Ps) £ T/ X2+ D — (T — 1)}2 —2r -1
=T2A2 4+ (T —1)2(X2+®) £ 20 (T — 1) X/ X2 + D

2
= [mi(r—n X52+<I>} .
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B Proof of Corollary 4

In the sequel, we note
B, = X3 + €2X2 + (04811 + Elo)X + gy

where g5 := 2(T — 1)(Ps — 1), £10 := —(2T = )2+ 2(T — 1)ps — @, £11 := % and gg = %&fs.

Continuity of polynomial roots with respect to their coefficients® have been long studied in the literature
(see for instance [30, Ch. V] and [34, Th. 1.4]). These results ensure the continuity of the three complex
roots of (4.5) with respect to «. The issue is rather to determine whether these roots remain real or
not. As B, is a 3rd-degree polynomial with real coefficients, it has either 0 or 2 nonreal roots which
must be conjugated. By continuity, the transition between these 2 configurations is the case where
there is a double root, i.e. when p, is a root of both B, and P/,. As we concluded in § 4.2, situations
from Figures 12b and 12¢ cannot happen for « € (0, L).

The same conclusion arises with the application of the implicit function theorem. Let ag be a number
in (0,L). Eq. (4.5) also reads

P (@0, 5(00) = Faq (o) = 0.
The existence of such an implicit function p results from the fact that 9,%(ao,-) # 0 in the vicinity
of ]%ao. This is the case because Opm(ao,ﬁ(ao)) =P, (ﬁa()) > 0 according to Figure 12f. Hence the
continuity over (0, L). Moreover, p is of class € as 9% (ap, ) > 0 with

~

P (o) = _aam(ao,ﬁ(ao)) — e11p(0) + €0

— = —— = <0
ap%(ao,p(ao)) 3p(0&0)2 + 262;0(0&0) + 11« + €10

from which we infer that p is monotone-decreasing.

Critical cases are thus @« = 0 and o = L. First of all, for a = 0 (which corresponds to the fully
compressible case), we remark that

Po = X | X2+ 2(T = 1)(F, — DX + (—(20 = D +2(C — 1), - )]

As pg # 0, Equation (4.5) is then nothing but the equation satisfied by p. for the Euler system — see
Eq. (3.10). The 3 roots are 0, p; and p; > max{p,,0}. Then p(0) = pJ: we recover exactly the result
from Prop. 2 as expected and p is continuous at a = 0.

Secondly, for a = L, we have

Tu= (=5 | X2+ (1 - ) - 2T - )X - T8

This equation admits three roots: one negative and two positive (among which ps). The reasoning that
lead to the existence of p, no longer holds since in that case B(ps) = 0. To prove that p(«) actually
converges to ps, we must prove that ps is the largest root of the equation above. We notice that

~ . YT-1=
(‘B/L(ps) = 2T]3§ - Q(T - 1)ps - T(I)'

Hence P’ (ps) > 0 is equivalent to ps > F7,(®) where

T o114 /1422
Y 2 ‘

5Which are themselves 1st-degree polynomials wrt « in the present case.

Fr(®) :=
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We can check that Fi(®) < F#(<f) for all ® > 0 — see Appendix C. Hence, under Hyp. (4.4), b > F(®)
and P is monotone-increasing in the vicinity of p = ps which implies that ps is the largest root. The
limit of p(a) when v — L is thus pg: this is in accordance with the fully low Mach number case and p
is continuous at a = L.

Finally, we remark that Eq. (4.5) can be seen as

Po(Pa) + @ X (€110 + €0) = 0.

Given p € (ps, Pl ), this can be seen as an implicit function for a. It reads

Po(p)

ap) = ————.
Q €11p + €0

C Proof of the inequality Fj < Fy

We recall that Fl is defined by (4.4). For ¢ € (0,400), by squaring the inequality, we obtain
— Vo <2(T —1)V2T

Hence, for ® < L ITAV2Y =1 < 2(T — 1)v2Y — 1, we have Fr(®) < F_(®).

Let us show that Fr(¢) < Fi(¢) for ¢ € (372v/2T — 1, +00). To do so, we introduce the function

T-1 o
f(x):,r<l+ 1+(T_1)I>x

so that FL(gZ)) =f (l) and Fy(¢) = f (%—j) f increases over (0,4+o00) and, for T > 1, we have
2 < 3T 1 L which ends the proof.
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