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The raising steps method. Application to the 0 equation in
Stein manifolds.

Eric Amar

Abstract
In order to get estimates on the solutions of the equation du = w on Stein manifold, we
introduce a new method the "raising steps method”, to get global results from local ones. In
particular it allows us to transfer results form open sets in C" to open sets in a Stein manifold.
Using it we get L™ — L*® results for solutions of equation Ou = w with a gain, s > r, in
strictly pseudo convex domains in Stein manifolds.

1 Introduction.

We shall introduce a new method, the "raising steps method” to get from local results on
solutions u of equation Du = w, global ones in a smooth manifold X. This method works because
we get a quantified better regularity on the solution u of the D equation with respect to the
regularity of the data.

On any complex manifold X we define first the ” Lebesgue measure” as in Hormander’s book [7]
section 5.2, with a hermitian metric locally equivalent to the usual one on any analytic coordinates
patch. Associated to this metric there is a volume form dm and we take it for the Lebesgue measure
on X.

There already exist results on solutions of the 0 equation in bounded strictly pseudo convex
domains in complex manifolds. For instance Hormander [7] solve the 0 equation with L* — L?
estimates for any (p,q) currents. Kerzman [8] proved a L” — L" estimate on solution of d for any
r € [1,00[ and a Holder estimate in case r = oo for (0,1) currents. In [6], chap. 4, Henkin and
Leiterer built global kernels on a Stein manifold for (0, ¢) forms and get some uniform estimates.
Demailly and Laurent [4], built global kernels on a Stein manifold for (p, q) forms and get L™ — L"
estimate on solution of 0 for any r € [1,00[ in the case the Stein manifold is equipped with a
hermitian metric with null curvature.

As an application of this ”raising steps” method we get the following theorems

Theorem 1.1 Let Q) be a smoothly bounded relatively compact strictly pseudo convexr domain in
the Stein manifold X. B
There is a constant C = C(p,q,r) > 0 such that if w € L] )(Q), Oow=0if1<r <2, there is a

(p.q
1 1 1 1 1
(p,q — 1) current u such that, with v := min(m, o 5), and S=o



ou=w and u € L, , 11(Q), [|ul

s <C , .
Ly, o 1)@ = ||W||L(p7q)(sz)

Let H/(€2) be the set of all (p, 0) 9 closed forms in Q and in L"(£2).

To deal with r > 2 we have to make the assumption that w has a compact support, i.e. w € La)cq) (Q)
ifq<nande_7—[;l(Q) if g =n.

Theorem 1.2 Let €2 be a smoothly bounded relatively compact spc domain in the Stein manifold

2 1 _
X. Let % <71 <2(n+1), there is a constant C' = C; > 0 such that if w € L, (Q), 0w =0
n b
if1<g<nandw€ Ly, , (), wl H;,(Q) if ¢ = n, then there is a (p,q — 1) current u such that,
1 1 1
with = =~ —

s r  2n+1)
Bu=w andu € Liyy (@), Jul, < Cllell,

In the case of (0,1) currents, this assumption is not necessary, thanks to the results of N.
Kerzman [8].

Theorem 1.3 Let €2 be a smoothly bounded relatively compact spc domain in the Stein manifold
X.
o If1 <r <2(n+1) there is a constant C' = C, > 0 such that if w € L) (), Ow = 0 then

(0,1
1 1
there is a function u such that, with — = — — ——,
B s r 2n+1)

Ou=w andu € L*(Q), |[ull@) = Clwlzy, | @

o [fr =2(n+1) then for any s < oo there is a function u such that
Ou=w and u € L*(Q), |jul L) < C||w||L?071)(Q).
o if2(n+1) <r < oo there is a function u such that
w€ A(Q) = u = w, [lullasio) < Cllwllyy, (@),

1 1
111}L637’66:§—(nJr )

and AP is the Hélder class of functions of order 3.

Another way to release the compact support assumption is to have a Stein manifold equipped
with a hermitian metric of null curvature in the sense of Demailly Laurent [4], because then we can
use their L™ — L" estimates for any r € [1, o0l

Theorem 1.4 Let € be a smoothly bounded relatively compact spc domain in the Stein manifold X
equipped with a metric with null curvature.
e [f1<r<2(n+1)andw € L, (D), Ow = 0. Then there is a (p,q — 1) current u such that
- 1 1 1
du=w and u € L, 1)(), |lull, < C”W”L(M)(Q) with Pl nt1)
e Ifr=2(n+1) andw € Lj, (), Ow = 0. Then for any s < oo there is a (p,q — 1) current
u such that

Ou=w andu € Ly, (), flullyy < Cllwlly o)

We notice that N. Kerzman in [8], in order to solve d for (0,1) forms, also use local solutions
and to find a global one he used also the Hérmander L? solution, but his method is based on ” bump”
around point at the boundary and is completely different from the raising steps method introduced
here.



2 The ”raising steps” method.

We shall deal with the following situation : we have a C*° smooth manifold X admitting
partitions of unity and a decreasing scale {B, },>1, s > r = B, C B, of Banach spaces of functions
or forms defined on open sets of X. These Banach spaces must be modules over D, the space of C*™
functions with compact support, i.e.

VQ open in X, Vx € D(Q2), 3C(x) > 0:Vf € B,, xf € B,(Q) and |[xfllz, < COOIIfll5,-
For instance B, = L" the Lebesgue spaces, or B, = H? the Sobolev spaces, etc...

We are interested in solution of the linear equation Du = w, where D is a linear operator, with
eventually the constraint Aw = 0, where A is also a linear operator such that A = 0. In case there
is no constraint we take A = 0. One aim is that we want to apply this to the 0 equation.

We shall put the following hypotheses on D, for any domain 2 C X :

(i) Vx € D(?), Dx € D(Q) ;

(i) ¥x € D(2), Vf € B(Q), D(xf) = Dx - f +xDf :
as can be easily seen, a linear differential operator D verifies these assumptions.

Let € be a relatively compact domain in X. Now we shall make the following assumptions on

1 1
X and 2. There is a rg > 1 and a § > 0 such that, setting — = — — 9,
s

(iii) there is a covering {U;};=1. n of Q such that, ¥r < ry, if w € B,(Q), Aw = 0, we can
solve Duj = w in U; N Q with B,(Q) — B,(Q2 N U;) estimates, i.e. 3Cy > 0 such that
Duj = win Q; :=U; NQ and HujHBs(Qj) < Gollwll -
(iv) We can solve Dw = w globally in 2 with B,, — B,, estimates, i.e.
JdE >0, Jw :: Dw =w in Q and ||w||Bm(Q) < E||w||Bm(Q) provided that Aw = 0.
Then we have

Theorem 2.1 (Raising steps theorem) Under the assumptions above, there is a constant C' > 0,

1 1 I 1
forr <o, ifw € B.(Q), Aw =0 there is a u € By(2) with v := min(0, - — —), and — = — — 7,
r To S T
such that
Du = W (md u € Bs(Q)a ||u| Bs(9) S CHWHBT(Q)
Proof.

Let r <7y and w € B,(2), Aw = 0 ; we start with the covering {U;};—;
Du; = w with u; € Bs(€);) given by hypothesis (iii).
Let x; be a C* smooth partition of unity subordinate to {U,},;—

N
Vo = E XU .
J=1

Then we have

~ and the local solution

.....

~ and set

.....

1 1
o vy € B, () because By is a module over D(2) and ||vo|5 L@ S Cllwllp, ) with —=—-—4¢
S T SO

r
and C'= NCj 'IrllaXNC(Xj) by hypothesis (iii).
=L

e Dyy = Ejvzl xjDuj + Ejvzl Dx; A wu; by hypothesis (ii) hence

N N
Dv():Zij—l—ZDXj/\uj:w—i—wl

j=1 j=1



with
Wy = Zjvzl Dx; A u;.
But, by hypothesis (i), Dx; € D(2) hence because B; is a module over D(£2), we have w; € By, (€2),

1 1
with — =——4dand [lwil[p, ) < Glwllp, @ With G = CoN max;_;,. n C(DX;).
S T %0

Hence the regularity of wy is higher of one step ¢ than that of w.
Moreover Aw; = A?vy — Aw = 0 because A2 =0 and Aw = 0.
Two cases

Case 1 : if —=——0 =59 > 19 we can solve a global D in B,,(2), by assumption (iv) i.e.

So r

Jw € B,y (2) = Dw = wy, ||w||BTO(Q) < E||W1||Bm(n) = ||w||Bm(Q) < EG|wllp, @)
It remains to set

U= vy — w
to have, by the linearity of D,

Du=w

11

11
and, with — == —~, v :=min(§, - — —), and F := EG,
S T r 70

u € By(Q), ||lullp,q) < Fllwll g, @

1
Case 2 : if — =—-—0§ = sy < rg then we continue :

0
Ju; € B, (), Dvy = wy +wo

with
01l g, (@) < Cllwrllp, @) < CCGllwllp, @
wy € By (Q), [lwallp, () < Gllanllp, )
1 1 1
—=——0=-—2/,
S1 So r
ACUQ = 0.
And

D(vg —v1) = w+wy; — Du; = w — wy.
Hence by induction :

1 1 , -
Jvg, ..., vN 1 vj € By (Q) - = o (j + 1), HUJHBSJ.(Q) < CGE IHMHBT(Q)

Sj
and
. ,
D(3;y (—1)Vv)) =w + (=1)Vwy
with
wx € Bow (), [lwn] < ¥l —— = L N
N sy-1\38)s IWNIIB, (@) = B() g T
and Awy = 0.
Hence the regularity of wy raises of IV steps ¢ from that of w.
1 1
Now let sp :: — = — — § and suppose that sy < ¢ then take N such that =—-—No< —
50 T SN-1 r To

then wy € Bs,_, () C B,,(2) and now we can solve a global D in B,,(2), by assumption (iv) i.e.
Jw € By, (Q) :: Dw = wh, ||w||Bm(Q) < EHWNHBm(m = ||w||Bm(Q) < ECGNHWHBT(Q)
It remains to set

=3 (e (<) Vw

J=0



to have

u w

1
——¢dand F:= ECG",

,

€ B,(Q), llullp ) < Flwlp, - ®

and, with

g”%l}—‘b

3 Applications.
We proved in [2] the following theorem for strictly pseudo convex (s.p.c.) domains in C".

Theorem 3.1 Let ) be a s.p.c. domain in C" then
e for 1 <r <2n+2 we have B
Vw € Li, (), 0w =0, Ju€ Lf, ,_1(Q) : Ou=w, [ju

(pvq_l
1 1 1
with — = — — ———.
s r 2n+1)
e Forr =2n+ 2 we have B
Elueﬂ[f ) () = Ou = w.

(pvqfl
r>1
If wis a (p,1) form we have also :

e forr =1, we have

Ju € LE;:S)(Q) to0u=w, ||u

L3() S ||W||pr’q)(g)a

L5°0(Q) S ||W||L1(Q)
o1
with —=1— ——.
s 2(n+1)
e forr > 2n+ 2 we have
Ju € A(Q) = 0u=w, |ullysig) S @l @),

1 1
where f = 37 LL +1) and AP is the Holder class of functions of order B.
T

Moreover the solution u s linear on the data w.

In fact the theorem we have gave results on BMO(2) instead of ﬂ L{y,4—1)(£2) with control of

r>1
the norm and on an anisotropic Holder class I'?() instead of the usual Holder class. But because
we are mainly interested in classical results, it is not necessary to go further here. The aim is to

have this kind of results with a Stein manifold instead of C".

3.1 The transfer from C" to Stein manifold.

We shall apply the raising steps method to the case of D =9, A =09, B, = Lfnq) the space of
(p, q) currents with coefficients in the Lebesgue space L™ and X a Stein manifold. Clearly (i) and
(ii) are verified.

Lemma 3.2 Let Q) be a relatively compact domain, C> smoothly bounded and strictly pseudo
convez in the complex manifold X. There is a covering {(U;, ¢;)}j=1,..~ of Q0 by coordinates patches
of X such that Q) := U; N QY is still relatively compact, C* smoothly bounded and strictly pseudo
convez in X.



Proof.
Let z € Q and (G.,.) a coordinates patch such that z € G,. Set V, := ¢.(G,) C C" and
¢ = p.(2).
We have two cases
(i) if 2 € Q take a ball B, centered at ¢ and contained in V. B is spc in C" ; set U, := ¢, '(B) then
U, = U, N is still spc with smooth boundary in X, because ¢, is biholomorphic in GG,, and U, is
a neighbourhood of z.
(ii) if z € 92 we look at V, C C" and we make the completion of the part of the boundary of
©.(G, N Q) in V, to get a smoothly bounded strictly pseudo convex domain I', in V, as in [1].
Now we extend I', on the other side of ¢,(G, N d) in V, as an open set W, such that
W, N, (U,NQ) =T,. Now we set U, := ¢ (W,), then Q, := U, NQ = ¢ *(T,) is strictly pseudo
convex with smooth boundary in X.
Hence we have that {U,},cq is a covering of the compact set { and we can extract of it a finite
subset {U;};=1,n which is still a covering of  with all the required properties. B

.....

Remark 3.3 We have that the Lebesque measure on X restricted to U; is equivalent to the restric-
tion of the Lebesgue measure of C" to ¢;(U;). This equivalence is uniform with respect to j = 1,..., N
of course. Moreover we have that the distance in QN U; is also uniformly equivalent to the distance
in I'; because p; is biholomorphic in U; and there is only a finite number of U; to deal with.

3.2 Case with use of the L? estimates of Hormander.

Let Q be a relatively compact domain, C* smoothly bounded and strictly pseudo convex in
the Stein manifold X. We plan to apply the raising steps method to extend estimates from domains
in C" to domains in a Stein manifold.

Q;=U;NQisspcin X and I'; = ¢;(2;) is spc in C* with C* smooth boundary.
Let w € prvq)(Q), we have by remark 3.3, that Lebesgue measures on 2; and on I'; are equivalent,
w € L, () implies iw € Li, ().

(p,9) _
Hence we can apply theorem 3.1 to each I'; to get a uj € L‘(*Mfl)(l“j), oy = pjw with
1 1 1 1
-=—-—=———_9S have here § = ——.
ST r 2t o we have here 2T 1)

Back to X, we have a u; € L{, , 1)(%), du; = w in U; N Q = Q; with control of the norm. So
assumption (iii) is fulfilled.
We get the assumption (iv) by the well known theorem [7], [5].

Theorem 3.4 Let ) be a smoothly bounded relatively compact spc domain in the Stein manifold
X. There is a constant C > 0 such that if w € L? (), 0w = 0 there is a (p,q — 1) current

B (p,q)
we Lg,, (), du=w and |lull, < Cllwll,.

So an application of the "raising steps” theorem 2.1 gives

Theorem 3.5 Let € be a smoothly bounded relatively compact spc domain in the Stein manifold
X. There is a constant C' > 0 such that if w € L] (), dw = 0, with r < 2,

(p,q)
1 1 1 1
set vy = min(m, o 5) and S=o then there is a (p,q — 1) current u such that



Ou=w and u € Lipq—1)(€0), Jlu

s <C , .
Ly, o 1)@ = ||W||L(p7q)(sz)

To deal with the case r > 2 we shall proceed by duality and ask that w has compact support,
ie. we L () when ¢ <n.

Recall that 77 (€2) is the set of all (p, 0) d closed forms in Q and in L"(£).

Theorem 3.6 Let ) be a smoothly bounded relatively compact spc domain in the Stein manifold X.

2(n—|— 1) r.c a . r r'
Let e <r<2n+l)andw € L, 1(Q), Ow=01f1<qg<nandw e Lj, (), w L H, (Q)
1 1

1
if ¢ =n ; then there is a (p,q — 1) current u such that, with P ma

Ju=w andu € Lj,, (), Jul, < Cllw],.

Proof.
We use the same technique of duality we already use in [3] inspired by the Serre duality theorem [9)].
As usual let s’ the conjugate exponent to s.

Lemma 3.7 For(), w asin the theorem, consider the function L = L, defined on (n—p,n—q+1)
form a € L¥ (), 0 closed in 2, as follows:

L(a) = (=1)PTYw, ), where ¢ € L (Q) is such that dp = o in ).
Then L is well defined and linear.

Proof.
1 1 1 1 1

1 _
First notice that if Pl m then =g m Such a current ¢ with dp = «

exists since s’, the conjugate exponent of s verifies s < 2, hence we can apply theorem 3.5, with
the remark that this time s’ < 7’.
Suppose first that ¢ < n.
In order for £ to be well defined we need
Vo, € Ly (), Op = 0 = (w, ) = (w, ).
This is meaningful because w € L"¢(Q2), r > 1, Suppw &€ .
Then we have (¢ — ) = 0 hence ¢ — ¢ € L' (Q) € L¥(Q) so we can solve d in L™ (Q) because
s' < 2 by theorem 3.5 :
Iy € Ly pm g 1y(Q) 10y = (¢ —¢) € L"(9).

So (w,p— ) = <w, 5fy> = (—1)p+q’1<5w, fy> = 0 because w being compactly supported in € there
is no boundary term.
Hence L is well defined in that case.

Suppose now that ¢ = n.
Of course dw = 0 but we have that ¢, 9 are (p, 0) forms hence d(¢p —1)) = 0 means that h := @ —
is a 0 closed (p, 0) form hence h € H,(£2). The hypothesis w L H;,(Q) gives (w,h) =0, and L is
also well defined in that case. We notice that w with compact support is not needed in that case,
but in order that the scalar product be defined, we need h € H;/(Q).

It remains to see that £ is linear, so let o = o + ay, with a; € LS/(Q), da; =0, j=1,2; we
have oo = D, oy = Dy and oy = Dops, With ¢, @1, s in L7 (Q) so, because d(¢ — @1 — @a) = 0,
we have



ifg<n : B
© = 1 + Qo + O1p, with ¢ in L™ (), as we did above,
SO

L(a) = (=1 Hw, ) = (1) w, o1 + g2 + 0W) = L{ar)+L(az)+(=1)" " (w, 0v),

but <w, 5@Z)> = <5w, w> = 0, because Suppw € €2 implies there is no boundary term.
Hence L(a) = L(aq) + L(az).
ifg=n :
because (¢ — @1 — @) = 0, we have h := p — 1 — @y € ”H;/(Q) and the hypothesis w L ”H;/(Q)
gives (w,h) =0, so
£(a) = (1M w, 0) = (—1PH U, 01 + 9y + B = Llan)+L(as)+(— 1w, h),

hence L(a) = L(ay) + L(ag).
We notice again that w with compact support is not needed in that case.
The same for a = Aa; and the linearity. B

Lemma 3.8 Still with the same hypotheses as above there is a (p,q — 1) current u such that

Va € L‘(Snfp,nqurl)(Q)v <U, a) = E(O&) = (_1)p+q—1<w’ SO>7
and

sup [(u, @) < Cllwll -
acLs' (Q), lall o7 gy <1

Proof. B
By lemma 3.7 we have that £ is a linear form on (n —p,n — ¢ + 1) forms o € L¥ (), 0 closed in
Q.
We have

Jp e Lz;prJqu)(Q) 1 0p = a ||<P||Lr’(Q) < Colla L' ()
and by its very definition
La) = (w, ¢).

By Holder inequalities
|L(a)] < ||W||LT(Q)||80||LT’(Q) = ||W||LT(Q)||90||LT’(Q)-
But there is a constant C' such that
el @) < CllallL q)-
Hence
[L()] < Cllwll oyl o o )

So we have that the norm of £ is bounded on the subspace of d closed forms in L*(Q) by
CHWHLT(Q)'

We apply the Hahn-Banach theorem to extend £ with the same norm to all (n —p,n—q+ 1)
forms in L*'(Q). As in Serre duality theorem ( [9], p. 20) this is one of the main ingredient in the
proof.

This means, by the definition of currents, that there is a (p,q¢ — 1) current u which represents
the extended form L, i.e.

Vo € LY,y gi(Q), (.0) = L£(a) = (~1P*7 (w,),

(n—pn—q+1
and such that



sup [(u, )| < CHWHLT(Q)'
acLs (Q), llodl ot () <1
[ |
The lemma 3.8 says that
Va € Lfn—p,n—q-i—l) (Q)7 <U, Oé) = L(Oé)_: (_1)p+q71<w’ 90>7
hence applied to ¢ € D pn—q)(2) We get a =99 € Diypngi1) C L*(Q) and
(u,0p) = L(Dp) = (17w, @) = (Ju, p) = (W, ¥)
because ¢ has compact support in €2, hence du = w in the sense of distributions.
Moreover the fact that

sup [(u, )| < Cllwl| ()
a€L (), flall o ) <1
gives, by an easy duality, that
S < T
Ju Ly, . 1)(Q) = CHWHL@’Q)(Q)

which completes the proof of theorem 3.6. B

Remark 3.9 The theorem is valid up to r = 2(n+ 1) because there we have to take s' =1 and we
get

sup [(u, a)| < CHWHLT(Q)
a€LY(Q), [lallp1 o) <1

which implies that u € L{, _1)(S2) with control of the norm.

3.3 Case of (0,1) forms by use of Kerzman’s estimates.

In the special case of (0,1) forms w, we apply the raising steps method with Kerzman’s esti-
mates [8] for the global solution.
Let €2 be a smoothly bounded relatively compact spc domain in the Stein manifold X. As above

we have the assumption (iii) fulfilled with § = . We shall prove

2(n+1)

Theorem 3.10 Let ) be a smoothly bounded relatively compact spc domain in the Stein manifold
X.
o If1 <r <2(n+1) there is a constant C' = C, > 0 such that if w € Li,,,(€2), Ow = 0 then
1 1
there is a function u such that, with — = —

B s r 2n+1)
du=w andu € L*(Q), |ullpsq) < CHw”Lfo,l)(Q)'

o Ifr =2(n+1) then for any s < oo there is a function u such that
Ou=w andu & L*(Q), |[ull@) = Clwlyy, |«
o if r > 2(n+1) there is a function u such that
u € A(Bp,o)(Q) 1w Ou = w, ||u||AB(Q) S ||W||LT0 Q)

(0,1)
1
(n+1) and AP is the Hélder class of functions of order 3.

where =

DO | —

Proof.



The assumption (iv) is true for any ry € [1,00] by Kerzman’s estimates [8] so starting with a

1 1
r € [1,2(n + 1)[, we choose 1 = s with — = — — ———— > 0, hence an application of the raising
s r 2n+1)

steps theorem 2.1 gives the first point.
N

For the second point the proof of the raising steps theorem gives that we have vy := Z X;juj with
j=1
u; € ﬂ LY QN Uj) hence vy € ﬂ LY(Q N Uj) because the x; are in D(QNU;). Choose a s < oo and
1<t 1<t ~
ro = S, then apply Kerzman’s result : there is a correction w € L*(£2) such that d(vy — w) = w and
vo —w € L*(Q).
N
For the third point the proof of the raising steps theorem gives that we have again vg := Z X;jUj
j=1
with u; € A?(Q N U;) because the distance in C" and in Q N U; are equivalent and the ¢; are
biholomorphic, as in remark 3.3, hence the ¢; send Holder classes to the same Holder classes.
Then we apply the Holder part of Kerzman’s result 8] :
Vo € Ly (R), 0p =0, Jw € L¥(Q) = 0w = w and Va < 1/2, w € A*(Q), [|w[yag) <
Ca”‘P”Loo(Q) ; B
i.e. we choose ry = 0o, and we have a correction w € A® for any aw < 1/2. Hence again 0(vp—w) = w
and vy — w € A? because 8 < 1/2 and we choose of course o = 3. W

3.4 Case of (p,q) forms by use of Demailly-Laurent’s estimates.

We can also remove the fact that w must have compact support when r > 2 by using a theorem
of Demailly-Laurent( [4], Remarque 4, page 596) but the price to paid here is that the manifold has
to be equipped with a metric with null curvature, in order to avoid parasitic terms.

The proof is identical to the previous one and we get

Theorem 3.11 Let Q) be a smoothly bounded relatively compact spc domain in the Stein manifold
X equipped with a metric with null curvature.
e If1<r<2n+1)andwe L] )(Q), Ow = 0. Then there is a (p,q — 1) current u such that

(g
s 1 1
du=w and u € L, , 1)(€2), ”7:L”s < C”WHL;M)(Q) with s 1 2n+1)

o Ifr=2(n+1) andw € Ly, (?), dw = 0. Then for any s < oo there is a (p,q — 1) current
u such that

ou=w andu € L, , 11(Q), [ull, < CHWHL&)’Q)(Q)'
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