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EQUIDISTRIBUTION TOWARDS THE BIFURCATION CURRENT I: MULTIPLIERS AND DEGREE d POLYNOMIALS by

In the moduli space P d of degree d polynomials, the set Pern(w) of classes [f ] for which f admits a cycle of exact period n and multiplier multiplier w is known to be an algebraic hypersurface. We prove that, given w ∈ C, these hypersurfaces equidistribute towards the bifurcation current as n tends to infinity.

Introduction

In a holomorphic family (f λ ) λ∈Λ of degree d ≥ 2 rational maps, the bifurcation locus is the closure in the parameter space Λ of the set of discontinuity of the map λ → J λ , where J λ is the Julia set of f λ . The study of the global geography of the parameter space Λ is related to the study of the hypersurfaces Per n (w) := {λ ∈ Λ s.t. f λ has a n-cycle of multiplier w} . In their seminal work [MSS], Mañé, Sad and Sullivan prove that the bifurcation locus is nowhere dense in Λ and coincides with the closure of the set of parameters for which f λ admits a non-persistent neutral cycle (see also [L]). In particular, by Montel's Theorem, this implies that any bifurcation parameter can be approximated by parameters with a super-attracting periodic point, i.e. the bifurcation locus is contained in the closure of the set n≥1 Per n (0). DeMarco proved that, in any holomorphic family, the bifurcation locus can be naturally endowed with a closed positive (1, 1)-current T bif , called the bifurcation current (see e.g. [DeM]). This current may be defined as dd c L where L is the continuous plurisubharmonic function which sends a parameter λ to the Lyapunov exponent L(λ) = P 1 log |f ′ λ | µ λ of f λ with respect to its maximal entropy measure µ λ . The current T bif provides an appropriate tool for studying bifurcations from a measure-theoretic viewpoint. When dim C Λ = κ ≥ 2, it gives rise to a positive measure µ bif := T κ bif = T bif ∧ • • • ∧ T bif called the bifurcation measure which, in a certain way, detects maximal bifurcations that arise in the family (f λ ) λ∈Λ .

It appears that, when we fix w ∈ C, the current T bif is very related to the asymptotic distribution of the hypersurfaces Per n (w), as n → ∞. Indeed, Bassanelli and Berteloot proved that d -n [Per n (w)] -→ n→∞ T bif for a given |w| < 1 in the weak sense of currents, using the fact that the function L is a global potential of T bif in any holomorphic family (see [START_REF] Bassanelli | Lyapunov exponents, bifurcation currents and laminations in bifurcation loci[END_REF]). We refer the reader to the survey [START_REF] Dujardin | Bifurcation currents and equidistribution in parameter space[END_REF] or the lecture notes [B] for a report on recent results involving bifurcation currents and further references.

Let us now focus on the case of the moduli space P d of degree d polynomials with d -1 marked critical points, i.e. the set of affine conjugacy classes of degree d polynomials with d -1 marked critical points. Notice that it, in that family, the bifurcation measure has finite mass and is supported by the Shilov boundary of the connectedness locus:

C d := {[P ] ∈ P d ; J P is connected} ,
which is a compact subset of P d . In the present case, Bassanelli and Berteloot [START_REF] Bassanelli | Distribution of polynomials with cycles of a given multiplier[END_REF] prove that this convergence also holds when |w| = 1. In the present paper, we prove that this actually holds for any w ∈ C. In future works, we shall investigate equidistribution properties of higher codimension algebraic varieties in P d defined by intersections of hypersurfaces Per n (w), or defined by the persistence of critical orbit relations.

Our main result can be stated as follows.

Theorem 1. -Let d ≥ 2 and w ∈ C be any complex number. Then the sequence d -n [Per n (w)] converges in the weak sense of currents to the bifurcation current T bif in the moduli space P d of degree d polynomials with d -1 marked critical points.

Notice that, when d = 2, the moduli space of quadratic polynomials with one marked critical point is isomorphic to the quadratic family (z 2 + c) c∈C and that, in the quadratic family, this result is a particular case of the main Theorem of [BG]. Notice also that for d ≥ 3, up to a finite branched covering, P d is isomorphic to C d-1 .

Let us now sketch the strategy of the proof of Theorem 1 developed in [BG] in the quadratic case and then explain how to adapt it to our situation. It is known that there exists a global potential ϕ n of the current d -n [Per n (w)] that converges, up to taking a subsequence, in L 1 loc to a psh function ϕ ≤ L which satisfies ϕ = L on hyperbolic components (see [START_REF] Bassanelli | Lyapunov exponents, bifurcation currents and laminations in bifurcation loci[END_REF]).

In the quadratic case, the bifurcation locus is the boundary of the Mandelbrot set M ⋐ C and C \ M is a hyperbolic component, hence ϕ = L outside M. First, we explain why the positive measure ∆L of the Mandelbrot set doesn't give mass to the boundary of connected components of the interior of M. Secondly, we establish a comparison lemma for subharmonic function which, in that case, gives ϕ = L and the proof is complete.

To adapt the proof to the situation d ≥ 3, we first establish a generalization of the comparison principle for plurisubharmonic functions. Again, it is known that ϕ = L on the escape locus and we shall use the comparison principle recursively on the number of critical points of bounded orbits in suitable local subvarieties of P d .

Let us mention that the comparison principle we prove may be of independant interest. In contrast to the classical domination Theorem of Bedford and Taylor (see e.g. [BT]), we don't need to be able to compare the Monge-Ampère masses of two psh functions to compare the functions themselves. Precisely, we prove the following which is a generalization in higher dimension of [START_REF] Buff | Quadratic polynomials, multipliers and equidistribution[END_REF]Lemma 3].

Theorem 2 (Comparison principle). -Let X be a complex manifold of dimension k ≥ 1. Assume that there exists a smooth psh function w on X and a strict analytic subset Z of X such that (dd c w) k is a non-degenerate volume form on X \ Z. Let Ω ⊂ X be a domain of X with C 1 boundary and let u, v ∈ PSH(Ω) and K ⋐ Ω be a compact set. Assume that the following assumptions are satisfied:

-v is continuous, supp((dd c v) k ) ⊂ ∂K and (dd c v) k has finite mass, -for any connected component U of K, (dd c v) k (∂U ) = 0, -u ≤ v on Ω and u = v on Ω \ K. Then u = v on Ω.
Our strategy to apply Theorem 2 relies on describing (partially) the currents T k bif in restriction to suitable local analytic subvarieties of the moduli space P d . When 1 ≤ k ≤ d-2, for any parameter λ 0 lying in an open dense subset of P d \C d , we build a local analytic subvariety passing through λ 0 and in restriction to which the bifurcation measure enjoys good properties. The proof relies on techniques developped in the context of horizontal-like maps (see [START_REF] Cuong Dinh | On the dynamics near infinity of some polynomial mappings in C 2[END_REF][START_REF] Dujardin | Cubic polynomials: a measurable view on parameter space[END_REF]). This is the subject of the following result.

Theorem 3. -Pick d ≥ 3. There exists an open dense subset Ω ⊂ P d \ C d such that for any {P } ∈ Ω, if 0 ≤ k ≤ d -2
is the number of critical points of P with bounded orbit, then there exists an analytic set X 0 ⊂ Ω, a complex manifold X of dimension k and a finite holomorphic map π : X → X 0 such that {P } ∈ X 0 and 1. the measure µ X := π * (T k bif | X 0 ) is a compactly supported finite measure on X , 2. for any relatively compact connected component U of the open set X \ supp(µ X ), µ X (∂U ) = 0, 3. if {Q} lies in the non-relatively compact connected component of X \ supp(µ X ), then the degree d polynomial Q has at most k -1 critical points with bounded orbit.

The proof of Theorem 3 is the combination of Theorem 3.2 and Claim of Section 5.2.

The last step of the proof of Theorem 1 consists in applying the comparison Theorem in P d for K = C d . To this aim, we need to prove that the bifurcation measure µ bif does not give mass to the boundary of components of the interior of C d . Building on the description of the bifurcation measure given by Dujardin and Favre [DF] and properties of invariant line fields established by McMullen [Mc], we prove the following. Let us finally explain the organization of the paper. Section 1 is devoted to required preliminaries. In Section 2, we establish our comparison principle for psh functions. In Section 3, we prove a slightly more precise version of Theorem 3. Section 4 is concerned with the proof of Theorem 4. Finally, we give the proof of Theorem 1 in Section 5.

Preliminaries

1.1. A good parametrization of P d , d ≥ 3
Recall that if (f λ ) λ∈Λ is a holomorphic family of polynomials, we say that Λ is with d -1 marked critical points if there exists holomorphic maps c 1 , . . . , c d-1 : Λ → C such that C(f λ ) = {c 1 (λ), . . . , c d-1 (λ)} counted with multiplicity.

It is now classical that the moduli space of degree d polynomials with d -1 marked critical points, i.e. the space of degree d polynomials with d -1 marked critical points modulo affine conjugacy, is a complex orbifold of dimension d -1 which is not smooth when d ≥ 3. Here, we shall use the following parametrization

P c,a (z) := 1 d z d + d-1 j=2 (-1) d-j σ d-j (c) z j j + a d ,
where σ j (c) is the monic symmetric polynomial in (c 1 , . . . , c d-2 ) of degree j. Observe that the critical points of P c,a are exactly c 0 , c 1 , . . . , c d-2 with the convention that c 0 := 0, and that the canonical projection π :

C d-1 -→ P d which maps (c 1 , . . . , c d-2 , a) ∈ C d-1 to the class of P c,a in P d is d(d -1
)-to-one (see [START_REF] Dujardin | Distribution of rational maps with a preperiodic critical point[END_REF]§5]).

Recall that the Green function of P c,a is the subharmonic function defined for z ∈ C by

g c,a (z) := lim n→∞ d -n log max 1, |P n c,a (z)| ,
and that the filled-in Julia set of P c,a is the compact subset of C

K c,a := {z ∈ C | (P n c,a (z)) n≥1 is bounded in C} . Remark that K c,a = {z ∈ C | g c,a (z) = 0}.
Recall also that the chaotic part of the dynamics is supported by the Julia set J c,a = ∂K c,a of P c,a . The function (c, a, z) ∈ C d → g c,a (z) is actually a non-negative plurisubharmonic continuous function on C d . We set

B i := {(c, a) ∈ C d-1 | c i ∈ K c,a } = {(c, a) ∈ C d-1 | g c,a (c i ) = 0}
and

C d := {(c, a) ∈ C d-1 | max 0≤i≤d-2 (g c,a (c i )) = 0} = i B i . It is known that K c,a is connected if and only if (c, a) ∈ C d . Let us finally set H ∞ := P d-1 (C)\C d-1 = {[c : a : 0] ∈ P d-1 (C)} and H i := {[c : a : 0] ∈ H ∞ : P c,a (c i ) = 0} .
We shall use the following which has been established by Basanelli and Berteloot, relying on previous works by Branner and Hubbard [BH] and by Dujardin and Favre [DF] (see [START_REF] Bassanelli | Distribution of polynomials with cycles of a given multiplier[END_REF]Lemma 4.1 & Theorem 4.2]):

Theorem 1.1 (Bassanelli-Berteloot, Branner-Hubbard, Dujardin-Favre) 1. For any 0 ≤ i ≤ d -2, the cluster set of B i in P d-1 (C) coincides with H i , 2. For any 1 ≤ k ≤ d -2 and for any k-tuple

0 ≤ i 1 < • • • < i k ≤ d -2, the cluster set of k j=1 B i j in P d-1 (C), which is exactly k j=1 H i j , is a pure (d -2 -k)-dimensional algebraic variety of H ∞ , 3. The set C d is a compact connected subset of C d-1 .

The bifurcation current

Classically, a parameter (c 0 , a 0 ) ∈ C d-1 is said J -stable if there exists an open neighborhood U ⊂ C d-1 of (c 0 , a 0 ) such that for any (c, a) ∈ U , there exists a homeomorphism ψ c,a : J c 0 ,a 0 → J c,a which conjugates P c 0 ,a 0 to P c,a , i.e. such that

ψ c,a • P c 0 ,a 0 (z) = P c,a • ψ c,a (z), z ∈ J c 0 ,a 0 .
The stability locus S of the family (P c,a ) (c,a)∈C d-1 is the set of J -stable parameters and the bifurcation locus is its complement C d-1 \ S.

Definition 1.2. -We say that the critical point c i is passive at (c 0 , a 0 ) ∈ C d-1 if there exists a neighborhood U ⊂ C d-1 of (c 0 , a 0 ) such that the family {(c, a) → P n c,a (c i )} n≥1 is normal on U . Otherwise, we say that c i is active at (c 0 , a 0 ).

It is known that the activity locus of c i , i.e. the set of (c 0 , a 0 ) ∈ C d-1 such that c i is active at (c 0 , a 0 ), coincides exactly with ∂B i and that the bifurcation locus is exactly i ∂B i (see e.g. [L, MSS, Mc]). We let

T i := dd c g c,a (c i ) .
Recall that the mass of a closed positive (1, 1)-current T on C d-1 is given by

T := C d-1 T ∧ ω d-2 FS = T, ω d-2 FS ,
where ω FS stands for the Fubini-Study form on P d-1 (C) normalized so that ω FS = 1 and that, if T has finite mass, then it extends naturally as a closed positive (1, 1)-current T on P d-1 (C) (see [Dem]). We also let T Ω := T, 1 Ω ω d-2

FS

for any open set Ω ⊂ C d-2 . One can prove the following (see [DeM, DF]).

Lemma 1.3 (Dujardin-Favre). -The support of T i is exactly ∂B i . Moreover, T i has mass 1 and T i ∧ T i = 0.

On the other hand, the measure µ c,a := dd c z g c,a (z) is the maximal entropy measure of P c,a and the Lyapounov exponent of P c,a with respect to µ c,a is given by

L(c, a) := C log |P ′ c,a |µ c,a .
A double integration by part gives

L(c, a) = log d + d-2 i=0 g c,a (c i ).
In particular, the function L : C d-1 → R is plurisubharmonic and continuous and the (1, 1)-current dd c L = i T i is supported by the bifurcation locus.

Definition 1.4. -The bifurcation current is T bif := i T i = dd c L.

1.3. The higher bifurcation currents and the bifurcation measure of P d Bassanelli and Berteloot [BB1] introduce the higher bifurcation currents and the bifurcation measure on C d-1 (and in fact in a much more general context) by setting ) k and µ bif := (dd c L) d-1 . Dujardin and Favre [DF] and Dujardin [Du1] study extensively the mesure µ bif in the present context. For our purpose, we first shall notice that Lemma 1.3 implies that

T k bif := (dd c L
T k bif = k! 0≤i 1 <•••<i k ≤d-2 T i 1 ∧ • • • ∧ T i k (1) is a positive closed (k, k)-current of finite mass. Let us set G(c, a) := max 0≤i≤d-2 (g c,a (c i )) , (c, a) ∈ C d-1
and, for any k-tuple I = (i 1 , . . . , i k ) with 0

≤ i 1 < cdots < i k ≤ d -2 and k ≤ d -2, G I (c, a) := max 1≤j≤k g c,a (c i j ) , (c, a) ∈ C d-1 .
We shall use the following (see [START_REF] Dujardin | Distribution of rational maps with a preperiodic critical point[END_REF]§6]):

Proposition 1.5. -Let 1 ≤ k ≤ d -2 and let I = (i 1 , . . . , i k ) be a k-tuple with 0 ≤ i 1 < • • • < i k ≤ d -2. Then T i 1 ∧ • • • ∧ T i k = (dd c G I ) k . Moreover, µ bif = (d -1)! • (dd c G) d-1 .
One of the crucial points of our proof relies on the following property of the measure µ bif (see [START_REF] Dujardin | Distribution of rational maps with a preperiodic critical point[END_REF]Proposition 7 & Corollary 11]). all cycles of P c,a are repelling, -the orbit of each critical points are dense in J c,a , -K c,a = J c,a is locally connected and dim H (J c,a ) < 2.

Connectedness of the escape locus of a critical piont

We will need the next Lemma in the sequel.

Lemma 1.7. -The open set {(c, a) ∈ C d-1 ; g c,a (c j ) > 0} is connected for 0 ≤ j ≤ d-2. Proof of Lemma 1.7. -If p ∈ H ∞ \ H j , then C d-1
can be foliated by all the complex lines (ℓ t ) t∈A of C d-1 with direction p, where A is a (d -2)-dimensional complex plane which is transverse to the foliation. Let now ℓ be such a line. The choice of p guarantees that ℓ ∩ {g c,a (c j ) = 0} is a compact subset ℓ. In particular, if the set ℓ ∩ {g c,a (c j ) > 0} is not connected, it admits a bounded connected component U . By the maximum principle sup , a) andγ 0 (1) = (c 0 , a 0 ). One can find the same way a continuous path with γ 1 (0) = (c 1 , a 1 ) andγ 1 (1) = (c ′ , a ′ ). Finally, the choice of ( c 0 , a 0 ) and(c 1 , a 1 ) easily gives a continuous path γ 3 : [0, 1] → {g c,a (c j ) > 0} which satisfies γ 3 (0) = (c 0 , a 0 ) andγ 3 (1) = (c 1 , a 1 ). The path andsatisfies γ(0) = (c, a) andγ(1) = (c ′ , a ′ ), which ends the proof.

U |P n c,a (c j )| = sup ∂U |P n c,a (c j )| . Since ∂U is a compact subset of {g c,a (c j ) = 0} ∩ ℓ, the sequence {P n c,a (c j )} n≥1 is uniformly bounded on ∂U , hence on U . This contradicts the fact that U is a connected component of ℓ ∩ {g c,a (c j ) > 0}. Now, if (c, a), (c ′ , a ′ ) ∈ {g c,a (c j ) > 0}, the exists a ball B ⊂ A such that (c, a), (c ′ , a ′ ) ∈ O := t∈B ℓ t . Since B is compact in A, there exists R > 0 such that the set {g c,a (c j ) = 0}∩ O is contained in B(0, R). Let now t 0 , t 1 ∈ A be such that (c, a) ∈ ℓ t 0 and (c ′ , a ′ ) ∈ ℓ t 1 and let (c 0 , a 0 ) ∈ ℓ t 0 \ B(0, R) ∩ ℓ t 0 and (c 1 , a 1 ) ∈ ℓ t 1 \ B(0, R) ∩ ℓ t 1 . As ℓ t 0 ∩ {g c,a (c j τ (l) ) > 0} is a connected open subset of ℓ t 0 , there exists a continuous path γ 0 : [0, 1] → ℓ t 0 ∩{g c,a (c j ) > 0} with γ 0 (0) = (c
γ 1 : [0, 1] → ℓ t 1 ∩ {g c,a (c j ) > 0}
γ := γ 1 * γ 3 * γ 2 : [0, 1] → {g c,a (c j ) > 0} is continuous

Horizontal currents and admissible wedge product

We also need some known results concerning horizontal currents. Let Ω ⊂ X be a connected open set of a complex manifold.

Definition 1.8. -A closed positive (1, 1)-current T is horizontal in Ω × D if the support of T is an horizontal subset of Ω × D, i.e. if there exists a compact set K ⋐ D such that supp(T ) ⊂ Ω × K .
We define similarly vertical currents.

Following exactly the proof of [START_REF] Cuong Dinh | On the dynamics near infinity of some polynomial mappings in C 2[END_REF]Lemma 2.3], one gets the following. Assume now that Ω ⊂ M, where M is a complex manifold of dimension n ≥ 2. Let (T α ) α∈A be a measurable family of positive closed (q, q)-currents in Ω and let ν be a positive measure on A such that α → T α Ω is ν-integrable. The direct integral of (T α ) α∈A is the current T defined by

T, ϕ := A T α , ϕ dν(α) ,
for any (nq, nq)-test form ϕ. We denote T by T = A T α dν(α).

Recall also that, if T = dd c u is a closed positive (1, 1)-current and S is a closed positive (p, p)-current with p + 1 ≤ n, we say that the wedge product

T ∧ S is admissible if u ∈ L 1 loc (σ S )
, where σ S is the trace measure of S. It is classical that we then may define T ∧ S := dd c (uS). Dujardin [START_REF] Dujardin | Cubic polynomials: a measurable view on parameter space[END_REF]Lemma 2.8] can be restated as follows:

Lemma 1.10. -Let T = A T α dν(α) be a (1, 1)-current as above and let S be a closed positive (p, p)-current with p + 1 ≤ n. Assume that the product T ∧ S is admissible. Then, for ν-almost every α, T α ∧ S is admissible and

T ∧ S = A (T α ∧ S) dν(α) .

A comparison principle for plurisubharmonic functions

We aim here at proving Theorem 2. In the whole section, X stands for a k-dimensional complex manifold, k ≥ 1, for which there exists a smooth psh function w on X and a strict analytic subset Z of X such that (dd c w) k is a non-degenerate volume form on X \ Z. Let also Ω stand for a connected open subset of X with C 1 -smooth boundary. Let PSH(Ω) stand for the set of all p.s.h functions on Ω and let PSH -(Ω) be the set of non-positive p.s.h functions on Ω.

Mass comparison for Monge-Ampère measures

We now assume in addition that Ω is a compact subset of X . We shall need the following lemma. Even though it looks very classical, we give a proof.

Lemma 2.1. -Let 0 ≤ j ≤ k and u, v ∈ PSH(Ω) be such that u = v on a neighborhood of ∂Ω.
Let ω be a smooth closed positive (1, 1)-form. Assume that the measures (dd c u) j ∧ ω k-j and (dd c v) j ∧ ω k-j are well-defined and that (dd c u) j ∧ ω k-j has finite mass. Then

Ω (dd c v) j ∧ ω k-j = Ω (dd c u) j ∧ ω k-j .
Proof. -For j = 0, there is nothing to prove. We thus assume j > 0. Let d be the distance induced by a Riemannian metric on on X . For r > 0, we denote by Ω r := {z ∈ Ω/d(z, ∂Ω) > r}. Let r > 0 be such that u = v in a neighborhood of ∂Ω r and let χ r ∈ C ∞ (Ω) have compact support and be such that 0 ≤ χ r ≤ 1 and χ r = 1 on Ω r and χ r = 0 on Ω \ Ω r/2 . Let u n be a decreasing sequence of smooth psh functions on Ω converging to u and v n be a decreasing sequence of smooth psh functions on Ω converging to v. As u = v in a neighborhood of ∂Ω, for n large enough, we may assume that u n = v n in Ω \ Ω r . An integration by parts yields

Ω χ r (dd c v n ) j ∧ ω k-j = - Ω dχ r ∧ d c v n ∧ (dd c v n ) j-1 ∧ ω k-j = - Ω dχ r ∧ d c u n ∧ (dd c u n ) j-1 ∧ ω k-j = Ω χ r (dd c u n ) j ∧ ω k-j , since u n = v n
on a neighborhood of supp(dχ r ) ⊂ Ω \ Ω r for n large enough. Letting n tend to infinity, the above gives:

Ω χ r (dd c v) j ∧ ω k-j = Ω χ r (dd c u) j ∧ ω k-j .
For r ′ ≤ r, we can choose χ r ′ ≥ χ r . As r can be taken arbitrarily close to 0, the monotonic convergence Theorem gives the wanted result.

Classical comparison principle

We give here a local comparison theorem in the spirit of [START_REF] Benelkourchi | Plurisubharmonic functions with weak singularities[END_REF]Corollary 2.3]. It is one of the numerous generalizations of Bedford and Taylor classical comparison Theorem for Monge-Ampère measures (see [BT]).The difference with respect to Benelkourchi, Guedj and Zeriahi's work consists in the boundary condition, which is of different nature. The proof goes essentially the same way.

Theorem 2.2 (Classical comparison principle). -Let u, v ∈ PSH -(Ω) be such that (dd c u) k and (dd c v) k are well-defined finite positive measures. Assume that v ∈ C(Ω) and

lim inf Ω∋z→z 0 (u(z) -v(z)) ≥ 0 for any z 0 ∈ ∂Ω. Then {u<v} (dd c v) k ≤ {u<v} (dd c u) k .
Proof. -Let ǫ > 0 and χ := max(u + ǫ, v). By assumption, the measure (dd c χ) k is well-defined and χ = u + ǫ on a neighborhood of ∂Ω. Lemma 2.1, thus gives

Ω (dd c χ) k = Ω (dd c u) k .
On the other hand, as χ is locally uniformly bounded and psh, we have

1 {u+ǫ<v} (dd c v) k = 1 {u+ǫ<v} (dd c χ) k and 1 {u+ǫ>v} (dd c u) k = 1 {u+ǫ>v} (dd c χ) k . Therefore, since {u + ǫ ≤ v} ⊂ {u < v}, we find: {u+ǫ<v} (dd c v) k = {u+ǫ<v} (dd c χ) k = Ω (dd c χ) k - {u+ǫ≥v} (dd c χ) k = Ω (dd c u) k - {u+ǫ>v} (dd c χ) k - {u+ǫ=v} (dd c χ) k ≤ Ω (dd c u) k - {u+ǫ>v} (dd c χ) k = Ω (dd c u) k - {u+ǫ>v} (dd c u) k ≤ {u+ǫ≤v} (dd c u) k ≤ {u<v} (dd c u) k .
As 1 {u+ǫ<v} is an increasing sequence which converges pointwise to 1 {u<v} , by Lebesgue monotonic convergence Theorem, we conclude making ǫ → 0.

As in the classical case of locally uniformly bounded psh functions, we get as a consequence of Theorem 2.2 the following local domination principle. Notice that, up to now, we did not need the existence of w as in Theorem 2. We shall now use this assumption.

Corollary 2.3 (Classical domination principle). -Let u, v ∈ PSH -(Ω) be such that (dd c u) k and (dd c u) k are finite well-defined positive measures. Assume that v ∈ C(Ω), that u ≥ v (dd c u) k -a.e. and that lim inf Ω∋z→z 0 (u(z) -v(z)) ≥ 0 , for all z 0 ∈ ∂Ω. Then u ≥ v.
Proof. -We proceed by contradiction. Assume that the open set {u < v} is non-empty. By our assumption on X , there exists w ∈ PSH(X ) ∩ C ∞ (X ) such that (dd c w) k is a nondegenerate volume form on X \ Z, where Z is an analytic subset of X . As Ω is a compact subset of X , w is bounded on Ω and, up to adding some negative constant to w, we may assume that w ≤ 0. For ǫ > 0, we set v

ǫ := v + ǫw, then v ǫ ≤ v and {u < v ǫ } ⊂ {u < v}. If ǫ is small enough, the open set {u < v ǫ } is also non-empty and 0 < ǫ k {u<vǫ} (dd c w) k ≤ {u<vǫ} (dd c v ǫ ) k ≤ {u<vǫ} (dd c u) k ≤ {u<v} (dd c u) k = 0,
which is the wanted contradiction.

Proof of Theorem 2

First, we prove that u = v on ∂K. Let z 0 ∈ ∂K. As v is continuous and u is usc,

v(z 0 ) = lim sup K ∋z→z 0 v(z) = lim sup K ∋z→z 0 u(z) ≤ lim sup z→z 0 u(z) ≤ lim sup z→z 0 v(z) = v(z 0 ) ,
and thus u = v on ∂K. Let now U be a connected component of K and let us set

ρ(z) = u(z) if z ∈ U v(z) if z ∈ Ω \ U.
The function ρ is then psh on Ω \ ∂U and usc on Ω. Moreover, if z 0 ∈ ∂U , ρ satisfies the submean inequality at z 0 in any non-constant holomorphic disk σ :

D → Ω with σ(0) = z 0 . Indeed, if r > 0 is small, then ρ(z 0 ) = u(z 0 ) = u • σ(0) ≤ 1 2π 2π 0 u • σ(re iθ )dθ ≤ 1 2π 2π 0 ρ • σ(re iθ )dθ ,
where the last inequality comes from the fact that, by definition of ρ, we have u ≤ ρ.

Hence, ρ is psh on Ω. By [Dem,Prop. 4.1,p. 150], since ρ = v outside of a compact subset of Ω, the measure (dd c ρ) k is well-defined. According to Lemma 2.1, it comes

(dd c ρ) k (Ω) = (dd c v) k (Ω) .
Moreover, by definition of ρ, one has (dd c ρ) k = (dd c v) k on Ω \ U . Thus,

(dd c ρ) k (U ) = (dd c w) k (Ω) -(dd c ρ) k (Ω \ U ) = (dd c v) k (Ω) -(dd c v) k (Ω \ U ) = (dd c v) k (U ) = 0 , which gives (dd c ρ) k = (dd c v) k as measures on Ω. Since ρ ≥ v on supp((dd c v) k ), this in particular implies that ρ ≥ v, (dd c ρ) k -a.e in Ω.
Let W ⋐ Ω be an open set with smooth boundary such that K ⋐ W and let M := sup W v ∈ R. Set now ρ 1 := ρ -M and v 1 := v -M . To conclude, we want to apply Corollary 2.3 to ρ 1 and v 1 on W . From the above discussion, we have

v 1 ∈ C(Ω), ρ 1 , v 1 ∈ PSH -(W ), (dd c ρ 1 ) k = (dd c v 1 )
k is a finite well-defined positive measure, and ρ 1 = v 1 on supp((dd c ρ 1 ) k ) and on a neighborhood of ∂W . According to Corollary 2.3, we then have ρ 1 ≥ v 1 on W . In particular, u = ρ = v on U . As this remains valid for any connected component U of K, we have proved that u = v on K, which ends the proof.

Structure of some slices of the bifurcation currents

Pick d ≥ 3 once and for all. For any 1 ≤ q ≤ d -2, we set ℓ := dq, Σ ℓ := {1, . . . , ℓ} N , and let σ ℓ : Σ ℓ → Σ ℓ be the full shift on ℓ symbols, i.e. σ ℓ (ǫ Let us remark that by definition, the d-measure ν d does not give mass to points.

0 ǫ 1 • • • ) = ǫ 1 ǫ 2 • • • for all ǫ = ǫ 0 ǫ 1 • • • ∈ Σ ℓ . When d := (d 1 , . . . , d ℓ ) ∈ (N * ) ℓ satisfies d = i d i ,
For the whole section, we let I = (i 1 , . . . , i k ) be a k-tuple with 0 ≤ i 1 < . . . < i k ≤ d -2 and we let I c be the unique (d -1k)-tuple satisfying I ∪ I c = {0, 1, . . . , d -2}. We may write I c = (j 1 , . . . , j d-1-k ). For any τ ∈ S d-1-k , we let

U I,τ := {G I (c, a) < g c,a (c j τ (1) )} ∩ d-k-2 l=1 {g c,a (c j τ (l) ) < g c,a (c j τ (l+1) )} .
This section is devoted to the proof the following.

Theorem 3.2. -For any (c, a) ∈ U I,τ ∩{G I = 0}, there exists an analytic set X 0 ⊂ U I,τ , a complex manifold X and a finite holomorphic map π : X → X 0 such that: that, for any ǫ ∈ Σ ℓ , there exists k closed positive (1, 1)-current T ǫ,1 , . . . , T ǫ,k on X with L ∞ loc potentials such that the wedge product

1. (c, a) ∈ X 0 , X has dimension k and {G I • π = 0} ⋐ X , 2. (dd c L • π) k is a
T ǫ 1 ,1 ∧ • • • ∧ T ǫ k ,k is admissible for ν ⊗k d -a.e. ǫ = (ǫ 1 , . . . , ǫ k ) ∈ Σ k
ℓ and, as measures on X ,

(dd c L • π) k = k! Σ k ℓ T ǫ 1 ,1 ∧ • • • ∧ T ǫ k ,k dν ⊗k d (ǫ) .

for any connected component U of the interior of {G

I • π = 0}, (dd c L • π) k (∂U ) = 0.
3.1. Preliminaries to Section 3 3.1.1. Further on the bifurcation current of a critical point

For the material of this paragraph, we refer to [START_REF] Dujardin | Distribution of rational maps with a preperiodic critical point[END_REF][START_REF] Dujardin | Cubic polynomials: a measurable view on parameter space[END_REF]. Let X be any complex manifold and let (P λ ) λ∈X be any holomorphic family of degree d polynomials. One can define a fibered dynamical system P acting on X := X × C as follows

P : X × C -→ X × C (λ, z) -→ (λ, P λ (z)) .
The sequence d -n log + |( P ) n | converges uniformly locally on X × C to the continuous psh function (λ, z) → g λ (z), where g λ is the Green function of P λ . Let us set T X := dd c λ,z g λ (z) and let p 1 : X × C → X and p 2 : X × C → C be the respective natural projections. Assume in addition that (P λ ) λ∈X is endowed with d-1 marked critical points, i.e. that there exists holomorphic functions c 1 , . . . , c d-1 : X → C with C(P λ ) = {c 1 (λ), . . . , c d-1 (λ)}. In this setting, one can easily see that

T i = dd c (g λ (c i (λ)) = (p 1 ) * T X ∧ [C i ] ,
where

C i = {(λ, c i (λ))} is the graph of the map λ → c i (λ).

Böttcher coordinate of a P c,a at infinity

Recall that the Böttcher coordinate of P c,a at infinity is the biholomorphic map

ψ c,a : W c,a := {z ∈ C | g c,a (z) > G(c, a)} → C \ D(0, e G(c,a) )
which satisfies ψ c,a (z) = z + O(1) at infinity and that conjugates P c,a to z d :

ψ c,a • P c,a (z) = (ψ c,a (z)) d , z ∈ W c,a .
Notice that ψ c,a depends holomorphically on (c, a) and that, for z ∈ W c,a , one can prove that g c,a (z) = log |ψ c,a (z)| (see e.g. [START_REF] Milnor | Dynamics in one complex variable[END_REF]).

3.2. The maximal entropy measure µ c,a for (c, a) ∈ C d-1 \ C d First, we want to prove that, when exactly dk -1 critical points of P c,a escape, the maximal entropy measure µ c,a of P c,a enjoys good decomposition properties with respect to some d-measure ν d for some 2 ≤ ℓ ≤ dk. Namely, we prove the following.

Proposition 3.3. -Let (c, a) ∈ C d-1 \ C d .
Assume that dk -1 critical points (counted with mulitplicity) of P c,a escape under iteration. Then, there exists k ≤ q ≤ d -2 such that one can decompose K c,a as a disjoint union of (possibly non-connected) compact sets

K c,a = ǫ∈Σ ℓ K ǫ
where ℓ = dq. Moreover, the following holds 1. there exists d ∈ (N * ) ℓ with d 1 + • • • + d ℓ = d and for any ǫ ∈ Σ ℓ , there exists a probability measure µ ǫ supported by K ǫ such that µ ǫ = ∆g ǫ , where g ǫ is subharmonic and locally bounded and, as probability measures on C,

µ c,a = Σ ℓ µ ǫ dν d (ǫ) ,
2. for any ǫ ∈ Σ d-q , one has µ c,a (K ǫ ) = 0.

Proof. -We follow closely the strategy of the proof of [START_REF] Dujardin | Cubic polynomials: a measurable view on parameter space[END_REF]Theorem 3.12] and adapt it to our situation. According to [START_REF] Milnor | Dynamics in one complex variable[END_REF]Theorem 9.3], the real curve

{z ∈ C | g c,a (z) = G(c, a) > 0}
contains at least one critical point of P c,a . Let us define a topological disk U 0 by setting

U 0 := {z ∈ C | g c,a (z) < d • G(c, a)} and U 1 := P -1 c,a (U 0 ). Lemma 3.4. -Any component of U 1 is a topological disk and U 1 ⋐ U 0 .
We postpone the proof to the end of the subsection. As explained in the proof of [START_REF] Milnor | Dynamics in one complex variable[END_REF]Theorem 9.5], one can show that U 1 has at least 2 distinct connected components. We thus can find disjoint open set V 1 , . . . , V N so that

U 1 = V 1 ∪ • • • ∪ V N . Let us set P i := P c,a | V i : V i → U 0 is a ramified covering map of degree d i ≥ 1.
Claim. -Let q ≥ k be the number of critical points of P c,a lying in U 1 , counted with multiplicity. Then U 1 has ℓ := dq distinct connected components and

d = d 1 + • • • + d ℓ .
Let us continue the proof of Propostion 3.3. For any ǫ ∈ Σ d-q , we set

K ǫ := {z ∈ U 0 ; P m c,a (z) ∈ V ǫm , m ≥ 0} = n≥0 P -1 ǫ 0 • • • P -1 ǫn (U 0 ) .
Beware that the set K c,a has uncountably many connected components and that, for any given ǫ ∈ Σ d-q , the compact set K ǫ is not necessarily connected. In fact, whenever

C(P c,a ) ∩ U 1 ⊂ K c,a , there must exist non-connected K ǫ . Clearly, K c,a = ǫ∈Σ ℓ K ǫ
and this decomposition naturally gives a continuous surjective map

h c,a : K c,a -→ Σ ℓ satisfying h c,a (z) = ǫ iff z ∈ K ǫ .
The map h c,a then semi-conjugates P c,a on K c,a to σ ℓ on Σ ℓ , i.e. satisfies h c,a • P c,a = σ ℓ • h c,a on K c,a .

Proceeding as in [START_REF] Dujardin | Cubic polynomials: a measurable view on parameter space[END_REF], one gets the following: for any z ∈ U 0 \ K c,a , one can rewrite d -n (P n c,a ) * δ z as follows 1

d n (P n c,a ) * δ z = 1 d n ǫ i ∈{1,...,ℓ},i≤n P * ǫ 0 • • • P * ǫ n-1 δ z = ǫ i ∈{1,...,ℓ},i≤n d ǫ 0 • • • d ǫ n-1 d n 1 d ǫ 0 • • • d ǫ n-1 P * ǫ 0 • • • P * ǫ n-1 δ z . (2)
When n → ∞, the following convergence holds independently of z,

1 d ǫ 0 • • • d ǫ n-1 P * ǫ 0 • • • P * ǫ n-1 δ z -→ n→∞ µ ǫ ,
where the measure µ ǫ is a probability measure supported by ∂K ǫ . The measure µ ǫ is the analogue of the Brolin measure for the sequence (P ǫ i ) i≥0 . In particular, one can write µ ǫ = ∆g ǫ , where g ǫ is a locally bounded subharmonic function on C. As d -n (P n c,a ) * δ z converges to µ c,a of P c,a , making n → ∞ in (2), one finds

µ c,a = Σ ℓ µ ǫ dν d (ǫ) .
Let now ǫ ∈ Σ ℓ . By the above, as ν d does not give mass to points,

µ c,a (K ǫ ) = ν d ({ǫ}) = 0 ,
which ends the proof.

Proof of Lemma 3.4. -One first sees that

U 1 = {z ∈ C | ∃x ∈ U 0 s.t. P c,a (z) = x} = {z ∈ C | g c,a (P c,a (z)) < d • G(c, a)} = {z ∈ C | g c,a (z) < G(c, a)} ⋐ {z ∈ C | g c,a (z) < d • G(c, a)} = U 0 ,
as g c,a is the Green function of the compact set K c,a . Assume that some connected component W of U 1 is not homeomorphic to a disk. Let D be the unique unbounded component of C \ W . By assumption, C \ W has a bounded component O and P (O) ⊂ D. Hence W contains a pole of P c,a . This is impossible since, as P c,a is a polynomial, it has no poles in C.

Proof of the Claim. -First, the map P c,a : P 1 \ U 1 → P 1 \ U 0 is a branched covering of degree d and χ(P 1 \ U 0 ) = 1 and χ(P 1 \ U 1 ) = 2 -N . Let q ≥ k be such that dq -1 critical points of P c,a belong to U 0 \ U 1 . As ∞ is a critical points of multiplicity d -1 of P c,a , by Riemann-Hurwitz, one has

d • 1 = 2 -N + (d -q -1) + (d -1) = 2d -q -N , which leads to N = d -q.
For any 1 ≤ j ≤ dq, the map P i : V i → U 0 is a branched covering. As V i is a topological disk, one has χ(V i ) = χ(U 0 ) = 1 and the Riemann-Hurwitz formula gives

d i = deg(P i ) = r i + 1 ,
where r i is the number of critical points of P c,a contained in V i , counted with multiplicities. Making the sum over i, we find

d-q i=1 d i = d-q i=1 (r i + 1) = d -q + d-q i=1 r i = d ,
since i r i is the number of critical points contained in U 1 , i.e.

i r i = q.

Decomposition of bifurcation currents in specific families

We are now in position to prove Theorem 3.2. We follow closely the strategy of the proof of [START_REF] Dujardin | Cubic polynomials: a measurable view on parameter space[END_REF]Theorem 3.12]. Pick a k-tuple I = (i 1 , . . . , i k ), with 0

≤ i 1 < • • • < i k ≤ d -2 and let τ ∈ S d-1-k and (c 0 , a 0 ) ∈ {G I = 0} ∩ U I,τ . Denote by I c the (d -1 -k)-tuple such that I ∪ I c = {0, . . . , d -2}
. First, we construct the analytic set X 0 and define π : X → X 0 as a desingularization. Properties 1 and 2 will easily follow from the construction. In a second time, we use Proposition 3.3 to show that the fibered Green current T X is very close to laminar. Finally, we prove that properties 3 and 4 also hold on X .

3.3.1. First step: contruction of X 0 and X Our first aim in the present subsection is to build X . Namely, we prove Lemma 3.5. -For any (c, a) ∈ U I,τ ∩ {G I = 0}, there exists an analytic set X 0 ⊂ U I,τ , a complex manifold X and a finite proper holomorphic map π : X → X 0 such that:

1. (c, a) ∈ X 0 , X has dimension k and {G I • π = 0} ⋐ X , 2. (dd c L •π) k = k!•(dd c G I •π) k is a finite measure on X supported by ∂ ({G I • π = 0}).
Proof. -As g c 0 ,a 0 (c j,0 ) > 0 for any j ∈ I c , there exists k j ≥ 1 such that g c 0 ,a 0 (P

k j c 0 ,a 0 (c j,0 )) = d k j g c 0 ,a 0 (c j,0 ) > G(c 0 , a 0 ). Let us set X 1 := j∈I c {(c, a) ∈ U I,τ | ψ c,a (P k j c,a (c j )) = ψ c 0 ,a 0 (P k j c 0 ,a 0 (c j,0 ))} .
Then X 1 is an analytic variety of dimension at least k. Up to taking an irreducible component of X 1 , we may assume that it is irreducible. Moreover, it is contained in

Y := j∈I c {(c, a) ∈ U I,τ | g c,a (c j ) = g c 0 ,a 0 (c j,0 )} .
The boundary of Y consists in parameters (c, a) for which G I (c, a) = g c 0 ,a 0 (c j τ (1) ,0 ) > 0. In particular, ∂X 1 consists in parameters for which

G I (c, a) = g c,a (c j τ (1) ) > 0, hence 1. ∂X 1 ⊂ ∂U I,τ and 2. {G I = 0} ∩ X 1 ⋐ X 1 .
Let now q ≥ k be the integer given by Proposition 3.3 at the parameter (c 0 , a 0 ) and let

X 0 := X 1 ∩ {d • G I (c, a) < G(c 0 , a 0 )} .
Let finally π : X → X 0 be a desingularization of X 0 . We denote by P λ the polynomial P c,a if (c, a) = π(λ). Let also c i (λ) := c i • π(λ). We also let λ 0 ∈ X be such that π(λ 0 ) = (c 0 , a 0 ). Let us remark that X still sasitsfies properties 1 and 2 aforementioned and that (dd c G I • π) k is supported by the compact set ∂{G I • π = 0}. Let K ⋐ X be a compact subset with {G I • π = 0} ⋐ K. By the Chern-Levine-Nirenberg inequalities, there exists a constant C > 0 such that

(dd c G I • π) k ≤ C • G I • π k L ∞ (K)
< +∞ , According to (1) and Proposition 1.5, since supp(dd c g c,a (c j )) ⊂ {g c,a (c j ) = 0}, one has

(dd c L) k = k! • (dd c G I ) k on U I,τ ,
which concludes the proof.

To prove Theorem 3.2, we can apply Lemma 3.5 and it is just left to prove that (dd c G I • π) k satisfies the assertions 3 and 4 of the Theorem. This is a consequence of the two next paragraphs.

Second step: Decomposition of the current T X

We now want prove the following.

Proposition 3.6. -Pick (c, a) ∈ U I,τ ∩ {G I = 0}. Let X be given by Lemma 3.5 and ν d and ℓ be given by Proposition 3.3. For any ǫ ∈ Σ ℓ , there exists a closed positive (1, 1)current T ǫ on X × C such that in the weak sense of currents on X × C,

T X = Σ ℓ T ǫ dν d (ǫ) .
Proof. -To begin, remark that the labelling

P -1 λ (U 0 ) = V 1 ∪ • • • ∪ V ℓ introduced
in the proof of Proposition 3.3 does not depend on any choice. Moreover, according to the proof of Proposition 3.3 and to the definition of X 0 , this decomposition persists in X and depends continously on the parameter λ. We thus can define

P i : X × V i -→ X × U 0
by setting P i (λ, z) = (λ, P i,λ (z)). Let us also set s(λ) := c j τ (1) (λ). Let R > 0 be big enough so that U 0,λ ⊂ D(0, R/2) for any λ ∈ X . Such an R exists by construction of X (Take for example R = d 2 G(c 0 , a 0 )). Let ℓ ≥ 1, d ∈ (N * ) ℓ and ν d be given by Proposition 3.3. As we have seen in section 3.2, for any ǫ ∈ Σ ℓ and any λ ∈ X , the sequence

1 d ǫ 0 • • • d ǫ n-1 P * ǫ 0 ,λ • • • P * ǫ n-1 ,λ δ s(λ) = dd c z 1 d ǫ 0 • • • d ǫ n-1 log P ǫ n-1 ,λ • • • • • P ǫ 0 ,λ (z) -s(λ)
converges to a measure ǫ,λ which has a L ∞ loc logarithmic potential g ǫ,λ .

Let now Γ s be the graph of s, Γ s := {(λ, s(λ)) ; λ ∈ X }. We can write

1 d n ( P * ) n [Γ s ] = 1 d n ǫ i ∈{1,...,ℓ}, i≤n-1 P * ǫ 0 • • • P * ǫn [Γ s ] . (3)
For n ≥ 0, one also can set

T ǫ,n := 1 d ǫ 0 • • • d ǫ n-1 P * ǫ 0 • • • P * ǫ n-1 [Γ s ] = dd c λ,z 1 d ǫ 0 • • • d ǫ n-1 log P ǫ n-1 ,λ • • • • • P ǫ 0 ,λ (z) -s(λ) = dd c λ,z u ǫ,n ,
where we have set

u ǫ,n (λ, z) := 1 d ǫ 0 • • • d ǫ n-1 log P ǫ n-1 ,λ • • • • • P ǫ 0 ,λ (z) -s(λ) .
It is obvious that the sequence (u ǫ,n ) n≥1 is locally uniformly bounded from above. According to Proposition 3.3, for any λ ∈ X , the functions u ǫ,n | {λ}×D(0,R) converges in L 1 loc to a subharmonic function ≡ -∞. Hence there exists a subsequence (u ǫ,n k ) which converges in L 1 loc (X × D(0, R)) to a psh function u ǫ,∞ . Let us remark that T ǫ,n k are all horizontal currents with supports contained in X × D(0, R/2). Making k → ∞, we see that the current T ǫ,∞ := dd c u ǫ,∞ is horizontal. According to Lemma 1.9, one can write

u ǫ,∞ (λ, z) = D(0,R) log |z -t| dµ ǫ,λ (t) + h(λ, z) = g ǫ,λ (z) + h(λ, z) , ( 4 
)
where h is pluriharmonic on X × D(0, R) and g ǫ,λ (z) is the logarithmic potential of µ ǫ,λ .

In particular, the function (λ, z) → g ǫ,λ (z) is psh on X × D(0, R) and the sequence T ǫ,n converges in the weak sense of currents to T ǫ := dd c λ,z g ǫ,λ (z).

Recall that T X = dd c λ,z g λ (z). Again, we follow the argument of Dujardin [START_REF] Dujardin | Cubic polynomials: a measurable view on parameter space[END_REF]: As g λ (s(λ)) > 0, s(λ) escapes under iteration and the sequence 1 d n ( P * ) n [Γ s ] converges to T X as n → ∞. The decomposition (3) then guarantees that T X = Σ ℓ T ǫ dν d (ǫ).

Third step: Decomposition of the bifurcation currents of X

The aim here is to prove that the bifurcation currents associated with critical points and the bifurcation measure are close to be laminar in X . Our precise result can be stated as follows.

Theorem 3.7. -Pick (c, a) ∈ U I,τ ∩ {G I = 0}. Let X be given by Lemma 3.5 and ν d and ℓ be given by Proposition 3.3. Write I = (i 1 , . . . , i k ) . Then, for any 1 ≤ j ≤ k, and any ǫ ∈ Σ ℓ , there exists a closed positive (1, 1)-current T ǫ,j such that

dd c g λ (c i j (λ)) = Σ ℓ T ǫ,j dν d (ǫ) .
Proof. -Let p 1 : X × C → X and p 2 : X × C → C stand for the canonical projections. By Proposition 3.6, one can write T X = Σ ℓ T ǫ dν d (ǫ). As T X has a continuous potential,

T X ∧ [C i j ] is admissible. According to Lemma 1.10, T ǫ ∧ [C i j ] is admissible for ν d -a.e. ǫ ∈ Σ ℓ and one can write dd c g λ (c i j (λ)) = (p 2 ) * T X ∧ [C i j ] = Σ ℓ (p 2 ) * T ǫ ∧ [C i j ] dν d (ǫ) .
Let us set T ǫ,j := (p 2 ) * T ǫ ∧ [C i j ] , as soon as this product is admissible and T ǫ,j := 0 otherwise. This concludes the proof.

We are now in postion to prove Theorem 3.2.

Proof of Theorem 3.2. -First, notice that Lemma 3.5 gives X 0 , X and π satisfying properties 1 and 2. When k = 1, item 3 follows easily from Theorem 3.7. Indeed, in that case, I = i 1 and by construction of X , for any j = i 1 , the critical point c j is stable (they escape on te whole family). In particular, one has

dd c L • π = dd c g λ (c i 1 (λ)) = Σ ℓ T ǫ,1 dν d (ǫ) .
We thus assume that k ≥ 2. We want to prove item 3. For the sake of simplicity, write Σ = Σ ℓ and ν = ν d . Again, as the functions g λ (c i 1 (λ)), . . . , g λ (c i k (λ)) are continuous, for any 1 ≤ m ≤ k, the wedge product dd c g λ (c i 1 (λ)) ∧ • • • ∧ dd c g λ (c im (λ)) is admissible. By an easy induction, according to Lemma 1.10 and to Fubini's Theorem, for any 1

≤ m ≤ k the product T ǫ 1 ,1 ∧ • • • ∧ T ǫm,m is admissible for ν ⊗m -a.e. ǫ = (ǫ 1 , . . . , ǫ m ) and, k j=1 dd c g λ (c i j (λ)) = Σ   T ǫ,1 ∧ k j=2 dd c g λ (c i j (λ))   dν(ǫ) = Σ   T ǫ 1 ,1 ∧ Σ   T ǫ 2 ,2 ∧ k j=3 dd c g λ (c i j (λ))   dν(ǫ 2 )   dν(ǫ 1 ) = Σ 2   T ǫ 1 ,1 ∧ T ǫ 2 ,2 ∧ k j=3 dd c g λ (c i j (λ))   dν(ǫ 2 )dν(ǫ 1 ) . . . = Σ k (T ǫ 1 ,1 ∧ • • • ∧ T ǫ k ,k ) dν(ǫ 1 ) • • • dν(ǫ k ) .
By Proposition 1.5, this yields item 3, letting

T ǫ 1 ,1 ∧ • • • ∧ T ǫ k ,k := 0 if it is not admissible. Let us now prove item 4. When T ǫ ∧ [C i j ] is admissible, its support is included in {(λ, z) ∈ X × D(0, R) ; z ∈ K ǫ,λ } ∩ C i j = {(λ, z) ∈ X × C ; c i j (λ) ∈ K ǫ,λ } .
As a consequence, supp(T ǫ,j ) ⊂ {λ ∈ X ; c i j (λ) ∈ K ǫ,λ }. Let U be a connected component of the interior of {G I • π = 0}. Then U is a stable component, i.e. the sequences {λ → P n λ (c i j (λ))} n≥1 are normal families in U as families of holomorphic functions of the parameter, for 1 ≤ j ≤ k. This implies, for all 1 ≤ j ≤ k, the existence of ǫ 0,j ∈ Σ d-q such that c i j (λ) ∈ K ǫ 0,j ,λ for any λ ∈ U , since otherwise the orbit of c i j (λ) would have to lie in the attracting basin of ∞ for some λ ∈ U , contradicting our assumption that

U ⊂ {G I • π = 0}. Hence (dd c G I • π) k , 1 U = Σ k k j=1 T ǫ j ,j , 1 U dν ⊗k (ǫ) ≤ T ǫ 0,1 ,1 ∧ • • • ∧ T ǫ 0,k ,k U • k j=1 ν({ǫ 0,j }) = 0 ,
which concludes the proof.

The bifurcation measure does not charge boundary components

In the present Section, we focus on the proof of Theorem 4. Namely, we prove that, as in the quadratic family, given any connected component U of the interior of the connectedness locus C d , the bifurcation measure doesn't give mass to the boundary of U . The proof of Theorem 4 uses the continuity of the Julia set at some specific parameters due to Douady [Do], convergence of invariant line fields established by McMullen [Mc], as well as a precise dynamical description of µ bif -a.e. polynomial due to Dujardin and Favre [DF].

Invariant line fields and the Caratheodory topology

For the material of the present section, we refer to [Mc].

Definition 4.1. -Let U ⊂ C be an open set. A measurable line field on a Borel set of positive area E ⊂ U is a Beltrami coefficient ν = ν(z) dz dz where ν(z) is a measurable map on U with |ν(z)| = 1 if z ∈ E and ν(z) = 0 otherwise. Let V ⊂ C be another open set. We say that the line field ν is invariant by a holomorphic map f : U → V , or f -invariant, if f * ν = ν on U ∩ V .
Let us consider a sequence (V n , x n ) of pointed topological disks of P 1 . We say that (V n , x n ) converges to (V, x) in the Caratheodory topology if 1.

x n → x as n → ∞, 2. for all compact set K ⊂ V , there exists N ≥ 1 such that K ⊂ V n for all n ≥ N , 3. for any open set U ⊂ P 1 containing x, if there exists N ≥ 1 such that U ⊂ V n for all n ≥ N , then U ⊂ V . If (U n , x n ) → (U, x
) and (V n , y n ) → (V, y) in the Caratheodory topology and if f n : U n → V n is a sequence of holomorphic maps satisfying f n (x n ) = y n whic converges uniformly on compact subsets of U to f : U → V holomorphic with f (x) = y, we say that f n : (U n , x n ) → (V n , y n ) converges in the Carathéodory topology to f : (U, x) → (V, y).

Recall the following definition (see [START_REF] Curtis | Complex dynamics and renormalization[END_REF]§5.6]).

Definition 4.2. -We say that a sequence

ν n ∈ L ∞ (V, C) converges in measure to ν ∈ L ∞ (V, C) on V if for all compact K ⋐ V and all ε > 0, lim n→∞ Area ({z ∈ K ; |ν n (z) -ν(z)| > ε}) = 0 .
According to [START_REF] Wagschal | Dérivation, intégration. Collection Méthodes[END_REF]Proposition 2.37.3], a bounded sequence ν n ∈ L ∞ (C, C) admits a subsequence which converges in measure if and only if it is a Cauchy sequence in measure, i.e. for any compact K ⋐ C and for any δ, ǫ > 0, there exists n ≥ 1 such that Area ({z

∈ K : |ν p (z) -ν q (z)| > δ}) ≤ ǫ ,
for any p, q ≥ n.

In what follows, we shall use the following result of McMullen (see [START_REF] Curtis | Complex dynamics and renormalization[END_REF]Theorem 5.14]).

Theorem 4.3 (McMullen). -Let f n : (U n , x n ) → (V n , y n
) be a sequence of nonconstant holomorphic maps between disks. Assume that f n converges in the Caratheodory topology to a non-constant holomorphic map f : (U, x) → (V, y) . Assume in addition that there exists a measurable f n -invariant line field ν n which converges in measure to ν on V . Then ν is a measurable f -invariant line field.

As a consequence, we immediately have Area(supp(ν)) > 0.

Some pathologic filled-in Julia sets of positive area

In the present section, we aim at proving that, for polynomials belonging to the boundary of queer components where K c,a = J c,a , the filled-in Julia set has positive area. Precisely, we prove the following.

Theorem 4.4. -Let U ⊂ C d-1 be a connected component of the interior of C d . Assume that there exists a parameter (c, a) ∈ U such that P c,a has only repelling cycles and let (c 0 , a 0 ) ∈ ∂U . Then, either Area(J c 0 ,a 0 ) > 0, or K c 0 ,a 0 has non-empty interior.

Proof. -As there exists (c, a) ∈ U such that P c,a has only repelling cycles, one has J c,a = K c,a . Moreover, as U ⊂ C d , it is a stable component. This implies that J c,a = K c,a for all (c, a) ∈ U . In particular, U is not a hyperbolic component. By [MSS, Theorem E], for any (c, a) ∈ U , there exists a P c,a -invariant line field ν c,a which is supported on the Julia set J c,a of P c,a , i.e. ν c,a ∈ L ∞ (C, C) satisfies P * c,a ν c,a = ν c,a and there exists a Borel set E c,a ⊂ J c,a of positive area such that |ν c,a (z)| = 1 for all z ∈ E c,a , and ν c,a (z) = 0 for all z / ∈ E c,a .

Let us briefly recall how, in the present case, one can build this invariant line field. Let (c 1 , a 1 ) ∈ U be a base point that we have chosen and let ψ c,a stand for the Böttcher coordinate of ∞ of P c,a . The family of analytic maps

φ c,a (z) := ψ -1 c,a • ψ c 1 ,a 1 (z), z ∈ C \ J c 1 ,v 1 , defines a conformal holomorphic motion U × (C \ J c 1 ,a 1 ) → C which satisfies φ c,a • P c 1 ,a 1 (z) = ψ -1 c,a • ψ c 1 ,a 1 (P c 1 ,a 1 (z)) = ψ -1 c,a (ψ c 1 ,a 1 (z) d ) = P c,a • φ c,a (z)
. By the λ-Lemma, it extends as a quasiconformal holomorphic motion φ : U × P 1 → P 1 such that φ c,a conjugates P c 1 ,a 1 to P c,a on C. Let µ c,a be the Beltrami form on C satisfying Let us now proceed by contradiction, assuming that, for some (c 0 , a 0 ) ∈ ∂U , one has J c 0 ,a 0 = K c 0 ,a 0 and K c 0 ,a 0 has Lebesgue measure zero. According to [START_REF] Douady | L'ensemble de Julia dépend-il continûment du polynôme? In Aspects des systèmes dynamiques[END_REF]Corollaire 5.2], the map (c, a) → J c,a is continuous at (c 0 , a 0 ). By [START_REF] Ransford | Potential theory in the complex plane[END_REF]Corollary 6.5.2], for any (c, a) ∈ C d , the compact set K c,a contains 0 and

K c,a ⊂ D(0, 4 d-1 √ d) .
By Montel's Theorem, the family (ψ -1 c,a ) (c,a)∈U is a normal family and, for all z ∈ C \ D(0, 4d), one has lim (c,a)→(c 0 ,a 0 ) ψ -1 c,a (z) = ψ -1 c 0 ,a 0 (z), where ψ c 0 ,a 0 is the Böttcher coordinate at ∞ of P c 0 ,a 0 . In particular, the family (ψ -1 c,a ) (c,a)∈U converges locally uniformly to ψ -1 c 0 ,a 0 on C \ D as (c, a) → (c 0 , a 0 ). Hence, for R > 0 big enough, the closed topological disk (ψ -1 c,a (P 1 \ D(0, R)), ∞) converges to the closed topological disk (ψ -1 c 0 ,a 0 (P 1 \ D(0, R)), ∞) in the Caratheodory topology, as (c, a) → (c 0 , a 0 ), and for all (c, a) ∈ U ∪ {(c 0 , a 0 )},

D(0, 4 d-1 √ d) ∩ ψ -1 c,a (P 1 \ D(0, R)) = ∅ . If we set U c,a := {z ∈ C ; g c,a (z) < log R} = ψ -1 c,a (C \ D(0, R)) and V c,a := P c,a (U c,a ) = {z ∈ C ; g c,a (z) < d log R},
the open sets U c,a and V c,a are topological disks and (U c,a , 0) → (U c 0 ,a 0 , 0) and (V c,a , a d ) → (V c 0 ,a 0 , a d 0 ) in the Caratheodory topology as (c, a) → (c 0 , a 0 ).

As J cn,an converges in the Hausdorff topology to J c 0 ,a 0 , one has 0 ≤ lim sup n→∞ Area(J cn,an ) ≤ Area(J c 0 ,a 0 ) = 0 , which means that lim n→∞ Area(J cn,an ) = Area(J c 0 ,a 0 ) = 0.

Let K ⋐ C be a compact subset and δ, ǫ > 0. As supp(ν cn,an ) ⊂ J cn,an , there exists n ≥ 1 such that Area(supp(ν cp,ap )) ≤ ǫ/2 for all p ≥ n. Let now p, q ≥ n. Then

{z ∈ K : |ν cp,ap (z) -ν cq,aq (z)| > δ} ⊂ supp(ν cp,ap ) ∪ supp(ν cq,aq ) , hence Area {z ∈ K : |ν cp,ap (z) -ν cq,aq (z)| > δ} ≤ ǫ .
The sequence (ν cn,an ) is thus a Cauchy sequence in measure and we can find a sequence {(c n , a n )} n≥1 (extracted from the previous one) which converges to (c 0 , a 0 ) as n tends to ∞ and such that ν cn,an converges in measure to some function ν 0 ∈ L ∞ (C, C).

Finally, since (U cn,an , 0) → (U c 0 ,a 0 , 0) and V cn,an , a d n → V c 0 ,a 0 , a d 0 converge in the Carathéodory topology and since P cn,an converges uniformly on compact subsets of C to P c 0 ,a 0 , we may apply McMullen Theorem 4.3 to the sequences (ν cn,an ) and P cn,an : (U cn,an , 0) → V cn,an , a d n .

The conclusion is that ν 0 is a P c 0 ,a 0 -invariant line field on J c 0 ,a 0 . In particular, J c 0 ,a 0 must have positive area, since it carries an invariant line field. This is a contradiction.

Proof of Theorem 4

Recall that there exists a Borel set B ⊂ ∂ S C d of full measure for the bifurcation measure µ bif and such that for all (c, a) ∈ B, (see Theorem 1.6) -all cycles of P c,a are repelling, -the orbit of each critical points are dense in J c,a , -K c,a = J c,a is locally connected and dim H (J c,a ) < 2.

Let U ⊂ C d-1 be a connected component of the interior of C d . It is a stable component and we treat separately two cases. Assume first that there exists (c, a) ∈ U such that P c,a has at least one non-repelling cycle. As the hypersurface Per n (e iθ ) lies in the bifurcation locus for any n ≥ 1 and θ ∈ R, the polynomial P c,a has at least one attracting periodic point z(c, a) and it can be followed holomorphically on U . Hence it extends as a continuous map z : U → C such that z(c, a) is periodic for P c,a for all (c, a) ∈ U . In particular, for all (c, a) ∈ ∂U , the polynomial P c,a admits a non-repelling periodic point. In particular, B ∩ ∂U = ∅ by Theorem 1.6, hence µ bif (∂U ) = 0.

Assume now that there exists (c, a) ∈ U such that all the periodic points of P c,a are repelling. Then, according to [MSS, Theorem E], for any (c, a) ∈ U , P c,a carries an invariant line field on its Julia set, J c,a = K c,a and Area(J c,a ) > 0. Let (c 0 , a 0 ) ∈ ∂U , as (c, a) ∈ U → (c 0 , a 0 ), either all the cycles of P c,a remain repelling, or at least one becomes non-repelling. One thus has the following dichotomy:

1. all cycles of P c 0 ,a 0 are repelling and thus J c 0 ,a 0 = K c 0 ,a 0 , or 2. there exists one cycle of P c 0 ,a 0 which is non-repelling.

In the first case, according to Theorem 4.4, one has Area(J c 0 ,a 0 ) > 0, hence (c 0 , a 0 ) ∈ B. In the second case, according to Theorem 1.6, one has (c 0 , a 0 ) ∈ B. We thus have proved that, in any case, ∂U ∩ B = ∅ and µ bif (∂U ) = 0.

Distribution of the hypersurfaces Per n (w) for any w

The present section is dedicated to the proof of Theorem 1. In a first time, we recall the definition of the hypersurface Per n (w) and a result concerning limits in the sense of currents of these hypersurfaces due to Bassanelli and Berteloot [START_REF] Bassanelli | Distribution of polynomials with cycles of a given multiplier[END_REF].

The hypersurfaces Per n (w)

In what follows, we shall use the following (see [START_REF] Joseph | The arithmetic of dynamical systems[END_REF][START_REF] Milnor | Geometry and dynamics of quadratic rational maps[END_REF]): Theorem 5.1 (Milnor, Silverman). -For any n ≥ 1, there exists a polynomial p n : C d → C such that for any (c, a) ∈ C d-1 and any w ∈ C, 1. if w = 1, then p n (c, a, w) = 0 if and only if P c,a has a cycle of exact period n and multiplier w, 2. otherwise, p n (c, a, 1) = 0 if and only if there exists q ≥ 1 such that P c,a has a cycle of exact period n/q and multiplier η a primitive q-root of unity.

We now define a hypersurface by letting ). Let ϕ be any limit of the sequence (d -n L n,w ). Then ϕ is a p.s.h function which satisfies ϕ ≤ L on C d-1 , -ϕ = L on hyperbolic components. In particular, ϕ ≡ -∞.

Proof of Theorem 1

We are now in position to prove Theorem 1. Let us first remark that, since the natural projection π : C d-1 → P d defined by π(c, a) = {P c,a } is d(d -1)-to-1, it is sufficient to prove that equidistribution holds in the family (P c,a ) (c,a)∈C d-1 .

Pick any w ∈ C, let ϕ be any L 1 loc -limit of the sequence (d -n L n,w ) and let (d -n k L n k ,w ) k≥0 converge to ϕ in L 1 loc . By Proposition 5.2, we have 1. ϕ ≤ L on C d-1 , 2. ϕ = L on hyperbolic components and in particular, ϕ ≡ -∞, Our strategy is to make inductively use of the comparison principle which is established in Section 2 to prove that ϕ = L. To apply the comparison Theorem 2, it remains to justify the existence of a smooth form on X which is Kähler outside an analytic subset of X . Let ω := dd c (c, a) 2 be the standard Kähler form on C d-1 . Then the function λ → π(λ) 2 is psh and smooth on X . Moreover, the form ω X := dd c π(λ) 2 = π * (ω| X 0 ) is Kähler on X \ Z, where Z is the strict analytic set of parameters λ ∈ X such that D λ π doesn't have maximal rank. By Theorem 2, one has ϕ • π = L • π on X . In particular, ϕ(c, a) = L(c, a). We thus have shown that ϕ = L on the open set is constant equal to 0 on Ω. On the other hand, as Ω ⊂ W := {g c,a (c j τ (l) ) > 0} ∩ {g c,a (c j τ (l+1) ) > 0}, the functions g c,a (c j τ (l) ) and g c,a (c j τ (l+1) ) are pluriharmonic on W , the function φ l is pluriharmonic on the connected component V of W constaining Ω and vanishes on Ω. As V is connected and Ω ⊂ V is a non-empty open set, φ l ≡ 0 on V , hence on V , by continuity of φ l . This means that the open set V is a connected component of {g c,a (c j τ (l) ) > 0}.

V k+1 = U \ 0≤i 1 <•••<i k ≤d-2 k j=1 B i j .
To conclude the proof of the Claim, we just have to remark that, due to Lemma 1.7, we have shown that g c,a (c j τ (l) ) ≡ g c,a (c j τ (l+1) ) on C d-1 , which is impossible, by Theorem 1.1.

Theorem 4 .

 4 -Let U ⊂ P d be any connected component the interior of C d . Then µ bif (∂U ) = 0.

  Theorem 1.6 (Dujardin-Favre). -The support of µ bif coincides with the Shilov boundary ∂ S C d ⊂ ∂C d of the connectedness locus. Moreover, there exists a Borel set B ⊂ ∂ S C d of full measure for the bifurcation measure µ bif and such that for all (c, a) ∈ B,

  Lemma 1.9. -Let T be horizontal in Ω × D. Let, for any z ∈ Ω, µ z := T ∧ [{z} × D] be the slice of T on the vertical slice {z} × D. Then the function u(z, w) := {z}×D log |w -s| dµ z (s) is a psh potential of T , i.e. T = dd c u.

  we also let ν d be the probability measure on Σ ℓ , which is invariant by σ ℓ , and giving mass (d ǫ 0 • • • d ǫ n-1 )/d n to the cylinder of sequences starting with ǫ 0 , . . . , ǫ n-1 . Definition 3.1. -The measure ν d is called the d-measure on Σ ℓ .

  finite measure on X supported by ∂ ({G I • π = 0}), 3. there exists 2 ≤ ℓ ≤ dk and d = (d 1 , . . . , d ℓ ) ∈ (N * ) ℓ with d = i d i and such

  ∂φ -1 c,a = µ c,a • ∂φ -1 c,a almost everywhere on C. Then supp(µ c,a ) ⊂ J c,a . If Area(supp(µ c 2 ,a 2 )) = 0 for some (c 2 , a 2 ) ∈ U , it would also be the case for all (c, a) ∈ U . By the above construction, the maps φ c,a would be a quasi-conformal homeomorphism which is holomorphic almost everywhere, i.e. φ c,a ∈ Aut(C). This contradicts the fact that the family (P c,a ) (c,a)∈C d-1 is a finite ramified cover of the moduli space P d . Hence the Beltrami form defined by ν c,a := µc,a(z) |µc,a(z)| • dz dz if µ c,a (z) = 0 0 otherwise defines an invariant line field for P c,a .

  Per n (w) := {(c, a) ∈ C d-1 | p n (c, a, w) = 0} , for n ≥ 1 and w ∈ C. We also shall set L n,w (c, a) := log |p n (c, a, w)| so that [Per n (w)] = dd c c,a L n,w . Bassanelli and Berteloot show the following we will rely on (see for instance [BB3, Propositions 3.2 & 3.3]). Proposition 5.2 (Bassanelli-Berteloot). -Pick w ∈ C. The sequence (d -n L n,w ) is reatively compact in L 1 loc (C d-1

  First, let us define an open set U by setting with U k := I τ ∈S d-1-k U I,τ , where I = (i 1 , . . . , i k ) ranges over k-tuples with 0 ≤ i 1 < • • • < i k ≤ d -2 and where U I,τ are the open sets defined in Section 3.

  Claim. -U is an open and dense subset of C d-1 \ C d .We may prove that L = ϕ on U . As L and ϕ are psh and as L is continuous, this yieldsL = ϕ on C d-1 \ C d . Indeed, if (c, a) ∈ C d-1 \ C d , there exists U ∋ (c n , a n ) → (c, a) and ϕ(c, a) ≤ L(c, a) = lim sup n→∞ L(c n , a n ) = lim sup n→∞ ϕ(c n , a n ) ≤ ϕ(c, a) . Pick now (c, a) ∈ U and let 0 ≤ k ≤ d -2 be the number of critical points of P c,a with bounded orbit. If k = 0, then (c, a) ∈ E := C d-1 \ j B j . Since E is in an hyperbolic component, hence ϕ(c, a) = L(c, a). In particular, ϕ = L on U ∩ E. Assume now that 1 ≤ k ≤ d -2 and that ϕ = L on V k := U \ 0≤i 1 <•••<i k-1 ≤d-2 k-1 j=1 B i j ,i.e. on the locus on U where at least dk critical points escape. Since k critical points of P c,a don't escape, (c, a) ∈ {G I = 0} ∩ U I,τ for some k-tuple I and someτ ∈ S d-1-k . Let us remark that {G I > 0} ∩ U I,τ is contained in the aforementioned open set V k , so that ϕ = L on {G I > 0} ∩ U I,τ .According to Theorem 3.2, there exists a k-dimensional manifold X , an analytic set X 0 and a finite holomorphic mapping π : X → X 0 such that-X has dimension k, -{G I • π = 0} ⋐ X , in particular ϕ • π = L • π on X \ {G I • π = 0}, -(dd c L • π) k is afinite measure on X supported by ∂{G I • π = 0}, -for any connected component U of the interior of {G I • π = 0}, (dd c L • π) k (∂U ) = 0.

  By a finite induction on k, we have ϕ = L on U , hence on C d-1 \ C d , as explained above.The final step of the proof goes essentially the same way. According to Theorem 4, -L is continuous and psh on C d-1 and the bifurcation measure(dd c L) d-1 = µ bif is supported on ∂ S C d ⊂ ∂C d , -for any connected component U of Cd , (dd c L) d-1 (∂U ) = 0, -ϕ ≤ L and ϕ = L on C d-1 \ C d .By Theorem 2, this yields ϕ = L. Since this works for any L 1 loc limit ϕ of the sequence (d -n L n,w ), this means that (d -n L n,w ) converges in L 1 loc to L, which ends the proof.It now only remains to prove the Claim.Proof of the Claim. -The openess is obvious by continuity of the maps (c, a) → g c,a (c j ), 0≤ j ≤ d -2. For 0 ≤ k ≤ d -2, I = (i 1 , . . . , i k ) with 0 ≤ i 1 < • • • < i k ≤ d -2 and τ ∈ S d-k-1 , we let V k,I,τ ⊂ C d-1 be the set V k,τ := {G I < g c,a (c j τ (1) ) ≤ • • • ≤ g c,a (c j τ (d-k-1) )} , where {j 1 , . . . , j d-k-1 } = I c , so that k,I,τ V k,I,τ = C 2 \C d and U I,τ ⊂ V k,I,τ . It is sufficient to prove that U I,τ is dense in V k,I,τ for any k and any τ to conclude. Let now 0 ≤ k ≤ d-2 and τ ∈ S d-1 be fixed. Assume by contradiction that V k,I,τ \U I,τ contains an open set Ω of C d-1 \ C d . Then, there exists 1 ≤ l ≤ dk -2 so that the map φ l : (c, a) → g c,a (c j τ (l+1) )g c,a (c j τ (l) )
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