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Summary. This paper deals with typical questions arising in the analysis of nu-
merical approximations for scalar conservation laws with a source term. We fo-
cus our attention on semi-discrete finite volume schemes, in the general case of a
nonuniform spatial mesh. To define appropriate discretizations of the source term,
we introduce the formalism peculiar to the Upwind Interface Source method and we
establish conditions on the numerical functions so that the discrete solver preserves
the steady state solutions. Then we formulate a rigorous definition of consistency,
adapted to the class of well-balanced schemes, for which we are able to prove a
Lax-Wendroff type convergence theorem. Some examples of numerical methods are
discussed, in order to validate the arguments we propose.
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1 Introduction

We consider a scalar conservation law with a source term, in one space
dimension,

∂u

∂t
+
∂A(u)

∂x
+B(x, u) = 0, t ∈ R+, x ∈ R, (1)

with u(t, x) ∈ R and a real-valued flux function A, associated with a Cauchy
problem by introducing the initial condition

u(0, x) = u0(x) ∈ L1(R) ∩ L∞(R). (2)

We set
a(u) = A′(u) ∈ C1(R) (3)

and we restrict our analysis to a particular form of source term,

B(x, u) = z′(x)b(u), z′ ∈ L1(R), b ∈ C1(R). (4)

This is suggested by the usual application of hyperbolic conservation laws
as simple mathematical models in continuum mechanics: in the Saint-Venant
system for shallow waters, for instance, z(x) describes the bottom topography.
The equation (1) is endowed with the family of entropy inequalities

∂S(u)

∂t
+
∂η(u)

∂x
+ S′(u)B(x, u) ≤ 0, η′(u) = S′(u)a(u), (5)
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for any pair of a convex entropy function S and the corresponding entropy
flux η (see [21] and [24]). Under stronger assumptions on the source term,
Kružkov proved in [21] existence and uniqueness of the entropy solution for
the initial value problem (1)-(2), in the functional space L∞([0, T );L1(R)),
for all T ∈ R+. Many results concerning the convergence of numerical ap-
proximations for the entropy solution of hyperbolic conservation laws are
inspired by this fundamental theory.
In the case of singular source terms (i.e. the function z(x) is discontinuous),
a remarkable uniqueness result has recently been proved by Vasseur [31].

The presence of source terms modifies the analytical properties of the
equation (1), in comparison with the homogeneous case. More specifically, a
fundamental change is the occurrence of other kinds of steady state solutions,
resulting from the balance between source terms and internal forces, given
by the formula

D(u) + z(x) = Cst, D′(u) =
a(u)

b(u)
. (6)

This fact also influences the numerical approach to the problem, as it was
pointed out by several authors (refer to [15] and [27]), in order to investigate
discrete approximations preserving the properties of the continuous system.

A well-known difficulty encountered in the numerical treatment of hy-
perbolic conservation laws with a source term relates to the approximation
of such a source term, to assure that the scheme preserves the steady state
solutions at discrete level.
Initially for scalar problems, Greenberg, LeRoux and others introduced the
notion of well-balanced schemes (see [15],[16] for details). This definition has
been further developed by Gosse and LeRoux [11], which used a reformu-
lation of the source terms by means of non-conservative products to derive
numerical fluxes at the interfaces of an unstructured mesh. A recent approach
by LeVêque [27] is based on the Godunov scheme extended for an appropri-
ately modified system. Botchorishvili, Perthame and Vasseur present in [2]
a kinetic scheme, that maintains steady states and which is proved to con-
verge when stiff source terms are considered. Using interfacial values, instead
of the cell-averages, for the source term, Jin proposes in [17] a rather sim-
ple method for capturing steady state solutions with a high order accuracy.
Previous schemes have also been modified for this target by Bermudez and
Vasquez [1] and some different approaches are developed in [22],[23] and [18].
Quite recently, these kinds of numerical processing have been extended to
hyperbolic systems of balance laws (like the Saint-Venant system for shallow
waters), to obtain stable schemes which preserve the steady states (see [8],
[13],[14] and [28], for instance). In particular, one of the main conclusions in
[28] is that, while preserving steady states, well-balanced schemes can also
enjoy stability under the usual CFL condition (independent of z′).

The aim of this paper is to present a general consistency condition for
discrete approximations of equation (1). In fact, to analyze theoretical prop-
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erties of numerical solvers for a conservation law with a source term, the only
classical condition on the flux function is not enough and specific definitions
for the discrete source term are required.

The outline of the paper is the following. In Section 2, we illustrate the
Upwind Interface Source method, which consists in upwinding source terms
at the interfaces of the mesh cells, as usual for the fluxes according to the
finite volume formalism. Then, in Section 3, we consider discretizations which
preserve steady state solutions (well-balanced schemes) and we review several
classical methods to build such schemes. The question of consistency is ad-
dressed in Section 4 and we show that well-balanced schemes are consistent
in the sense we have established. By using these arguments, in Section 5, we
finally prove an extension of the Lax-Wendroff theorem.

2 Upwind Interface Source method

The finite volume method is possible for treating numerically hyperbolic
systems of conservation laws, it is robust and presents the advantage to be
conservative (we refer to [6] for a survey of its properties). We look at the
semi-discrete scheme, called method of lines, where only a space discretization
of equation (1) is performed.

We consider a mesh of R made up of cells Ci, with center xi, i ∈ Z, and
nonuniform length ∆xi. We denote by xi+ 1

2
the cell interfaces, so that the

control volume can be identified as Ci = [xi− 1
2
, xi+ 1

2
) and xi =

x
i−

1
2

+x
i+1

2

2 .

Then, we construct a piecewise constant representation of the function z(x)
on the mesh, whose coefficients are zi =

1
∆xi

∫

Ci

z(x) dx for example.

✲s

xi−1
s

xi
s

xi+1

xi− 1
2

xi+ 1
2

zi
zi+1

In this context, the discrete unknowns are expected to be approximations
of the mean values of u on the mesh cells (the conservative quantities are cell
centered),

ui(t) ≈
1

∆xi

∫

Ci

u(t, x) dx, t ∈ R+, i ∈ Z,

while the numerical fluxes are defined at the interfaces of the mesh.
To correctly treat the source term is more difficult than it seems and cen-

tered schemes give unsatisfactory results, as it is well reported in the litera-
ture: a direct discretization of the source term by cell-averages, for instance,
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can not preserve the steady state solutions. A better approach is based on
the Upwind Interface Source method (upwinding of external terms was origi-
nally formulated by Roe [29]), where the source term is also upwinded at the
interfaces.

The general finite volume scheme for equation (1) can thus be written in
the following explicit form,

∆xi
dui
dt

+ (Ai+ 1
2
−Ai− 1

2
) + B+

i− 1
2

+ B−

i+ 1
2

= 0, (7)

dropping the time dependence of the numerical functions for simplicity.
We proceed to explain the notation in the previous formula. We first introduce
the discrete fluxes

Ai+ 1
2
= A(ui, ui+1), A ∈ C1, (8)

where the numerical function A is chosen as a consistent approximation of
the analytical flux,

A(u, u) = A(u). (9)

Because of the choice of particular source terms (4), the function z(x) is
defined up to a constant. Therefore, without loss of generality, we suppose
the source term is discretized at the cell interfaces by means of functions

B±

i+ 1
2

= B±(ui, ui+1, zi+1 − zi), B± ∈ C2, (10)

and, in view of (4), it is natural to impose

B+(u, v, 0) = B−(u, v, 0) = 0. (11)

The last condition refers to the interpretation of the numerical solver (7),
applied to the model (1)-(4). According to the finite volume formalism, we
can identify

B+
i− 1

2

+ B−

i+ 1
2

≈

∫

Ci

z′(x)b(u)dx; (12)

formally, this leads to deduce

B−

i+ 1
2

+ B+
i+ 1

2

≈

∫ x
i+1

2

xi

z′(x)b(u)dx+

∫ xi+1

x
i+1

2

z′(x)b(u)dx, (13)

that is a way to perform an interfacial approximation of zero order terms.
Such a discretization is also upwinded, in the sense that B−

i+ 1
2

represents the

contribution of the waves coming from the left of the interface xi+ 1
2
and

moving towards the cell Ci if they have a nonpositive velocity, while B+
i+ 1

2

represents the waves moving forwards from the right of xi+ 1
2
and counted

only if they have nonnegative velocity. Notice that, when the problem be-
comes homogeneous (for example, z′(x) = 0 in equation (4), motivated by
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the analogy with the Saint-Venant model), this scheme reduces to the usual
finite volume approximation for a scalar conservation law.

We observe that all what is stated in this section and in the following is
also valid for a fully explicit scheme (obtained, for instance, using a standard
forward Euler method for the time discretization),

∆xi
∆t

(un+1
i − uni ) + (An

i+ 1
2

−An
i− 1

2

) + Bn,+
i− 1

2

+ Bn,−
i+ 1

2

= 0,

where we introduce a time-step ∆t and set tn = n∆t, n ∈ N. We then have
to consider an additional restriction on the size of the ratio ∆t

∆xi

, the usual
CFL condition, to guarantee numerical stability.

3 Well-balanced schemes

We define general conditions on the discretizations B±

i+ 1
2

so that the nu-

merical scheme (7) preserves the steady state solutions. Note that all the
methods developed in the references mentioned above are compatible with
the formalism introduced in Section 2 and can be put in form (7), as we will
do later for some particular cases.

By integrating the stationary equation associated with (1)-(4), we obtain
the algebraic relation (6) for smooth steady state solutions. A discrete version
is given by

D(ui) + zi = Cst, ∀ i ∈ Z. (14)

We consider appropriate hypotheses on D, to ensure the existence of a unique
Lipschitz continuous solution of that problem, namely that D is strictly
monotonic. This assumption is restrictive and not always satisfied in real-
istic situations, but it is usually made (refer to [2], for instance).
For all initial data defined according to (14), a solver preserving steady states
has to verify

(Ai+ 1
2
−Ai− 1

2
) + B+

i− 1
2

+ B−

i+ 1
2

= 0.

This last statement can be formulated in terms of numerical functions, thanks
to definition (8) and (10), so that it writes

A(ui, ui+1)−A(ui−1, ui) + B+(ui−1, ui, zi − zi−1)

+ B−(ui, ui+1, zi+1 − zi) = 0,

for all ui−1, ui, ui+1, such that D(uj) + zj = H, j = i − 1, i, i + 1. In par-
ticular, we choose alternatively ui−1 = ui and ui = ui+1 (then we deduce,
respectively, zi−1 = zi and zi = zi+1), to obtain equivalent conditions at the
interfaces, also exploiting properties (9) and (11),

A(ui, ui+1)−A(ui) + B−(ui, ui+1, zi+1 − zi) = 0,

A(ui+1)−A(ui, ui+1) + B+(ui, ui+1, zi+1 − zi) = 0.

We summarize the previous statements in the following proposition.
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Lemma 1. A numerical scheme in form (7)-(11) is well-balanced, i.e. it pre-
serves the steady state solutions (14), if and only if the equalities

A(u, v)−A(u) + B−(u, v, z+ − z−) = 0, (15)

A(v)−A(u, v) + B+(u, v, z+ − z−) = 0, (16)

hold true, for all u, v, z−, z+ such that

D(u) + z− = D(v) + z+. (17)

We call well-balanced or Steady State Preserving schemes the numerical
solvers for the problem (1)-(2) which satisfy those conditions.

We present some numerical schemes to which Lemma 1 applies. We check
these approaches enable to preserve the discrete steady state solutions, ac-
cording to the result stated above.
B.P.V. method In [2], the authors introduce their solver in a compact
form, taking into account the source term directly in the definition of the
numerical fluxes,

∆xi
dui
dt

+ (A−

i+ 1
2

−A+
i− 1

2

) = 0, (18)

with
A−

i+ 1
2

= A(ui, u
−

i+1), A+
i− 1

2

= A(u+i−1, ui). (19)

The numerical flux used in [2] is given by a standard Engquist-Osher function,
but one readily finds out that similar methods can be formulated with any
consistent flux function A. The points u−i+1 and u+i−1 are defined by means
of the relations

D(u−i+1) + zi = D(ui+1) + zi+1, (20)

D(u+i−1) + zi = D(ui−1) + zi−1. (21)

To reproduce this scheme in form (7), we identify

B+
i− 1

2

= A(ui−1, ui)−A(u+i−1, ui), B−

i+ 1
2

= A(ui, u
−

i+1)−A(ui, ui+1).

For a steady state, we immediately deduce from (14), (20) and (21) that

u−i+1 = ui, u+i−1 = ui,

then resulting in the conditions (15) and (16).
This method extends to more general classes of function D, such as quadratic
functions, and it also applies to hyperbolic systems of conservation laws en-
dowed with a kinetic interpretation (see [28]).
We remark that, combined with specific approximate Riemann solvers, the
algorithm (18)-(19) can be interpreted as the well-balanced scheme derived
by Greenberg and LeRoux [15] or by Gosse and LeRoux [11], for which the
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condition (15)-(17) is verified.
The quasi-steady wave-propagation algorithm The basic idea of the
method developed by LeVêque [27] is to introduce a new Riemann problem
in the center of each mesh cell, with values u−i on the left half of the cell
and u+i on the right half, whose flux difference exactly cancels the effect of
the source term. These artificial states are defined so that the cell-average is
preserved,

u−i = ui − δi, u+i = ui + δi,
1

2
(u−i + u+i ) = ui; (22)

moreover, if δi is chosen according to the in-cell balance condition

A(u+i )−A(u−i ) + z′ib(ui)∆xi = 0, (23)

then the jumps occurring at the cell interfaces will correspond to perturba-
tions from the steady states. Note that (23) represents a discrete version of
the stationary problem associated with equation (1). The explicit formula for
the scheme thus obtained looks like the classical Godunov solver,

∆xi
dui
dt

+
(

∆+A(u+i−1, u
−

i ) +∆−A(u+i , u
−

i+1)
)

= 0,

with

∆+A(u+i−1, u
−

i ) = A(u−i )−A(u∗
i− 1

2

), (24)

∆−A(u+i , u
−

i+1) = A(u∗
i+ 1

2

)−A(u+i ), (25)

where u∗
i+ 1

2

now denotes the solution to the modified Riemann problem at

the cell interfaces, between values u+i and u−i+1. If the solution we are looking

for is quasi-steady then we deduce from (22) and (23) that u+i ≈ u−i+1, as δi
tends to 0, so that the steady states are asymptotically preserved.
As for previous examples, this method can extend to any consistent numerical
flux function A, by rewriting the flux differences (24)-(25) in the more general
form

∆+A(u+i−1, u
−

i ) = A(u−i )−A(u+i−1, u
−

i ),

∆−A(u+i , u
−

i+1) = A(u+i , u
−

i+1)−A(u+i ).

Jin’s formulas A simple scheme for handling hyperbolic systems of conser-
vation laws with source terms is proposed in [17], which preserves the steady
state solutions exactly at the cell interfaces. For methods based on generalized
Riemann solvers, it takes form (7) and the source term is discretized by

B+
i− 1

2

+ B−

i+ 1
2

=
Ai+ 1

2
−Ai− 1

2

Di+ 1
2
−Di− 1

2

(zi+ 1
2
− zi− 1

2
), (26)
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using interface values Ai+ 1
2
= A(ui+ 1

2
) and Di+ 1

2
= D(ui+ 1

2
), rather than

the cell-averages. Consequently, if one gets a steady state at the interfaces,

Di+ 1
2
+ zi+ 1

2
= Cst, ∀i ∈ Z,

a direct computation leads to verify that it is preserved, as we have

(Ai+ 1
2
−Ai− 1

2
) +

Ai+ 1
2
−Ai− 1

2

Di+ 1
2
−Di− 1

2

(zi+ 1
2
− zi− 1

2
) = 0.

A more generic scheme, again proposed in [17], is defined by

∆xi
dui
dt

+ (Ai+ 1
2
−Ai− 1

2
) +

bi− 1
2
+ bi+ 1

2

2
(zi+ 1

2
− zi− 1

2
) = 0. (27)

Although it is not possible to derive an explicit expression of D for a gen-
eral flux function A, some applications considered by the author (shallow
water equations, for instance) show this method yields formally second or-
der approximations to the steady states at the interfaces, as suggested by an
asymptotic expansion of (27).
The numerical discretizations formulated by Jin are called Steady State Cap-
turing schemes, that is a weaker definition since only the interface values are
preserved. According to the idea to process the source term by making use ex-
plicitly of relations on the steady states, a Steady State Preserving variation
of (26), which agrees with the general formalism (7)-(10), is given by

B+
i− 1

2

=
A(ui−1, ui)−A(ui)

D(ui−1)−D(ui)
(zi − zi−1),

B−

i+ 1
2

=
A(ui, ui+1)−A(ui)

D(ui+1)−D(ui)
(zi+1 − zi).

Again we can readily check the condition (15)-(17) for this method.

4 Consistency

In order to investigate theoretical properties of the Upwind Interface
Source method, a crucial question to discuss is that equation (7) verifies
the consistency with the continuous equation (1)-(4).

We indicate a rigorous definition of consistency, which also results to be
satisfied by well-balanced schemes.

Definition 1. A numerical scheme in form (7)-(11) is said to be consistent
with (1) if the following limit is verified, locally uniformly in u,

lim
λ→ 0

B+(u, u, λ) + B−(u, u, λ)

λ
= b(u). (28)
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We point out that the above definition of consistency for the source term, in
finite volume sense, does not imply that the consistency error vanishes just as
for the flux terms. Indeed, because of the choice of an arbitrary nonuniform
spatial mesh, the space-step ∆xi could be very different from the length of
an interfacial interval ∆xi+ 1

2
= |xi+1−xi| = ∆xi/2+∆xi+1/2; therefore, the

corresponding interfacial discretizations (12) and (13) may have very different
values. The condition (28) we have established is closer to (13), which is the
most appropriate interpretation of the discrete source term for the general
method illustrated in this paper.

As it will be seen clearly in next section, consistency plays an important
role to achieve convergence properties of a numerical solver, in particular to
prove that the strong limit of discrete approximations (as the mesh is refined)
is the suitable weak solution of the continuous problem.

The following result guarantees consistency for the numerical schemes
described in Section 3.

Lemma 2. We assume D is monotonic. Let a numerical solver for the system
(1)-(4) satisfy the conditions (15)-(17) in Lemma 1, then the property (28) is
verified. In other words, all Steady State Preserving schemes are consistent.

Proof. We perform a Taylor expansion of the relation (17) and we deduce
that, for some ξ ∈ (u, v),

D′(ξ)(u− v) = z+ − z−. (29)

After adding equality (15) to (16), thanks to the definition (3) and (6), this
leads to

B+(u, v, z+ − z−) + B−(u, v, z+ − z−) = A(u)−A(v)

=
a(ζ)

D′(ξ)
(z+ − z−),

(30)

for some ζ ∈ (u, v). We also note that the regularity assumed for the numerical
functions enables to perform the general approximations

B±(u, v, z+ − z−) = B±(u, u, z+ − z−)

+
∂

∂v
B±(u, u, z+ − z−)(v − u) +O(|v − u|2).

It thus follows from (11) that

∂

∂v
B+(u, u, 0) =

∂

∂v
B−(u, u, 0) = 0

and, in view of (29), we obtain that

lim
z+ − z− → 0

B+(u, u, z+ − z−) + B−(u, u, z+ − z−)

z+ − z−

= lim
z+ − z− → 0

B+(u, v, z+ − z−) + B−(u, v, z+ − z−)

z+ − z−
.

(31)
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By combining relation (30) with (31), since

a(ζ)

D′(ξ)
−→

a(u)

D′(u)
= b(u),

we finally conclude that the property (28) is satisfied.

5 A Lax-Wendroff type convergence theorem

We are now interested in the convergence of the numerical scheme (7), as
the mesh size tends to zero, by analyzing the convergence properties of its
solution {ui(t)}i∈Z.
A discretization of the initial condition is given, for instance, by the sequence

u0i =
1

|Ci|

∫

Ci

u0(x)dx, i ∈ Z.

As a measure of mesh refinement, we consider the parameter

h = sup
i∈Z

∆xi.

For our purpose, we introduce the piecewise constant function uh, defined
a.e. in R+×R by

uh(t, x) =
∑

i∈Z

ui(t)ICi
(x), (32)

and we study the convergence towards a solution to the problem (1)-(2), as
h tends to 0.

Theorem 1. Assume z ∈W 1,1 for the source term (4). Let uh be obtained
from a numerical scheme in form (7)-(11), which satisfies the consistency
condition (28). Suppose there exists a constant C such that, uniformly in h,

||uh||L∞

loc
(R+×R) ≤ C (33)

and that uh converges to a function u in L1
loc(R+×R), as h tends to 0.

Moreover, we assume either that, for all bounded intervals I of R,
∑

i∈K

∆xi+ 1
2
|ui+1(t)− ui(t)|

h→0
−→ 0, in L1

loc(R+), (34)

where K denotes the set of indices such that xi∈I; or a geometrical constraint
on the spatial mesh, that is

∃ α, β > 0 so that α∆xi+1 ≤ ∆xi ≤ β∆xi+1, ∀i ∈ Z. (35)

Then u is a weak solution to the initial value problem (1)-(2), i.e.

∂u

∂t
+
∂A(u)

∂x
+ z′(x)b(u) = 0, u(0, x) = u0(x), in D′(R+×R).
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Proof. The proof is an adaptation of the classical Lax-Wendroff theorem [25]
for homogeneous systems of conservation laws.
Let ϕ ∈ C1

0(R+×R) be a test function and set

ϕi(t) = ϕ(t, xi), i ∈ Z. (36)

After multiplying equation (7) by ϕi, we sum over i and integrate in dt, to
obtain

∫

R+

∑

i∈Z

∆xi
dui
dt
ϕidt+

∫

R+

∑

i∈Z

(

Ai+ 1
2
−Ai− 1

2

)

ϕidt

+

∫

R+

∑

i∈Z

(

B+
i− 1

2

+ B−

i+ 1
2

)

ϕidt = 0.

An integration by parts in the first term and a summation by parts in the
other ones give

∫

R+

∑

i∈Z

∆xiui
dϕi
dt

dt+

∫

R+

∑

i∈Z

Ai+ 1
2
(ϕi+1 − ϕi)dt

−

∫

R+

∑

i∈Z

(

B+
i+ 1

2

ϕi+1 + B−

i+ 1
2

ϕi

)

dt+
∑

i∈Z

∆xiu
0
iϕi(0) = 0.

(37)

We define a.e. in R+×R the piecewise constant functions Ah and Bh, associ-
ated with the numerical flux and source term by

Ah(t, x) = A(ui, ui+1), (38)

Bh(t, x) =
1

∆xi+ 1
2

(

B+(ui, ui+1, zi+1 − zi) + B−(ui, ui+1, zi+1 − zi)
)

, (39)

for t∈R+ and x∈ [xi, xi+1), recalling that∆xi+ 1
2
= |xi+1−xi| =

∆xi

2 +∆xi+1

2 .

Next, according to (36), we introduce the piecewise constant approximation
of the test function

ϕh(t, x) = ϕi(t), t ∈ R+, x ∈ Ci,

which converges to ϕ (together with ∂ϕh

∂t
towards ∂ϕ

∂t
) uniformly in C0(R+×R),

as h tends to 0. We also consider a continuous piecewise linear function ψh
such that

ψh(t, xi) = ϕi(t), i ∈ Z,

∂ψh
∂x

(t, x) =
ϕi+1(t)− ϕi(t)

∆xi+ 1
2

, t ∈ R+, x ∈ [xi, xi+1),

so that ψh and ∂ψh

∂x
converge respectively to ϕ and ∂ϕ

∂x
in C1

0(R+ × R), as h
tends to 0. As a direct consequence of these definitions, we have
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ϕj =
ϕi + ϕi+1

2
+O(h), j = i, i+ 1,

∫ xi+1

xi

ψh(t, x)dx =
ϕi + ϕi+1

2
∆xi+ 1

2
.

Taking into account all the relations stated above, we can put the discrete
sum (37) into the integral form

∫

R+

∫

R

uh(t, x)
∂ϕh
∂t

(t, x)dxdt+

∫

R+

∫

R

Ah(t, x)
∂ψh
∂x

(t, x)dxdt

−

∫

R+

∫

R

Bh(t, x) (ψh(t, x) +O(h)) dxdt+

∫

R

u0h(x)ϕh(0, x)dx = 0.

(40)

As h tends to 0, passing to the limit in (40), we claim that it turns out

∫

R+

∫

R

[

u(t, x)
∂ϕ

∂t
(t, x) +A(t, x)

∂ϕ

∂x
(t, x)−B(t, x)ϕ(t, x)

]

dxdt

+

∫

R

u0(x)ϕ(0, x)dx = 0.

(41)

The computation is obvious for the first and the last terms, by exploiting the
convergence properties of approximations uh and ϕh.
For the other integrals of (40), the process is less straightforward: as we
remarked in Section 4, due to the presence of a variable space-step, the inter-
facial interval [xi, xi+1) could be really different from the mesh cell Ci (where
the conservative unknowns are discretized); so, standard techniques do not
work in this case and proving convergence requires the additional hypotheses
on the structures that we have imposed.

✲s

xi−1
s

xi
s

xi+1

xi− 1
2

xi+ 1
2

ui
ui+1

We need to characterize the functions A(t, x) and B(t, x) in equation (41)
as the weak limits of Ah(t, x) and Bh(t, x), for reproducing them in terms of
the numerical unknowns.
We first observe that, thanks to (33) and the properties (8)-(9) of the nu-
merical flux, Ah is locally bounded on R+×R (uniformly in h). Coming back
to discrete notation (38), we decompose on the subintervals [xi, xi+ 1

2
) and

[xi+ 1
2
, xi+1), rearranging terms as follows,
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Ah(t, x) =
∑

i∈Z

A(ui)I[x
i−

1
2

,x
i+1

2

)(x)

+
∑

i∈Z

[A(ui, ui+1)−A(ui)] I[xi,xi+1
2

)(x)

+
∑

i∈Z

[A(ui−1, ui)−A(ui)] I[x
i−

1
2

,xi)(x)

= A(uh(t, x)) +R+
h (t, x) +R−

h (t, x).

(42)

We conclude that A(u(t, x)) is the expected value for the limit A(t, x), as h
tends to 0, provided that the two remainders in (42) vanish. We only treat
with R+

h , the other one results in the same way. According to definition (32),
since uh converges to a function u in L1

loc(R+×R), we also derive

∑

i∈Z

|ui(t)− ūi(t)|ICi
(x) −→

L1
loc

(R+×R)
0, (43)

where the sequence {ūi(t)}i∈Z is defined by the cell-averages of u on the
discretization mesh. Let I be any bounded interval of R and we denote by
CA a Lipschitz constant for A, then the assumptions on the numerical flux
lead to estimate (with the notation set out above in the theorem)

∫

I

∣

∣R+
h (t, x)

∣

∣ dx ≤

∫

I

∑

i∈Z

|A(ui, ui+1)−A(ui)| I[xi,xi+1
2

)(x) dx

≤ CA

∑

i∈K

∆xi
2

|ui+1 − ui|.

(44)

Under the hypothesis (34), this last term vanishes and the conclusion is done.
Otherwise, we can further manipulate the previous bound by introducing
appropriate quantities, that is

∑

i∈K

∆xi|ui+1 − ui| ≤
∑

i∈K

∆xi|ui+1 − ūi+1|

+
∑

i∈K

∆xi|ūi+1 − ūi|+
∑

i∈K

∆xi|ūi − ui|.
(45)

In particular, for the alternative hypothesis of nondegeneracy (35) made on
the mesh, we have

∑

i∈K

∆xi|ui+1 − ūi+1| ≤ β
∑

i∈K

∆xi+1|ui+1 − ūi+1|,

so that property (43) ensures that first and last sum in the right-hand side
of (45) vanish, as h tends to 0. It remains the second term to be studied,
involving only the function u, which immediately converges to 0 if u ∈BV
(or smooth enough); this result also holds for u ∈ L1, by applying standard
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regularization arguments (we define uǫ∈BV , uǫ→u in L1, then we perform
an estimation on the cell-averages ūi and ū

ǫ
i like in (45) and we finally con-

clude by combining convergence properties).
We now pass to the source term, to which a similar procedure applies. Taking
into account the definition (39), setting B = B++B−, we can write

Bh(t, x) =
∑

i∈Z

B(ui, ui+1, zi+1 − zi)

zi+1 − zi
·
zi+1 − zi
∆xi+ 1

2

I[xi,xi+1)(x).

Notice that the hypothesis z∈W 1,1 guarantees that discrete differences con-
verge to the derivative z′ ∈ L1; together with condition (28), this leads to
justify the assertion that Bh(t, x) is L

1 − weak bounded in R+×R. We pro-
ceed as in (42), by performing the following decomposition

Bh(t, x) =
∑

i∈Z

B(ui, ui, zi+1 − zi)

zi+1 − zi
·
zi+1 − zi
∆xi+ 1

2

I[xi,xi+1
2

)(x) + E+
h (t, x)

+
∑

i∈Z

B(ui, ui, zi − zi−1)

zi − zi−1
·
zi − zi−1

∆xi− 1
2

I[x
i−

1
2

,xi)(x) + E−

h (t, x).

(46)

The sum of the two principal terms of (46) converges to z′(x)b(u), in view of
the arguments just mentioned and the strong convergence of uh towards u,
by means of Lebesgue’s theorem. For the remainders, we give details in the
case of E+

h (t, x), for instance. We then have

E+
h (t, x) =

∑

i∈Z

1

∆xi+ 1
2

(B(ui, ui+1, zi+1 − zi)

−B(ui, ui, zi+1 − zi)) I[xi,xi+1
2

)(x).

(47)

The analogue of estimation (44) for (47) becomes

∫

I

|E+
h (t, x)|dx ≤

∑

i∈K

|B(ui, ui+1, zi+1 − zi)− B(ui, ui, zi+1 − zi)|

=
∑

i∈K

∣

∣

∣

∣

∫ ui+1

ui

∂B

∂v
(ui, v, zi+1 − zi)dv

∣

∣

∣

∣

=
∑

i∈K

∣

∣

∣

∣

∫ ui+1

ui

(

∂B

∂v
(ui, v, zi+1 − zi)−

∂B

∂v
(ui, v, 0)

)

dv

∣

∣

∣

∣

≤ CB

∑

i∈K

|ui+1 − ui||zi+1 − zi|,

where we exploited property (11) and the regularity assumed in (10). Then
we can regularize the function z by introducing zǫ ∈W 1,∞, zǫ→ z in W 1,1,
for which we write
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∑

i∈K

|ui+1 − ui||zi+1 − zi| ≤
∑

i∈K

|ui+1 − ui||zi+1 − zǫi+1|

+
∑

i∈K

|ui+1 − ui||z
ǫ
i − zi|+

∑

i∈K

|ui+1 − ui||z
ǫ
i+1 − zǫi |

≤ 4C
∑

i∈K

|zǫi − zi|+ Cǫ
∑

i∈K

∆xi+ 1
2
|ui+1 − ui|,

(48)

with C defined as in (33) and Cǫ only depending on the regularization. The
same procedure we have considered before allow us to conclude that the upper
bound (48) vanishes, as h tends to 0.
Thanks to the previous computations, we have proved that the limit function
u satisfies the weak formulation of the Cauchy problem (1)-(2),

∫

R+

∫

R

[

u(t, x)
∂ϕ

∂t
(t, x) +A(u(t, x))

∂ϕ

∂x
(t, x)− z′(x)b(u(t, x))ϕ(t, x)

]

dx dt +

+

∫

R

u0(x)ϕ(0, x)dx = 0,

so that the proof of the theorem is completed.

Remark. For the particular case of uniform spatial mesh, i.e. ∆xi = h,
∀i ∈ Z, sets of weaker hypotheses can be considered and the proof is simplified,
due to the fact that the consistency error vanishes for the source term (refer
to [9] and [26]). The version presented above is compatible with those general
statements (see also [10]) and actually extends the classical Lax-Wendroff
theorem to scalar conservation laws with a source term.

6 Conclusion and remarks

We have proposed a consistency condition for hyperbolic conservation laws
with a source term z′(x)b(u), discretized according to the Upwind Interface
Source method. We have proved that numerical schemes which preserve the
steady state solutions are consistent in that sense. Moreover, a strong limit
of discrete solutions satisfies the continuous equation, as the mesh is refined.
Theorem 1 thus constitutes a fundamental result in the theoretical analysis
of the numerical method.

Nevertheless, the conditions established in the previous sections do not
guarantee that discrete approximations given by (7)-(11) do converge and we
do not know whether the limit weak solution is the unique physical solution
of the Cauchy problem (1)-(4). For that we need to precise some criteria
of stability for the approximate solution and we have to consider further
assumptions on the discrete functions to derive suitable error estimates.
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In order to ensure that a weak solution obtained as limit of (32) satis-
fies the family of entropy inequalities (5), it suffices to show that a discrete
entropy inequality,

∆xi
d

dt
S(ui) +

(

ηS
i+ 1

2

− ηS
i− 1

2

)

+ BS,+
i− 1

2

+ BS,−
i+ 1

2

≤ 0, (49)

holds for the numerical scheme, with the usual formalism

ηS
i+ 1

2

= ηS(ui, ui+1), BS,±
i+ 1

2

= BS,±(ui, ui+1, zi+1 − zi), (50)

where ηS and BS,± are some numerical entropy flux function and source term,
which must be consistent with η(u) and S′(u)B(x, u) in the same way that
we required A and B± to be consistent with A(u) and B(x, u) in (1). There-
fore, mimicking the proof of the Lax-Wendroff theorem, we can prove that
the weak form of the entropy inequality (5) is also verified.
Note that the possibility to write formulas (49)-(50) relies only on the char-
acterization of the numerical flux (namely, at least the condition of E-scheme
has to be assumed); for the source term, the definition is automatically made,
since we have

BS,+
i− 1

2

= S′(ui)B
+
i− 1

2

, BS,−
i+ 1

2

= S′(ui)B
−

i+ 1
2

.

The question to determine the order of accuracy of the numerical scheme
by means of error estimates is more delicate than for the homogeneous system,
due to the presence of source terms. The approach formulated by Kruzkov
is used henceforth in the literature (see [11],[12] and [19],[20] for instance),
providing a method to convert any discrete entropy inequality into an error
estimate. The general procedure consists in the following formulation for the
approximate solution, in D′(R+ × R),

∂S(uh)

∂t
+

∂

∂x
ηS(uh) + S′(uh)z

′(x)b(uh) ≤
∂

∂x
Err2(t, x) + Err1(t, x),

where we set

∂

∂x
Err1(t, x) =

∂

∂x
ηS(uh)−

∑

i∈Z

1

∆xi

(

ηS
i+ 1

2

− ηS
i− 1

2

)

ICi
(x),

Err2(t, x) = S′(uh)z
′(x)b(uh)−

∑

i∈Z

1

∆xi

(

BS,+
i− 1

2

+ BS,−
i+ 1

2

)

ICi
(x).

Then the results of [3] apply to this particular problem, to deduce stability
bounds and conclude the convergence properties we have assumed in Theo-
rem 1. We remark that regularity hypotheses like (34) and (35) are necessary
to control the variations of the numerical solution in comparison with the
space-step (refer to [30] for the homogeneous problem).
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In order to avoid BV estimates, which are not available in case of insufficiently
smooth source terms and for multidimensional systems on an unstructured
mesh, arguments based on the measure-valued method and the so-called weak
BV estimates are developed (see [7] and [4],[5], for instance) or the kinetic
approach presented in [2].
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