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Summary. We present numerical simulations of the Saint-Venant system for shal-
low waters, including small friction and viscosity, motivated by the interest in recov-
ering the results of experimental studies on the free-surface flows over an obstacle.
We use the kinetic scheme “with reflections” formulated in [B. Perthame, C. Sime-
oni, A kinetic scheme for the Saint-Venant system with a source term, Calcolo,
38 (2001), no. 4, 201-231], appropriately extended to obtain second order accuracy
according to the theory developed in [Th. Katsaounis, C. Simeoni, First and second
order error estimates for the upwind source at interface method, Math. Comp. 74
(2005), no. 249, 103-122].
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1 Introduction

The Saint-Venant equations for shallow waters were originally written by
A. de Saint-Venant in 1871 from heuristic considerations about the mecha-
nisms governing physical phenomena such as the flows in rivers or coastal
areas (see [20]).

In a one-dimensional framework, these equations constitute simple math-
ematical model for the flow in ideal rectangular rivers, described at time t≥0
and at point x ∈ R through the height of water h(t, x)≥ 0 and its velocity
u(t, x)∈R by means of the hyperbolic system

∂h

∂t
+

∂

∂x
(hu) = 0, (1)

∂

∂t
(hu) +

∂

∂x

(

hu2 +
g

2
h2

)

+ ghZ ′ = 0, (2)

where g denotes the gravity intensity and Z(x) is the bottom topography;
therefore h+Z is the level of the water surface and, in what follows, we also
denote the discharge by q=hu.
Besides, other terms can be added to the right-hand side of equation (2) to
take into account further natural features of the physical context, for instance
friction on the bottom and viscosity inside the fluid.
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The question to introduce more complete systems becomes crucial when
one deals with the experimental verification of situations typically occurring
in hydraulics, to provide a classification of different flow regimes in presence
of an obstacle, for which the description based on the model (1)-(2) is un-
satisfactory. Indeed, for dam breaks or hydraulic jumps, it does not allow
to recover mathematically the right position with respect to the topography
(see [12], for example) and the interaction of the source terms corresponding
to bottom slope and friction in the shallow water equations is dominant for
characterizing the steady states.

Despite its simple configuration, the shallow water flow in channels with
nontrivial topography present a wide variety of regimes, producing some pe-
culiar behaviours of the free-surface (wave trains, hydraulic jumps, turbulent
profiles), which have not yet been fully examined. In [1], the results of classi-
cal analytical theories are reviewed, even though these models are validated
only in the weakly nonlinear and weakly dispersive limits. Based on two-
dimensional numerical simulations of the nonlinear uniform potential flow
around moving obstacles, an accurate description of the different types of
breaking waves is proposed in [14]. However, due to the inherent limitations
of the theoretical formulations, their predictions have to be interpreted in
terms of experimental verifications.

We refer to [26] for a survey of the experimental study of free-surface flows
over an obstacle: the behaviour of an incident subcritical channel flow is in-
vestigated for various blocking factors (namely, obstacle shape and stationary
water depth); the results are analyzed in comparison with the classification
schemes proposed in the previous works (see the references in that paper).

We present in this paper some numerical simulations of the Saint-Venant
system, according to the experimental configuration set in [26]. To take into
account dissipative effects in the physical phenomenon, we consider a modi-
fied equation for the momentum including small friction and viscosity, then
the system under analysis reads

∂h

∂t
+

∂

∂x
(hu) = 0, (3)

∂

∂t
(hu) +

∂

∂x

(

hu2 +
g

2
h2

)

+ ghZ ′ = −
g

K2

u|u|

h1/3
+ µ

∂

∂x

(

h
∂u

∂x

)

, (4)

where K is the Strickler’s coefficient of the Manning’s equation and µ denotes
the kinematic viscosity of the fluid. The particular form of the source terms
is suggested by empirical laws, which were originally obtained for steady
state flows (refer to [25]). Similar models have been derived from the Navier-
Stokes system for incompressible flows with a free moving boundary (see [5]
and its references) and more complex laws for the friction term can also be
formulated to modelize analogous problems in the case of granular media
(snow avalanches, for example, as referred in [15]).

The numerical approximation of system (3)-(4) is carried out by means
of the kinetic scheme proposed and extensively studied in [17]. In fact, for
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all experimental tests performed in the works quoted above, the flow was
observed to be stationary and a zone of supercritical flow downstream the
obstacle always occurs, though the cases examined concern the subcritical
regime. So, we use a method which preserves the free-surface profile of steady
states with nontrivial bottom topography and which is able to deal with
transcritical regimes.

The discretization of the additional source terms in (4) is rather standard,
based on a semi-implicit approach for the friction term and direct integrations
by the finite volume method for the diffusive term. Moreover, when friction
and viscosity are neglected, we recover the system (1)-(2). Appropriate ex-
tensions of the primitive algorithm are thus considered, in order to improve
the numerical accuracy.

The paper is organized as follows. In Section 2, we recall some specific
notations of the Upwind Interface Source method for hyperbolic conservation
laws with geometrical source term, illustrated in [18], by extending its gen-
eral formalism to the system (1)-(2). We also introduce the approximation
of the dissipative terms, for treating the system (3)-(4). Connected with the
numerical approach developed in [17], the question to derive a second order
scheme is addressed in Section 3. We describe the experimental configuration
underling our analysis in Section 4 and we present the results of numeri-
cal simulations made according to the experimental data provided in [26].
Some remarks are discussed to justify theoretical tests in comparison with
the experiments.

2 Formalism of the numerical method

The Saint-Venant system for shallow waters (1)-(2) belongs to the class of
the hyperbolic systems of balance laws, with a geometrical source term, and
can be written in the equivalent form

∂U

∂t
+

∂

∂x
A(U) = B(x,U), (5)

where U = (h, hu) represents the vector of conservative variables, the flux
function is given by A(U) =

(

hu, hu2 + g
2
h2

)

and B(x,U) = (0,−ghZ ′) indi-
cates the external term.
The equation (5) reproduces the general formalism introduced in [18] for the
particular case of scalar conservation laws, so the numerical theory stated in
that context formally extends to system (1)-(2), to characterize approxima-
tions with suitable theoretical properties.
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✲s

xi−1

xi− 1
2

s

xi

xi+ 1
2

s

xi+1

Zi
Zi+1

We set up a mesh on R, whose central vertices are xi, i∈Z, made of cells
Ci = [xi− 1

2
, xi+ 1

2
) with nonuniform length ∆xi and the points xi+ 1

2
indicate

the cell interfaces. We also consider a time discretization tn, n ∈ N, with
variable time-step ∆t. Then we construct a piecewise constant representation
of the function Z(x) on the mesh, with coefficients Zi =

1

∆xi

∫

Ci

Z(x) dx for
example.

A classical approach to nonlinear hyperbolic problems consists in using
finite volume methods, which are designed for computations with arbitrary
meshes (refer to [4], for instance). Taking into account the source term directly
in the definition of the numerical fluxes, the fully explicit finite volume scheme
for equation (5) is written in the compact form

Un+1

i − Un
i +

∆t

∆xi

(

A
n,−
i+ 1

2

−A
n,+

i− 1
2

)

= 0, (6)

where A
n,±
i+ 1

2

=A±(Un
i ,U

n
i+1, ∆Zi+ 1

2
), with ∆Zi+ 1

2
=Zi+1−Zi, are defined by

means of appropriate numerical functionsA±=
(

A±
h ,A

±
q

)

for each component
of (5) and the following consistency properties are required,

A+

h (U ,V, ∆Z) = A−
h (U ,V, ∆Z), (7a)

A+
q (U ,V, ∆Z)−A−

q (U ,V, ∆Z) = −gh∆Z +O (|∆Z|+ |U−V|) , (7b)

A+(U ,U , 0) = A−(U ,U , 0) = A(U). (7c)

We note that condition (7a) ensures that the numerical fluxes are conserva-
tive for the equation (1). Moreover, we have An,±

i+ 1
2

=An
i+ 1

2

+(An,±
i+ 1

2

− An
i+ 1

2

)

and the quantity in parentheses holds for discrete contributions of the source
term at the cell interfaces, according to the Upwind Interface Source method;
therefore, the relation (7b) guarantees consistency with the continuous model,
as readily obtained by standard asymptotic expansions. We deduce from (7c)
that the numerical scheme (6) satisfies the classical definitions for homoge-
neous problems.

The kinetic scheme for the Saint-Venant system proposed in [17] is compa-
tible with the above formalism and endowed with further stability properties
associated to the physical model (it preserves the steady state of still water,
satisfies a discrete entropy inequality and makes non-negative water height).

In order to perform numerical simulations with experimental data, we
consider the modified shallow water equations (3)-(4), for which that scheme
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applies to terms corresponding to the hyperbolic system (1)-(2).
The discretization of the friction term is implicit (see [16], for example) and
splitted into two steps, only concerning the equation (4), which include the
approximation of the viscous term,

q
n+ 1

2

i − qni +
∆t

2∆xi

(

A
n,−
q, i+ 1

2

−A
n,+

q, i− 1
2

)

= µ
∆t

2∆xi

(

V n
i+ 1

2

− V n
i− 1

2

)

, (8)

qn+1

i − q
n+ 1

2

i = −
∆t

2

g

K2

qn+1

i |q
n+ 1

2

i |
(

hn+1

i

)
7
3

, (9)

where the numerical formulas used for calculating viscosity,

V n
i+ 1

2

=
hi + hi+1

2

ui+1 − ui

∆xi+ 1
2

, (10)

with ∆xi+ 1
2
= ∆xi

2
+ ∆xi+1

2
, are derived by means of simple finite volume

integrations on the mesh cells and appropriate approximations of the resulting
interfacial values (we note that the discretization (10) can be reinterpreted
according to the classical first order finite element method). Some different
methods for processing friction terms are proposed in [3], [6] and [7].

3 Second order schemes

To obtain second order extensions of finite volume schemes in form (6), a
rather geometrical approach is based on slope limiter techniques.
We construct a piecewise linear approximation of the function Z(x) on the
mesh, whose coefficients are Zi+(x− xi)Z

′
i, x∈Ci, and we denote by Z ′

i the
numerical derivatives computed by applying an appropriate slope limiter (we
refer to [8] and [13] for a survey of these discrete operators).
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❳
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According to the arguments in [11], a second order scheme for the Interfacial
Source method formally reads

Un+1

i − Un
i +

∆t

∆xi

(

A
n,−
i+ 1

2

−A
n,+

i− 1
2

)

+Bn
i = 0, (11)
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where the numerical fluxes An,±
i+ 1

2

=A±(Un,+
i ,Un,−

i+1
, ∆Zi+ 1

2
) use the interfacial

values of piecewise linear reconstructions of the numerical functions,

Un,±
i = Un

i ±
∆xi

2
Un ′
i , Z±

i = Zi ±
∆xi

2
Z ′
i, (12)

and therefore ∆Zi+ 1
2
=Z−

i+1
−Z+

i in this case.

The additional discrete source term is defined by Bn
i =(0, gZ ′

ih
n
i ). Although

other methods exhibit noticeable improvements, it was shown in [11] that
the centered term Bn

i is necessary to achieve second order accuracy for the
Upwind Interface Source method, if the slope limiter used to construct the
values (12) is correctly defined (see [21], [22] and [23]).

For the sake of simplicity, we consider in (11) only the first order dis-
cretization in time. It is standard to obtain higher order accuracy by applying
Runge-Kutta methods for instance (see [9], [10] and its references).
The second order scheme (11) is validated by the numerical results obtained
for the steady states of the Saint-Venant system (1)-(2).

4 Experimental configuration and numerical results

The situation studied in [26] is the one-dimensional flow of an incompress-
ible fluid over an obstacle on the bottom of a smooth rectangular channel
(see Figure 1).
The parameters of the problem are the stationary water depth H and the
mean velocity U , the kinematic viscosity of the fluid µ, the characteristic
length of the obstacle L and its height Z0. By combining these values, we
define some specific dimensionless numbers: the Froude number F0 =

U√
gH

,

which relates the depth-averaged flow velocity to the characteristic wave prop-
agation speed, in the long waves approximation; the blocking factor α= Z0

H ,
controlling the flow linearity in the absence of other perturbations (when α

tends to zero, the flow becomes linear); the obstacle ratio β= Z0

L , which can
be interpreted as a control on the flow hydrostaticity (by analogy with the
long waves approximation); the Reynolds number Re= HU

µ , for the simple
case of an ideal rectangular channel.
We note that the definitions above correspond to simplifications adapted to
the theoretical system described by (3)-(4), when the fluid density and the
channel width are formally reduced.

The experiments have been carried out in a channel of length 12m, in-
clined at slope 0.002 and entirely made of glass. Two obstacle shapes are

considered, a smooth Gaussian bump given by Z(x)=Z0 exp
(

− x2

2L2

)

, with

ratio β=0.23, and a semi-circular bump with ratio β=0.58 (this last shape
is commonly used for experimental analyses). Two sizes Z0 = 1.7 cm and
Z0 = 4.1 cm are fixed for each shape, which allow to access a wider range
of α values (0.147≤ α≤ 0.7). The tests are performed in subcritical regime
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u(t,x)

L

H

Z

h(t,x)

0

Fig. 1. Experimental configuration

(F0< 1) and the obstacles are placed in the channel so that fully developed
turbulent flow conditions are attained before the obstacle.

Table 1.

F0 Z0 α β Re

0.62 1.7cm 0.179 0.58 3.08 ∗ 104

0.66 1.7cm 0.26 0.58 1.51 ∗ 104

0.64 4.1cm 0.68 0.58 1.32 ∗ 104

We present some numerical results corresponding to the test cases illus-
trated in Table 1, for which experimental data are available to make direct
comparisons. The pairs of figures reproduce the level of the water surface
and the local Froude number in the vicinity of the obstacle, obtained at time
T = 150 s (when the flow has become completely stationary), normalized
with respect to the obstacle size. According to the experiments, the flow is
classified by means of the free-surface profile and three different regimes are
observed as function of the blocking factor. The boundaries of each regime,
in terms of α values, are essentially independent of the obstacle shape.
Several tests have been performed also varying the Strickler’s coefficient K

introduced in (4), to evaluate the physical adequacy of the friction law (re-
fer to [19] for a more precise discussion). The nonuniform mesh used for the
numerical simulations is refined around the obstacle or in regions of stiff to-
pographical variations, with a minimal mesh size of 5 ∗ 10−4 m.
The subcritical flow downstream of the obstacle displays many of the features
of a supercritical flow behind a sluice gate with ensuing hydraulic jumps, im-
plying a certain independence of the upstream conditions. The treatment of
the boundary conditions, which turns out to be crucial for the numerical
accuracy, is provided by the method developed in [2].
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Regime I (α ≤ 0.25)

The graphics of the local Froude number show a transition from super-
critical to subcritical flow downstream of the obstacle, through a hydraulic
jump (Figure 3); the flow remains subcritical downstream the jump. The
lower boundary of this regime is expected to be the value of α below which
a classical subcritical regime should occur.

0 50 100 150
2

3

4

5

6

exp.dat

K=122.da

Fig. 2. Water surface (α = 0.179)

The results of the experimental test reveal the presence of a wave train
on the free-surface profile (Figure 2). Moreover, some photographs taken
during the experiments show bubbles arising on the crest of the hydraulic
jump, as consequence of the turbulent motion. These phenomena are not
taken into account in the mathematical model (3)-(4) and cannot be obtained
numerically (we refer to [24] for further analysis).

Regime II (0.26 ≤ α < 0.68)

The graph of the local Froude number shows that a region of supercritical
flow appears downstream the obstacle, followed by a transition from super-
critical to subcritical flow through a hydraulic jump (Figure 5); however, in
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Fig. 3. Local Foude number
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Fig. 4. Water surface (α = 0.26)
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Fig. 5. Local Foude number

this regime, the local Froude number undergoes further transitions and its
values remain close to F =1 downstream the jump.

In the experimental tests, the local Froude number is oscillating around
the critical value and the wave train on the free-surface profile becomes a
series of triangular hydraulic jumps. This flow regime is essentially three-
dimensional, the friction on the channel walls plays a significant role for the
energy dissipation across the jumps (inducing water deceleration) and con-
finement effects seem to control the behaviour of the flow. Theoretical values
obtained for the water depth (Figure 4) are higher than the experimental
ones, suggesting that the numerical results are necessarily inaccurate.
Nevertheless, as two-dimensional side wall effects have not been considered in
the model (3)-(4), it seems impossible to reproduce all the phenomena with
one-dimensional simulations.

Regime III (α ≥ 0.68)

The experiments performed until α = 0.7 show that the flow remains
supercritical downstream the obstacle (Figure 7); in other words, no hydraulic
jumps arise in this regime. Small perturbations appear on the free-surface
profile, in form of a wave train located downstream the obstacle (Figure 6).

We remark a rather good agreement with the experimental results con-
cerning the position of hydraulic jumps and the length of the supercritical
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Fig. 6. Water surface (α = 0.68)
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Fig. 7. Local Foude number
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region predicted by the shallow water equations (3)-(4), when friction and
viscosity are included.
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