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Abstract

The paper presents a complete experimental validation of an advanced com-
putational methodology adapted to the nonlinear post-buckling analysis of
geometrically nonlinear structures in presence of uncertainty. A mean non-
linear reduced-order computational model is first obtained using an adapted
projection basis. The stochastic nonlinear computational model is then con-
structed as a function of a scalar dispersion parameter, which has to be
identified with respect to the nonlinear static experimental response of a
very thin cylindrical shell submitted to a static shear load. The identified
stochastic computational model is finally used for predicting the nonlinear
dynamical post-buckling behavior of the structure submitted to a stochastic
ground motion.
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nonlinearities, static post-buckling, dynamic post-buckling, experimental
identification

1. Introduction

The focus of this paper is on the post-buckling mechanical behavior of thin
cylindrical shells, which is currently a subject of interest for which numerical
predictions do not always match experimental measurements. This class of
structures is commonly present in industrial equipments, such as silos, tanks
for gas and liquid, reactor vessels, etc. The discrepancy between experimen-
tal observations and predictions is often due to the particular sensitivity of

Preprint submitted to Computational Methods in Applied Mechanics and Engineering.September 6, 2013



thin cylindrical shell structure to the presence of initial imperfections (het-
erogeneity of the materials, imperfect boundary conditions, inhomogeneous
thickness induced by the manufacturing process and geometry). Note that for
cylindrical shells of very small thickness, the geometrically nonlinear effects
induced by large strains and large displacements must be taken into account.
Numerous sensitivity analyses to standard geometric imperfections can be
found in the literature, distinguishing several classes of external loads such
as axial compression [1, 2, 3], pressure load [4, 5] and shear load [6, 7, 8, 9, 10].

However, a generic sensitivity analysis of such structures with respect to
any kind of imperfections requires the introduction of adapted non-determi-
nistic approaches to represent uncertainties. For example, non-probabilistic
approaches involving either interval analysis [11] or anti-optimization strate-
gies [12] have been developed in the context of post-buckling analysis of
structures. An experimental validation related to the identification of the
buckling load of composite cylindrical shells can be found in [13].

Probabilistic approaches have also been used for representing the random
uncertainties in the numerical computational models. The problems involv-
ing large nonlinear computational models, taking into account either or both
the presence of random uncertainties and the stochastic nature of the loading
requires appropriate strategies to properly achieve the dynamical analysis,
see for instance [14, 15]. More particularly, nonlinear stochastic buckling
analyses have recently been conducted in which geometrical imperfections
[16, 17] and random boundary conditions [18] were modeled as Gaussian ran-
dom fields whose statistical properties are issued from available experimental
data. Non-Gaussian random fields have also been used for studying the sensi-
tivity of buckling loads with respect to material and geometric imperfections
of cylindrical shells [19]. Such probabilistic models of uncertainties will be
referred to as parametric here as they focus the uncertainty only on specific
aspects/parameters of the computational models selected by the analyst. It
is also well known that the geometric imperfections particularly responsible
for the sensitiveness of such structures [16, 20].

In the investigation of unstiffened composite cylinders carried out in [17],
the knowledge of existing missing composite fibers justified the modeling of
material imperfections. Due to the lack of available experimental measure-
ments, material imperfections were taken into account with chosen random
properties. Despite the accurate modeling of the geometrical imperfections,
the buckling load calculated with the nonlinear stochastic computational
model was overestimated suggesting that other uncertainties, not considered
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in the analysis, were present and affected the experimental measurements.
An alternative approach, referred to as the nonparametric probabilistic

approach, has been developed for situations in which the uncertainty cannot
be singled out in one or a few parameters in the computational model. It
allows the consideration of both system-parameter uncertainties and model
uncertainties [21] by proceeding at the level of modal/reduced-order models
developed on deterministic bases. Note that the nonparametric approach has
been extended to uncertain nonlinear reduced-order models of geometrically
nonlinear structures [22].

The development of such nonlinear reduced-order models requires first
the selection of an appropriate deterministic basis for the representation of
the response. This basis can be obtained by one of several techniques such as
the Proper Orthogonal Decomposition method (POD method) [23, 24, 25],
which is known to be particularly efficient for nonlinear static cases. One
can also rely on linear elastic modes of vibration [26, 27], or selected linear
elastic modes appropriately enriched, e.g. [28], see [29] for a recent review.
The parameters of the nonlinear reduced-order model of the mean structure
can then be either deduced using the STEP procedure (which is based on
the smart non-intrusive use of standard commercial finite element codes)
[30, 22, 29] or from explicit construction as shown in [31] in the context of
three-dimensional solid finite elements.

Having established the reduced-order model of the mean structure, uncer-
tainties on the linear and on the nonlinear parts of the stiffness operator are
introduced in the nonparametric framework. This is accomplished through
the construction of a dedicated random operator with values in the set of
all positive-definite symmetric real matrices whose mean value involves all
linear, quadratic and cubic stiffness terms of the mean nonlinear reduced-
order model [22]. The resulting stochastic nonlinear computational model is
characterized by a single scalar dispersion parameter, quantifying the level
of uncertainty in the stiffness properties which can easily be identified with
experiments. Experimental validations based on this theory can be found in
[31, 32] for slender elastic bodies, e.g. beams.

The paper is organized as follows. Section 2 summarizes the main steps
leading to the mean non-linear reduced-order computational model follow-
ing the approach of [31]. Section 3 is devoted to the construction of the
stochastic nonlinear computational model using the nonparametric proba-
bilistic approach for modeling the random uncertainties. A Gaussian non-
stationary second-order stochastic process is also introduced to represent the
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prescribed, earthquake-induced ground motions. An identification effort is
carried out in section 4 to calibrate the stiffness dispersion parameter of the
stochastic nonlinear computational model from experimental measurements
of the response of the cylindrical shell. Finally, the nonlinear post-buckling
dynamical analysis of the uncertain cylindrical shell is carried out in Section
5 using the previously identified stochastic nonlinear computational model
subjected to the prescribed ground motions.

2. Reduced-order computational model using 3D elasticity in large

deformation

This Section is devoted to the construction of a nonlinear reduced-order
model in the context of elastodynamics involving geometrical nonlinearity.

2.1. Mathematical notations

From here on, the convention for summation over repeated indices will be
adopted. Let a(x, t) be a given function. The following notations are used :
a,j = ∂ a/∂ xj , ȧ = ∂ a/∂ t, ä = ∂2a/∂ t2.

2.2. Description of the nonlinear boundary value problem

The structure under consideration is composed of a linear elastic ma-
terial and is assumed to undergo large deformations inducing geometrical
nonlinearities. A total Lagrangian formulation is chosen. Consequently, the
dynamical equations are written with respect to the reference configuration.
Let Ω be the three-dimensional bounded domain of the physical space R3

corresponding to the reference configuration taken as a natural state without
prestress and subjected to the body force field g(x, t), in which x denotes the
position of a given point belonging to domain Ω. The boundary ∂Ω is such
that ∂Ω = Γ∪Σ with Γ∩Σ = ∅ and the external unit normal to boundary
∂Ω is denoted by n. The boundary part Γ corresponds to the fixed part
of the structure whereas the boundary part Σ is subjected to the external
surface force field G(x, t). The displacement field expressed with respect to
the reference configuration is denoted as u(x, t). Note that force fields G(x, t)
and g(x, t) correspond to the Lagrangian transport into the reference config-
uration of the physical surface force field and to the physical body force field
applied on the deformed configuration.

The boundary value problem is thus described by the following set of
nonlinear equations :
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(Fij Sjk),k + gi = ρ üi in Ω , (1)

Fij Sjk nk = Gi on Σ , (2)

ui = 0 on Γ , (3)

with the initial conditions given by

ui(x, 0) = 0 , u̇i(x, 0) = 0 . (4)

In Eq.(1), the mass density field ρ(x) is expressed in the reference configu-
ration. The deformation gradient tensor is F = {Fij}ij, whose components
Fij are defined by

Fij = ui,j + δij , (5)

in which δij is the Kronecker symbol such that δij = 1 if i = j and δij = 0
otherwise. The second Piola-Kirchoff symmetric stress tensor S = {Sij}ij is
written, for a linear elastic material, as

Sij = aijkℓEkℓ . (6)

In Eq.(6), the fourth-order elasticity tensor a = {aijkℓ}ijkℓ satisfies the usual
symmetry and positive-definiteness properties. The Green strain tensor E =
{Eij}ij is then written as the sum of linear and nonlinear terms such that

Eij = εij + ηij , (7)

in which

εij =
1

2

(
ui,j + uj,i

)
and ηij =

1

2
us,i us,j . (8)

2.3. Weak formulation of the nonlinear boundary value problem

2.3.1. Case of a Dirichlet condition on boundary Γ

Let C be the admissible space defined by

C = {v ∈ Ω , v sufficiently regular , v = 0 on Γ} . (9)

Considering time t as a parameter, the weak formulation of the nonlinear
boundary value problem described by Eqs. (1) to (3) consists in finding the
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unknown displacement field u(·, t) ∈ C such that, for any admissible displace-
ment field v in C

m(ü, v) + d(u̇, v) + k(1)(u, v) + k(2)(u, u, v) + k(3)(u, u, u, v) = f(v) , (10)

with the initial conditions given by Eq.(4) and where,

f(v) =
∫

Ω

vi gi dx +

∫

Σ

vi Gi ds , (11)

m(ü, v) =
∫

Ω

ρ üi vi dx , (12)

k(1)(u, v) =
∫

Ω

ajkℓm εℓm(u) εjk(v) dx , (13)

k(2)(u, u, v) =
∫

Ω

ajkℓm ηℓm(u) εjk(v)dx +

∫

Ω

ajkℓmus,j vs,k εℓm(u) dx (14)

k(3)(u, u, u, v) =

∫

Ω

ajkℓm us,j vs,k ηℓm(u) dx . (15)

In Eq.(10), a usual linearized viscous term represented by the positive-definite
symmetric bilinear form d(u, v) is added in order to model the dissipation
effects occurring in the structure [33].

2.3.2. Case of a ground motion on boundary Γ

From here on, the earthquake engineering context is investigated. The
boundary Γ, which was assumed at rest above, experiences a rigid body
displacement induced by a prescribed based motion uΓ(x, t) = uΓ(t) , ∀x ∈ Γ.
The corresponding displacement field of the structure can then be expressed
as uexc(x, t) + u(x, t) where

m(ü, v)+d(u̇, v)+k(1)(u, v)+k(2)(u, u, v)+k(3)(u, u, u, v) = f(v)−m(üexc, v) ,
(16)

in which uexc(x, t) = uΓ(t) , ∀x ∈ Ω.

2.4. Mean nonlinear reduced-order model

Let ϕα(x) , α = {1, . . . , N}, be a finite family of an orthonormal vector
basis of C verifying the following property

∫

Ω

ϕα
i ϕ

β
i dx = δαβ . (17)
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The vector q = (q1, . . . , qN ) of the corresponding generalized coordinates
is introduced as a new set of unknown variables by projecting the reference
nonlinear response u(x, ·) on the vector space spanned by {ϕ1, · · · ,ϕN}. The
approximation uN(x, t) of order N of u(x, t) is then written as

uN (x, t) =

N∑

β=1

ϕβ(x) qβ(t) . (18)

Taking the test function v as ϕα in Eq.(16) and using Eq.(18) yields

Mαβ q̈β + Dαβ q̇β + K(1)
αβ qβ + K(2)

αβγ qβ qγ + K(3)
αβγδ qβ qγ qδ = Fα , (19)

in which

K(1)
αβ =

∫

Ω

ajkℓm ϕα
j,k ϕ

β
ℓ,m dx , (20)

K(2)
αβγ =

1

2

(
K̂(2)

αβγ + K̂(2)

βγα + K̂(2)

γαβ

)
, (21)

K̂(2)

αβγ =

∫

Ω

ajkℓm ϕα
j,k ϕ

β
s,ℓ ϕ

γ
s,m dx , (22)

K(3)
αβγδ =

1

2

∫

Ω

ajkℓm ϕα
r,j ϕ

β
r,k ϕ

γ
s,ℓ ϕ

δ
s,m dx , (23)

Fα =

∫

Ω

giϕ
α
i dx +

∫

Σ

Giϕ
α
i ds −

∫

Ω

ρ (üΓ)i ϕ
α
i dx , (24)

Mαβ =

∫

Ω

ρϕα
i ϕ

β
i dx . (25)

The model of the reduced damping operator Dαβ is chosen here as

Dαβ = ζ K(1)
αβ , (26)

in which ζ is a positive constant. It should be noted that the damping
modeling can be changed without difficulties.

The mean (or nominal) nonlinear reduced-order computational model is
explicitly defined once the projection basis is chosen. The construction is
carried out in the context of the three-dimensional finite element method.
The finite elements are isoparametric solid finite elements with 8 nodes and
the numerical integration is carried out with 8 Gauss integration points.
The main steps of the procedure, which uses the symmetry properties of the
reduced operators, can be found in [31] and are summarized below:
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• computation of the elementary contributions of each type of internal
forces projected on the vector basis

• finite element assembly of these elementary contributions

• computation of the operators Mαβ, Dαβ, K(1)
αβ , K̂

(2)

αβγ and K(3)
αβγδ of the

mean nonlinear reduced-order model

3. Uncertainty quantification and stochastic excitation

In this Section, the nonparametric probabilistic approach of uncertainties
is used for modeling the uncertainties in the nonlinear computational model
and the earthquake excitation is modeled by a nonstationary stochastic pro-
cess.

3.1. Nonparametric stochastic modeling of uncertainties

3.1.1. Definition of a reshaped stiffness matrix

The main idea of the nonparametric probabilistic approach is to replace
each of the matrices of a given mean reduced computational model by a
random matrix whose probability model is constructed from the maximum
entropy principle using the available information [34, 21]. In the present ge-
ometrically nonlinear context [22], the nonlinear equations involve nonlinear
operators. Let P = N(N + 1). The (P × P ) real matrix [K] is introduced
as

[K] =

[
[K(1)] [K̂(2)

]

[K̂(2)
]T 2 [K(3)]

]
, (27)

in which the matrix blocks [K̂(2)
] and [K(3)] are the (N×N2) and the (N2×N2)

real matrices resulting from the following reshaping operation

[K̂(2)
]αJ = K̂(2)

αβγ , J = (β − 1)N + γ , (28)

[K(3)]I J = K(3)
αβγδ , I = (α− 1)N + β and J = (γ − 1)N + δ . (29)

It has been shown in [22] that the matrix [K] is a symmetric and positive-
definite matrix. Consequently, the nonparametric probabilistic approach ini-
tially introduced in the linear context for positive-definite symmetric opera-
tors can easily be extended to the geometrically nonlinear context.
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3.1.2. Construction of the random matrix model

The mean reduced matrices [M], [D], [K] are then replaced by the ran-
dom matrices [M], [D], [K] defined on the probability space (Θ , T , P)
such that E{[M]} = [M], E{[D]} = [D], E{[K]} = [K] in which E is
the mathematical expectation. The random matrices [M], [D], [K] are
then written as [M] = [LM ]T [GM(δM)] [LM ], [D] = [LD]

T [GD(δD)] [LD],
[K] = [LK ]

T [GK(δK)] [LK ] in which [LM ], [LD] and [LK ] are (N × N),
(N × N) and (P × P ) real upper matrices such that [M] = [LM ]T [LM ],
[D] = [LD]

T [LD] and [K] = [LK ]
T [LK ]. Further, [GM ], [GD] and [GK ] are

full random matrices with values in the set of the positive-definite symmetric
(N×N), (N×N) and (P×P ) matrices. The probability distributions and the
random generators of random matrices [GM(δM )], [GD(δD)] and [GK(δK)] are
constructed in [21]. The level of uncertainty is quantified by the dispersion
parameter δ = (δM , δD, δK) defined on a subset ∆ of R3.

3.2. Stochastic excitation

The generalized external load F(t) = (F1(t), . . . ,FN(t)) is split into a
static load F

stat(t) and a dynamical one F
dyna(t) such that

F(t) = F
stat(t) +F

dyna(t) . (30)

The dynamical load can be rewritten as

F
dyna
α (t) = −

∫

Ω

ρ(x)
(
üexc(x, t)

)
i
ϕα
i (x) dx . (31)

and the static load can be deduced from Eq.(24). From here on, it is as-
sumed that the ground motion is along a given direction. Consequently, the
acceleration field in Eq.(31) can be written as

üexc(x, t) = w0 γ(t) , (32)

in which w0 is the unit vector of R3 characterizing the direction of the ground
motion and where {γ(t), t ≥ 0} is a real-valued scalar function. Replacing
Eq.(32) in Eq.(31) yields F

dyna(t) = −[LM ]T [T ] γ(t), in which [T ] is theRN -vector solution of

{[LM ]T [T ]}α =

∫

Ω

ρ (w0)i ϕ
α
i dx . (33)
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Note that matrix [LM ] is known and invertible. Consequently, Eq.(33) uni-
quely defines the vector [T ]. In the earthquake engineering context, the
acceleration γ(t) induced by the ground motion is replaced by the random
quantity Γ(t) with values in R. Note that Fdyna(t) depends on the structural
mass distribution. Given the fact that there exists uncertainty on this dis-
tribution, the vector [LM ]T [T ] should not be considered as a deterministic
quantity. Consistently with the invertibility property of matrix [LM ], the
dynamical load F

dyna(t) is modeled by the RN -valued random vector

F
dyna(t) = −[LM ]T [GM(δM)] [T ]Γ(t) . (34)

The acceleration {Γ(t), t ≥ 0} is modeled here by a Gaussian, non-stationary,
centered, second-order stochastic process defined on a probability space (Θ′, T ′,P ′)
which is different from probability space (Θ, T,P). Consequently, the stochas-
tic process Γ is completely defined by its autocorrelation function RΓ(t, t

′) =
E{Γ(t)Γ(t′)}. The following usual representation [35] of Γ for earthquake ac-
celerograms is adopted

Γ(t) = g(t)β(t) , (35)

in which the function g(t) is the envelope function whose representation can
be found in [35, 36, 37]. Further, {β(t), t ∈ R} is a real-valued Gaussian,
stationary, centered, second-order stochastic process for which the power
spectral density function Sβ(ω) can be written as a rational function [38].
We then have

RΓ(t, t
′) = g(t) g(t′)Rβ(t− t′) , (36)

where Rβ(t − t′) is the autocorrelation function of stochastic process β(t)
such that

Rβ(t− t′) =

∫R Sβ(ω) e
iω(t−t′) dω . (37)

Let � be the (nt×1) vector defined by � =
(
Γ(t1), . . .Γ(tnt

)
)
. We introduce

the time sampling ti = (i−1)∆t , i = {1, . . . , nt}, of [0, T ] with T = nt∆t.
Then denote by [R�] = E{��T} the correlation matrix of �, which can
be evaluated from Rβ(t) of Eq.(37), by Fast Fourier Transform (FFT). The
random vector � can accordingly be written as� = [L]Z , (38)
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in which [L] is such that [R�] = [L]T [L]. Further, Z = (Z1, . . .Znt
) is a

Gaussian random vector such that E{Zj} = 0, E{Z2
j} = 1 and Z1, . . . ,Znt

are statistically independent. Note that Eq.(38) allows a generator of inde-
pendent realizations Z(θ′) of Z to be constructed.

3.3. Stochastic nonlinear computational model with random uncertainties

Let {U(x, t) , x ∈ Ω , t ≥ 0} be the Rn-valued, non-stationary in time,
second-order stochastic process, defined on the product of probability spaces
(Θ, T,P) and (Θ′, T ′,P ′). For t ≥ 0, for all θ in Θ and for all θ′ in Θ′,
a realization of the stochastic response is represented by its approximation
UN(x, t; θ, θ′) of order N such that

UN (x, t; θ, θ′) =

N∑

β=1

ϕβ(x)Qβ(t; θ, θ
′) , (39)

in which Q(t; θ, θ′) = (Q1(t; θ, θ
′), · · · ,QN(t; θ, θ

′)) is the solution of the
following nonlinear differential equation

Mαβ(θ) Q̈β(t; θ, θ
′) + Dαβ(θ) Q̇β(t; θ, θ

′) +

K
(1)
αβ(θ)Qβ(t; θ, θ

′) +K
(2)
αβγ(θ)Qβ(t; θ, θ

′)Qγ(t; θ, θ
′) +

K
(3)
αβγδ(θ)Qβ(t; θ, θ

′)Qγ(t; θ, θ
′)Qδ(t; θ, θ

′) = Fα(t; θ, θ
′) , (40)

with initial conditions

Q(0; θ, θ′) = 0 , Q̇(0; θ, θ′) = 0 . (41)

In Eq.(40), the quadratic stiffness term is written as

K
(2)
αβγ(θ) =

1

2

(
K̂

(2)

αβγ(θ) + K̂
(2)

βγα(θ) + K̂
(2)

γαβ(θ)
)

. (42)

Note that the random linear, quadratic and cubic stiffness terms K
(1)
αβ , K̂

(2)

αβγ

and K
(3)
αβγδ are easily deduced from the random matrix [K] using reshaped

operations such as the one used in Eqs.(28)-(29).
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3.4. Numerical aspects

With regard to the numerical solver used for computing the nonlinear
coupled differential equation, a Newmark method is used [39], which em-
ploys the averaging acceleration scheme known to be unconditionally stable.
With this solver, a set of nonlinear algebraic equations must be solved at each
sampling time. Such computation is addressed by the fixed-point method or
by the Crisfield arc-length method [40]. The fixed-point method is favored
because the iterative scheme does not require the evaluation of the tangen-
tial stiffness matrix. Nevertheless, when the algorithm does not converge, it
is replaced by the Crisfield arc-length method. This latter algorithm intro-
duces an additional scalar parameter that multiplies the right-hand member
of the nonlinear equation and that has to be controlled. The iterative scheme
requires the construction of the tangential stiffness at each iteration corre-
sponding to a computed value of this additional scalar parameter. Contrary
to the usual Newton-Raphson scheme, the main advantage of the procedure
is its capability of capturing high non-linear complex mechanical behaviors
including sudden softening and hardening of the response.

4. Static post-buckling analysis of a cylindrical shell and experi-

mental validation

This Section is devoted to the experimental validation of the methodology
on a thin cylindrical shell for which experimental data is available[8, 9]. The
shell is modeled here using three-dimensional solid finite elements. In the
present context, despite the very small thickness of the investigated structure,
the choice of 3D solid finite elements is preferred to the more natural choice
of shell finite elements for the following reasons:

• It is more exact to use a 3D nonlinear elasticity theory than a thin shell
nonlinear elasticity theory.

• In the context of the construction of a reduced-order model, it is easier
to compute the integrals defined by Eqs.(20) to (25).

• Finally, the computational cost increase, associated with the larger
number of DOFs, is not a real obstacle, given the current computational
capabilities and the possibility of using parallel computations.
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Experimental nonlinear static responses are available as a function of the
static shear load magnitude[8, 9]. For comparison with this data, the stochas-
tic computational model is constructed without the mass and the dissipation
contributions. Furthermore, the external loading is deterministic.

4.1. Description of the experiments

The experimental data used in this paper is briefly summarized below,
see [41] for complete details. The geometry of the cylindrical shell is char-
acterized by the mean radius R = 0.125m, thickness e = 270 10−6m and
height of 0.125m. The structure is described in a global cartesian coordinate
system (0, e1, e1, e3), where O is the center of the ring basis and where the
cylinder axis is defined along e3. It is composed of nickel, which is assumed
to be a linear elastic material in the range of stresses considered. An elec-
troplating process has been used for manufacturing the shell to obtain the
most uniform thickness possible. This near uniformity allows the sensitivity
of the post-buckling behavior with respect to geometric imperfections to be
reduced. The bottom of the cylindrical shell is clamped to a base plate, as-
sumed to be rigid. The top of the cylindrical shell is connected to a rigid plate,
of thickness 0.019m, yielding a total height of the structure h = 0.144m.
The loading is transmitted from servo-cylinders through this rigid plate. A
constant traction load F t = 8 500N is applied to delay the onset of the post-
buckling. A controlled static shear point load F sh with maximum magnitude
of 9 750N , is then applied at the top of the shell along the direction e2. Let
(s1, · · · , s53) be the sampling of the increasing static shear load, in which s1
corresponds to 0N and s53 to 9 750N . The displacement corresponding to a
given static shear load increment sj is measured along the direction e2 at the
observation point, which is the point at which the external load is applied.
This measured displacement is denoted by uexp(sj). It should be noted that
only one load-displacement curve is available in the experimental data [41],
see Fig. 1. Two different mechanical behaviors can be observed : (1) an
elastic domain until the critical shear load F sh

crit = 7 450N (scrit = 0.745) at
which the displacement is uexp

crit = 1.53×10−4m; (2) an approximately linear
elastic behaviour in the postbuckling domain investigated as expected from
[6].

4.2. Description of the mean finite element model

The three-dimensional structure is modeled by a circular cylindrical shell
of height h = 0.144m, mean radius 0.125m and thickness 2.7× 10−4m. Its
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Figure 1. Experimental non-linear response s 7→ uexp(s)

.

bottom is clamped and the upper ring is rigid with three DOFs in translation.
The structure is subjected to the external shear point load F sh along e2 at
x3 = h, and constant traction point load F t applied along e3 at x3 = h
. The isotropic linear elastic material properties have been experimentally
measured to be E = 1.8 × 1011N.m−2 and ν = 0.3. The mass density is
taken as ρ = 8 200Kg ×m−3. It should be noted that a concentrated mass
M ′ = 80Kg is added at the free node located at the top of the rigid plate
along direction e2. However, replacing the external traction load F t by F

′t =
F t + 800N does not change notably the experimental conditions described
in the subsection above. Note that the impact of such mass modeling is
negligible when dealing with the nonlinear static case but is required for the
considered nonlinear dynamical case (see Section 5.2). The finite element
model is a regular mesh composed of (nr − 1)× nθ × (n3 − 1) = 1× 7 500×
9599 = 712 500 8-nodes solid finite elements with 8 Gauss integration points,
in which nr, nθ and n3 are the number of nodes along the radial, orthoradial
and e3-axis directions. The mean computational model thus has 4 230 003
degrees of freedom. The observation is the displacement of the node obs,
corresponding to the location of the experimental observation along e2 (the
direction of the shear point load) and is denoted by uobs(s).

The first linear elastic buckling mode, shown in Fig.2, was computed to
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occur for a critical shear load Fcrit = 9 400N . Although the experimental
critical shear load is found to be 7 450N , the computed buckling mode is
found to be in agreement with its experimental counterpart [9]. A sensitivity
analysis of the mean nonlinear computational model, is conducted in the
linear elastic range with respect to the thickness e, the choice of boundary
conditions and to the parameters nθ and n3 controlling the size of the mesh
with the current 8-node finite elements. It is shown that the sensitivity is
mainly due to the boundary conditions and that the set of chosen parameters
yield these computational results to be the closest to the experimental ones.

It is known that the buckling load decreases with respect to initial im-
perfections [6, 7]. In the present mean finite element model, a geometrical
perturbation taken as the first linear buckling modal shape is added to the
structure with a maximum amplitude of 2.7 × 10−4m corresponding to the
thickness of the shell [9]. More generally, mainly due to the pattern of ge-
ometrical imperfections or to the boundary conditions, there is no reason
for which the experimental post-buckling behavior of a given manufactured
cylindrical shell would follow such branch. The available experimental data
occurs according to this branch. Destroying slightly the axisymmetry of the
structure according to this branch allows the possibility for the desired post-
buckling branch to be captured but limits other post-buckling branches to
be investigated.

4.3. Static nonlinear analysis of the mean computational model

The nonlinear static response of the finite element model will be referred
to as the reference solution. As mentioned above, it should be underlined that
the mean computational model has been voluntarily constructed with a cho-
sen geometrical imperfection so that the features of the post-buckling branch
explored by such mean computational model matches well the experimental
post-buckling branch. Figure 3 shows the graph s 7→ uobs(s) for s belonging
to [0, 1.5] which is to be compared with Fig.1. A quasi-linear elastic response
can be observed for s < 0.45 and then, a smooth transition corresponding to
the buckling (0.45 < s < 0.85). Seen next is a post-buckling with a quasi-
linear elastic behavior (0.85 < s < 0.975) (similarly to Fig.1) until a linear
elastic stiffening takes place (0.975 < s < 1.5) , s = 1.5 corresponds to a
shear point load of 15 000N). It should be noted that the smooth transition
is directly related to the geometrical perturbation discussed above[9]. Fig-
ures 4 to 6 display the three-dimensional static deflections of the structure for
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Figure 2. First computed linear elastic buckling mode

s = 0.45 (quasi-linear elastic domain), s = 0.9 (post-buckling quasi-linear
elastic domain) and s = 1.25 (elastic stiffening domain).
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Figure 3. Nonlinear static response s 7→ uobs(s) obtained with the mean nonlinear
computational model.

Figure 4. Displacement field of the nonlinear static response for the increment load
s = 0.45 with a zoom (20×).

17



Figure 5. Displacement field of the nonlinear static response for the increment load
s = 0.9 with a zoom (20×).

Figure 6. Displacement field of the nonlinear static response for the increment load
s = 1.25 with a zoom (20×).
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4.4. Construction of the mean nonlinear reduced static computational model

The above nonlinear reference solution is then used for determining a
projection basis with the Proper Orthogonal Decomposition method (POD-
method), which is known to be particularly relevant for nonlinear problems
[23, 25, 42, 43, 24, 44].
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Figure 7. Convergence analysis : graph of N 7→ ConvPOD(N).

Let u(s) be the Rn- displacement vector corresponding to the finite ele-
ment discretization of the displacement field {u(x, s) , x ∈ Ω}. In the present
case, the POD method requires here to solve the eigenvalue problem for
the correlation matrix related to the nonlinear static response {u(s) , s ∈
[0, 1.5]}. The eigenvectors ϕα (or POD modes), will form the vector basis
of Eq.(18). Their corresponding eigenvalues λα are ordered by decreasing
values. Note that this basis does not only depend on the operators of the
mean nonlinear computational model but also strongly on the external loads
applied to the structure. The numerical construction of the correlation ma-
trix is especially difficult to achieve when dealing with large computational
models. In such case, there also exist adapted strategies which allow the basis
to be computed [23]. Assuming that the decreasing rate of the eigenvalues
is sufficiently large, the basis is computed using the economy-size Singular
Value Decomposition (SVD) algorithm [45] as follows. Let sj , j ∈ {1, . . . , p}
with sj < sj+1 be the scalar denoting the incremental weight number j of
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the external load vector. Further, denote by [V ] the (n× p) real matrix

[V ]ij = ui(sj)
√
∆sj , ∆sj = sj − sj−1 ,

with s0 = 0 . (43)

Therefore, the correlation matrix is written as

[A] = [V ] [V ]T . (44)

For fixed N ≤ n (note that in practice N ≪ n), the economy-size SVD of
matrix [V ] is written as

[V ] = [ΦN ] [SN ] [CN ]T , (45)

where [CN ] and [ΦN ] are such that [CN ]T [CN ] = [IN ] and [ΦN ]T [ΦN ] =
[IN ]. Moreover, [SN ] is a real positive (N × N) diagonal matrix such that
[SN ]αα =

√
λα with λ1 ≥ λ2 ≥ . . . ≥ λN . Finally, the columns of the (n×N)

matrix [ΦN ], denoted by [ϕ1,ϕ2, · · · ,ϕN ], constitute the basis exhibiting the
following orthonormal properties

(ϕα)T ϕβ = δαβ . (46)

A convergence analysis is carried out in order to select the number of POD
modes which have to be kept in the numerical simulation.
Let N 7→ ConvPOD(N) be the relative error function defined as

ConvPOD(N) = 1− 1

tr([A])

N∑

j=1

λj . (47)

In regards to the evolution of the relative error, note that the computation
of tr([A]) does not require the explicit construction of matrix [A] by using
Eq. (44). Figure 7 shows the graph of N 7→ ConvPOD(N) which characterizes
the convergence rate of the representation. It is seen that a good convergence
is obtained for N = 27, for which the relative error of Eq.(47) is close to
numerical zero.

4.5. Identification of the stochastic nonlinear static computational model

Since the thin cylindrical shell is sensitive to small perturbations of its
parameters (boundary conditions, ...), a compromise was necessary in the
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sensitivity analysis mentioned above, between improving the fit of the re-
sponse in the quasi-linear elastic domain or in the post-buckling domain
(controlled by the buckling load). A comparison of Figs. 1 and 3 confirms
that the nonlinear computational model has the capability to reasonably rep-
resent the experimental response. Nevertheless, it remains sufficiently distant
from the experiments to justify the implementation of uncertainties leading
to a stochastic nonlinear computational model which will be identified us-
ing the experimental data. By construction, it should be noted that the
present stochastic nonlinear computational model has the ability to quantify
the scatter of the nonlinear response around the observed post-buckling di-
rection. More precisely, the stochastic nonlinear computational model has
the capability to a priori explore all the existing post-buckling branches. In
the present case and by construction, the stochastic family explored by the
computational model favors the post-buckling branch corresponding to the
experimental branch of interest. Note that a few realizations corresponding to
different post-buckling behaviors have been observed during the Monte Carlo
simulation. Since such realizations do not correspond to the observed exper-
imental branch, these realizations have not been considered in the statistics.
For information purpose, 99.9% (or 98.7%) of the 10 000 realizations cor-
responding to the dispersion level δ = 0.15 (or δ = 0.45) belong to the
post-buckling branch of interest and were used for estimating the Likelihood
function.

The quasi-linear part of the elastic response constructed with the compu-
tational model yields acceptable results. The largest discrepancies between
computational model and experimental predictions occur in the buckling and
post-buckling regimes, it is in these loading conditions that the identification
will be performed. This focus is consistent with the physical expectations
that the response is most sensitive to uncertainties in these regimes. Based on
the above discussion, these observations will be the experimented responses
in the interval s ∈ [0.75, 0.975] which is sampled in 34 points denoted by
si , i = 20 . . . , 53.

The construction of the stochastic nonlinear reduced-order computational
model using the nonparametric probabilistic approach is performed as ex-
plained in Section 3.1. Let Uobs(s, δ) be the random observations with which
the parameter δ will be identified. There exists several methodologies adap-
ted to the identification of stochastic computational models, see for instance
[46, 47, 48]. In the present research, the identification procedure is achieved
using the maximum likelihood method associated with a statistical reduction
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Figure 8. Graph of the likelihood function δ 7→ Lred
(δ).

of the information [49]. Note that it is particularly adapted to the present
case for which the random variables Uobs(si, δ) are not only dependent but
also strongly correlated. This approach proceeds with a principal component
analysis of the random observations which leads to a reduced set of uncorre-
lated random variables. The likelihood function, δ 7→ Lred(δ), is evaluated in
the space of these uncorrelated random variables representing the data. It is
then obtained with a reduction to 5 uncorrelated random variables and for
δ ∈ ∆ = [0.2 , 0.65]. It was found that the use of 5 uncorrelated variables
yields a relative error of 5.41% on the trace of the covariance matrix, which
was deemed to be sufficiently small. Figure 8 displaying the graph of the like-
lihood function δ 7→ Lred(δ), was obtained using the Monte Carlo numerical
simulation with ns = 10 000 independent realizations. It has been observed
through a convergence analysis that 4 000 independent realizations yields a
good convergence. Note that the likelihood function is replaced by an approx-
imation which is constructed as the product of marginal probability density
functions of each uncorrelated random variable. Although this assumption
modifies the Likelihood function, it has been shown that its combination
with the statistical reduction yield accurate estimations [49]. Seeking the
maximum of Lred(δ) for the experimental identification yields the optimal
value δopt = 0.45.
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4.6. Confidence region analysis

The confidence region of the static nonlinear response predicted with the
stochastic nonlinear reduced-order model is then computed with a probability
level Pc = 0.95 using the quantile method [50], see Figure 9.
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Figure 9. Experimental identification : graph of experimental data s 7→ uexp(s) (o
markers), graph of the reference response s 7→ uobs(s) (thick dashed line), graph of
the confidence region of the random response s 7→ Uobs(s, δ = 0.45) (grey region).

Also shown on this figure is the experimental nonlinear response. De-
spite the slight underestimation provided by the optimal stochastic nonlin-
ear computational model in the linear range (induced by the choice of the
mean nonlinear computational model as explained above), the results are
broadly consistent with the experimental nonlinear response, validating the
stochastic nonlinear reduced-order model and its identification.

Analyzing the features of the confidence region shown in Fig. 9, it is
first observed that the effects of uncertainties increase with the nonlinearity
as may be expected. In the buckling and post-buckling range, for which
the static load increment s belongs to [0.45 , 0.975], the confidence region
quickly broadens, allowing some realizations of the random displacement
to be almost doubled of others. Consider next the elastic stiffening range,
corresponding to a static load increment s > 0.975, for which no experimental
result is available but which can be predicted by the stochastic nonlinear
computational model. First, it is seen that the mechanical behavior tends to
be a linear one. Moreover, the confidence region is more narrow in this range
than in the previous one, which demonstrates a robustness of the random
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response with respect to both model and system-parameter uncertainties.
Figure 10 to 12 show the mean of the static response (deflection) and its
standard deviation (colormap) for static load increments s = 0.45, s = 0.9,
s = 1.3. Again, it is seen that uncertainty increases during the buckling and
post-buckling phases, and decreases at higher deflection levels corresponding
to the elastic stiffening range.

Figure 10. Uncertainty propagation : deflection and standard deviation (colormap)
of the cylindrical shell for an incremental shear load s = 0.45
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Figure 11. Uncertainty propagation : deflection and standard deviation (colormap)
of the cylindrical shell for an incremental shear load s = 0.9
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Figure 12. Uncertainty propagation : deflection and standard deviation (colormap)
of the cylindrical shell for an incremental shear load s = 1.3
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5. Dynamic post-buckling analysis of the cylindrical shell under a

seismic ground motion

This section concerns the dynamical analysis of the cylindrical shell sub-
jected to an earthquake based-ground motion. The stochastic nonlinear com-
putational model of the shell constructed and identified in the previous Sec-
tion is reconvened with δK = δoptK = 0.45. Its random operators are defined
on the probability space (Θ , T , P). Uncertainties on the mass and damping
are neglected here but could easily be introduced. The dynamic loading con-
ditions consist in a seismic horizontal motion, see Section 3.2, applied to the
base of the cylindrical shell. The mass being deterministic, the corresponding
shear load is a stochastic process indexed by R+ and defined on the prob-
ability space (Θ′, T ′,P ′). Consequently, the stochastic physical response is
modeled by Rn-random nonlinear stochastic process {U(t), t ∈ R+} defined
on the product of probability spaces (Θ , T , P) and (Θ′, T ′,P ′).

5.1. Definition of the stochastic excitation and of the frequency band of anal-

ysis

The stochastic excitation is simulated as explained in Section 3.2. For
the present application, the power spectral density Sβ(ω) of the stochastic
process β(t) is chosen as

Sβ(ω) = s
ω4 + 4 ξ

2
ω2ω2

(ω2 − ω2)2 + 4 ξ
2
ω2ω2

, (48)

in which s = 1.15 × 10−4m2.s−3, ω = 785.4 rad.s−1 and ξ = 0.02. The
frequency band of analysis is Bν = [0 , 160]Hz. The time sampling is δ t =
5 × 10−4 s, the total time duration T = 1.27 s and therefore, the number
of time steps is nt = 2546. The frequency resolution is δ ν = 0.78Hz
corresponding to a frequency band [0 , 1000]Hz (the sampling frequency is
νe = 2000Hz). The envelope function is a piecewise continuous function
defined by g(t) = 25 t2/4 if t < 0.4 s, g(t) = 1 if t ∈ [0.4 , 0.7] s and
g(t) = e−10(t−0.7) if t > 0.7 s. Figure 13 displays a typical realization Γ(θ′, t)
of the stochastic process Γ(t). The stochastic excitation is then obtained
using Eq.(34).

5.2. Construction of the mean nonlinear reduced-order computational model

For the considered nonlinear elasto-dynamic problem, there are two no-
table strategies for constructing the projection basis of the mean nonlinear
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Figure 13. Realization of stochastic process Γ(t)

reduced-order computational model. A first one uses the POD method and
thus requires full computations of the elasto-dynamical reference response
with the nonlinear computational model. A second strategy consists in solv-
ing the usual generalized eigenvalue problem of the linearized computational
model and selecting a set of its linear eigenmodes of vibration as projection
basis. Once this basis is built according to either of the above strategies,
the mean nonlinear reduced operators are constructed by the methodology
of Section 2.

It would be interesting to reuse the POD projection basis obtained in
Section 4 for the present nonlinear dynamic case. Since the convergence rate
of the solution constructed with such a projection basis strongly depends on
the external applied loads, it is appropriate only if a similar loading class
is used. With the presence of the concentrated mass M ′ at the top of the
structure, the shear load induced by the ground motion is largest at the top
of the structure. Its spatial shape is then close to the spatial repartition of
the controlled shear load used for the nonlinear static case. Consequently,
the dynamical excitation, in addition to the external constant traction load,
is compatible with the loading used for the nonlinear static case and thus
the projection basis of Section 4 can be used again. Specifically, let R(N) =
{ϕ1, . . . ,ϕN} be the family composed of the N first basis vectors ϕ1, . . . ,ϕN

of the static POD basis constructed in Section 4.4. Here N = 27. Note that
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the family R(27) is not expected to be sufficient to describe the nonlinear
dynamical response of the shell; it needs to be completed by additional basis
vectors that we select as linear elastic modes. A usual modal analysis of the
linearized dynamical computational model with the predeformation discussed
in Section 4.2 is then performed of which some results are summarized in
Table 1.

frequency (Hz) modal shape
Mode 1 121.10 global
Mode 2 124.16 global
Mode 3 897.02 local
Mode 4 897.06 local

Table 1: Eigenfrequencies and type of elastic modes

Owing to the slight predeformation of the structure, according to the first
linear buckling mode, the structure is not perfectly axisymmetric and pairs
of distinct eigenfrequencies are obtained as seen in Table 1. An analysis of
the first 40 eigenfrequencies and mode reveals that the first two modes ϕ̃1

and ϕ̃2 describe global bending modes of the structure as shown in figures 14
and 15, see Table 1.

Figure 14. Elastic mode related to eigenfrequency f1 = 121.10Hz

Further, a high modal density is observed, starting with eigenfrequency
ν3 = 897.02Hz. There are 38 local elastic modes belonging to frequency
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Figure 15. Elastic mode 2 related to eigenfrequency f2 = 124.16Hz

band [897 , 1123]Hz. The ground motions characterized by the power spec-
tral density of Eq.(48) would strongly excite the first two elastic modes but
only weakly the ensuing ones. Thus the projection basis of the stochastic
nonlinear reduced-order model must closely represent the first two elastic
modes but not necessarily the ensuing ones. To assess this issue, the rep-
resentation of elastic mode ϕ̃β , β ∈ {1, 2} on R(27) is determined, using
Eq.(46). Specifically, denote by ϕ̃β,N the approximation of ϕ̃β on R(N) and
let truncation error be given by

Err(N, β) =
||ϕ̃β,N − ϕ̃β ||

||ϕ̃β|| . (49)

Figure 16 displays the graphs of N 7→ Err(N, 1) and N 7→ Err(N, 2)
in a logarithmic scale. It is seen that elastic mode ϕ̃1 is poorly represented
on R(27). Although the error related to elastic mode ϕ̃2 is smaller, due to
the coexistence of local and global contributions, it was deemed too large
to be neglected. As a consequence, these two elastic modes were selected
in order to enrich R(27). The final projection basis is the family S(29) =
R(27) ⋃{ϕ28,ϕ29}, in which the vectors ϕα, for α ∈ {28, 29} are defined as

ϕα =
ψα

||ψα|| , ψα = ϕ̃α−27 −
α−1∑

i=1

(ϕi)T ϕ̃α−27

||ϕi||2 ϕi , (50)

according to a partial Gram-Schmidt orthonormalization procedure. The
mean reduced-order computational model is then obtained using the en-
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riched projection basis composed by the family S(29). It should be noted
that the first eigenfrequency is computed with the linearized computational
model projected on S(29), are ν ′

1 = 121.19Hz < ν ′

2 = 124.57Hz < ν ′

3 =
1602.96Hz < ν ′

4 = 1768.25Hz. As expected, ν ′

1 and ν ′

2 are close to their
original counterparts ν1 and ν2, see Table 1. The reduced dissipation matrix
is constructed according to Eq.(26) by choosing ζ = 4.44× 10−5. This leads
to a critical dissipation rate ξ ≃ 0.017 for the two first elastic modes.

5.3. Results

The response of the shell is monitored at the same position and in the
same direction than above, see Section 4.2. This random observation, de-
noted by Uobs(t), is a stochastic process indexed by [0, T ] and defined on the
product of probability spaces (Θ , T , P) and (Θ′, T ′,P ′). It can then be
written as

Uobs(t) = uobs(t) + U c
obs(t) , (51)

in which uobs(t) is the deterministic function characterizing the mean of the
stochastic nonlinear dynamical response i.e.

uobs(t) = E{Uobs(t)} =

∫

Θ

∫

Θ′

Uobs(t, θ, θ
′) dP(θ) dP ′(θ′) , (52)
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and where U c
obs(t) is a centered non-stationary stochastic process. In the

sequel, Uobs(t, θ, θ
′) is denoted by Uobs(t; �), where � = (θ, θ′).

Four analysis cases (see Table 2) are investigated, analyzed and compared.

Stiffness Stiffness External load
Case 1 linear deterministic stochastic
Case 2 linear stochastic stochastic
Case 3 nonlinear deterministic stochastic
Case 4 nonlinear stochastic stochastic

Table 2: Description of the analysis cases

Figure 17 displays the graphs of t 7→ U c
obs(t, �) (gray line) and t 7→ uobs(t)

(black line) for the four analysis cases and for a specific realization of the
ground motions related to Fig. 13. It is seen that uobs(t) is a centered oscil-
lating function for the linear cases as expected given the zero mean character
of the excitation. However, a small negative mean is observed for the non-
linear cases. Superimposing all cases, it is seen, for this present realization,
that the geometric nonlinear effects occur first at tnonlin = 0.16 s for a dis-
placement level greater than 1.8 × 10−4m, or 2

3
of the shell thickness. Note

that these observations are coherent with the results obtained in the static
case and shown in Figure 3. Comparing cases 1 and 2 with cases 3 and 4
respectively, it is seen that the effect of the geometrical nonlinearities is to
decrease the intensity of the response. Moreover, this effect increases with
the presence of model and system-parameter uncertainties in the stochastic
computational model. Comparing case 1 with case 2, it is seen that the
presence of random uncertainties significantly spreads the stochastic linear
response allowing displacements of 1.7 × 10−3m, or 6 thicknesses, to occur.
A similar conclusion does not seem to hold in the nonlinear case : when com-
paring case 3 with case 4, the presence of random uncertainties only seems
to slightly modify the nonlinear dynamical response.

The complex instantaneous spectral density function sUc

obs
(ν, t) of the non-

stationary stochastic process {U c
obs(t) , t ∈ [0 , T ]} is defined as

sUc

obs
(ν, t) =

1

2π

∫ T

0

e−2 iπνt′ rUc

obs
(t′, t) dt′ , (53)

in which rUc

obs
(t, t′) = E{U c

obs(t)U
c
obs(t

′)} is the autocorrelation function of
stochastic process U c

obs(t). It should be noted that the numerical estimation

32



0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

time (s)

di
sp

la
ce

m
en

t (
m

)

0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

time (s)

di
sp

la
ce

m
en

t (
m

)

0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

time (s)

di
sp

la
ce

m
en

t (
m

)

0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

time (s)

di
sp

la
ce

m
en

t (
m

)

Figure 17. Graphs of functions t 7→ U c
obs(t,�) (gray line) and t 7→ uobs(t) (black

line) for cases 1 and 2 (upper graphs) and for cases 3 and 4 (lower graphs)

of sUc

obs
(ν, t) can be carried out by using the periodogram method with a

Tukey-Hanning time window combined to FFT [51, 52]. Then,

sUobs
(ν, t) =

1

2π
ûobs(ν) uobs(t) + sUc

obs
(ν, t) , (54)

with ûobs(ν) =

∫ T

0

e−2 iπν t′ uobs(t
′) dt′.

Figure 18 displays the graph (ν, t) 7→ |sUobs
(ν, t)| for the four analysis

cases. It is seen that the two linear elastic modes are excited through the
analysis, as expected from the eigenfrequencies ν ′

i computed in Section 5.2.
The analysis is next focused on the fixed time t0 = 0.5 T and in the fre-
quency band [80 , 160]Hz around the resonances. Figure 19 shows the graph
ν 7→ log10(|sUobs

(ν, t0)|) for the linear case (left graph) and for the nonlinear
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case (right graph). The presence of random uncertainties spreads the reso-
nance in the linear case whereas no such effect is noticed in the nonlinear
case. Comparing the peak frequencies of cases 1 and 3, a shift of the reso-
nance from 120Hz until 113Hz is observed, which shows that the presence
of geometrical nonlinearities induces a softening effect, as maybe expected
from Fig. 3. Moreover, the presence of geometrical nonlinearities yields a
peak broadening and a decrease of the resonance magnitude from −8.3 dB
until −9.16 dB. Comparing case 2 (or 4) with case 1 (or 3), it is seen that
the presence of uncertainties have a moderate effect on the complex instan-
taneous spectral density function of the response. For the linear case, the
presence of uncertainties shifts the peak from 120Hz to 118Hz and reduces
its magnitude by 0.2 dB. This small effect can be explained as follows: in
case 2, the random linear (N × N) reduced stiffness operator is extracted
from the (P × P ) random reshaped stiffness operator [K], for which the dis-
persion parameter δ has been identified to 0.45. Let δLIN be the effective
dispersion parameter related to this random linear (N ×N) reduced stiffness
operator. Since N ≪ P = N(N + 1), it can be shown that δLIN = 0.025.
Consequently, the random response of the linearized system with uncertain-
ties is computed with a small level (δLIN = 0.025) of uncertainties. This
small level of the dispersion parameter is then coherent with the observed
slight impact of the random uncertainties on the linear dynamical response.
In the nonlinear case, only a change of 0.03 dB can be observed in the peak
response magnitude. For both nonlinear and linear cases, the complex in-
stantaneous spectral density function appears weakly sensitive to random
uncertainties. This can be explained by the fact that this quantity of inter-
est is issued from a statistical averaging of the random observation over the
two statistical sources of the randomness (the excitation and the variability
induced by uncertainties).
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Figure 18. Graphs of functions (ν, t) 7→ |sUobs
(ν, t)| for cases 1 and 2 (upper graphs)

and for cases 3 and 4 (lower graphs)
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Figure 19. Graphs of ν 7→ log10(|sUobs
(ν, t0)|) without and with random uncertain-

ties (thin line and thick dashed line): linear case (left graph) and nonlinear case
(right graph).

From here on, for t ∈ [0 , T ], for θ ∈ Θ and for θ′ ∈ Θ′, a realization of the
stochastic process Uobs(t) is denoted by Uobs(t; θ, θ

′). To better understand
and analyze the effects of random uncertainties on the nonlinear stochastic
response, a spectral analysis of the nonstationary observation Uobs(t) is next.
To this end, let

SUobs
(ν, t; θ) =

1

2π

∫ T

0

e−2iπνt′ RUobs
(t′, t; θ) dt′ , (55)

be a sample of the complex-valued random instantaneous spectral density
function for ν in Bν , for t in [0 , T ] and for θ in Θ. In this equation, for all
fixed t and t′, θ 7→ RUobs

(t, t′; θ) is the real-valued random variable defined
by

RUobs
(t, t′; θ) =

∫

Θ′

Uobs(t; θ, θ
′) Uobs(t

′; θ, θ′) dP ′(θ′) . (56)
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Therefore, {SUobs
(ν, t), ν ∈ Bν , t ∈ [0, T ]} is a second-order stochastic process

defined on probability space (Θ, T,P).
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Figure 20. Confidence region: graph of ν 7→ log10(E{|SUobs
(ν, t0)|}) (thick dashed

line) and graph of the confidence region of ν 7→ log10(|SUobs
(ν, t0)|) (grey region).

Linear case (left graph) and nonlinear case (right graph).

Figure 20 shows the graph of the confidence region calculated with a prob-
ability level Pc = 0.95 of the random stochastic process ν 7→ log10(|SUobs

(ν, t0)|)
for the linear case (left graph) and for the nonlinear case (right graph). Note
that the computations have been carried out for 77×77 = 5929 realizations
(θ, θ′). It can be seen that the peak response corresponding to the nonlinear
case occurs for a lower frequency and with a smaller magnitude than its lin-
ear counterpart. Furthermore, the confidence region related to the nonlinear
case is broader, demonstrating that the response prediction in the nonlinear
case is less robust with respect to uncertainties than in the linear case.
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Conclusion

The paper has presented an experimental validation of an advanced com-
putational method for analyzing the nonlinear post-buckling behavior of a
geometrically nonlinear thin shell structure in presence of uncertainties. The
experimental static nonlinear response of a very thin cylindrical shell with
respect to the intensity of a static shear load constitute the experimental
data. Firstly, the mean nonlinear computational model has been used for
generating the nonlinear static reference response from which the POD basis
has been constructed. The nonlinear stochastic computational model has
then been constructed and experimentally identified in the goal to capture
the reference response for the best. For this kind of very thin structures
investigated, the sensitivity of the mechanical behavior is very high. The
updating is considered as accurate when the experimental response belongs
to the confidence region. It can be concluded that the computational model
which has experimentally been identified yields a slight overestimation of the
static nonlinear response in the linear range, while the buckling and the post-
buckling ranges are particularly sensitive to uncertainties and are accurately
predicted by the identified stochastic computational model. By increasing
the shear load, it has been shown that the computational model predicts a
range for which a linear elastic stiffening is observed, for which the robustness
to uncertainties lightly increases.

Then, the identified stochastic computational model has been used for
predicting the nonlinear dynamical post-buckling response, under a stochas-
tic excitation induced by a ground motion of the structure. The influence of
geometrical nonlinearities has been analyzed through instantaneous spectral
density functions. The presence of geometrical nonlinearities modifies the
dynamical behavior (1) by inducing a local softening effect and a decrease of
the resonance magnitude; (2) by decreasing the robustness of the response
predictions with respect to uncertainties.
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