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EQUIDISTRIBUTION TOWARDS THE BIFURCATION CURRENT

I: MULTIPLIERS AND DEGREE d POLYNOMIALS

by

Thomas Gauthier

Abstract. — In the moduli space Pd of degree d polynomials, the set Pern(w) of classes
[f ] for which f admits a cycle of exact period n and multiplier multiplier w is known to be
an algebraic hypersurface. We prove that, given w ∈ C, these hypersurfaces equidistribute
towards the bifurcation current as n tends to infinity.
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Introduction

In a holomorphic family (fλ)λ∈Λ of degree d ≥ 2 rational maps, the bifurcation locus is
the closure in the parameter space Λ of the set of discontinuity of λ 7→ Jλ, where Jλ is
the Julia set of fλ. The study of the global geography of the parameter space Λ is related
to the study of the hypersurfaces

Pern(w) := {λ ∈ Λ s.t. fλ has a n-cycle of multiplier w} .
In their seminal work [MSS], Mañé, Sad and Sullivan prove that the bifurcation locus is
nowhere dense in Λ and coincides with the closure of the set of parameters for which fλ
admits a non-persistent neutral cycle (see also [L]). In particular, by Montel’s Theorem,
this implies that any bifurcation parameter can be approximated by parameters with a
super-attracting periodic point, i.e. the bifurcation locus is contained in the closure of the
set

⋃
n≥1 Pern(0).

Recall that DeMarco proved that the bifurcation locus can be naturally endowed with
a closed positive (1, 1)−current Tbif, called the bifurcation current (see e.g. [DeM]). This
current may be defined as ddcL where L is the continuous plurisubharmonic function
sends a parameter λ to the Lyapunov exponent L(λ) =

∫
P1 log |f ′λ|µλ of fλ with respect

to its maximal entropy measure µλ. The current Tbif provides an appropriate tool for
studying bifurcations from a measure-theoretic viewpoint.It has finite mass and gives rise
to a probability measure µbif := T d−1

bif /‖T d−1
bif ‖ called the bifurcation measure which, in

a certain way, detects maximal bifurcations. Notice that it is supported by the Shilov
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boundary of the connectedness locus Cd, which is a compact set. We refer the reader to
the survey [Du1] or the lecture notes [B] for a report on recent results involving bifurcation
currents and further references.

It also appears that the current Tbif is very related to the asymptotic distribution of
the hypersurfaces Pern(w). Indeed, Bassanelli and Berteloot proved that

d−n[Pern(w)] −→n→∞ Tbif

for a given |w| < 1 in the weak sense of currents, using the fact that the function L is a
global potential of Tbif (see [BB2, BB3]).

In the moduli space Pd of degree d polynomials, i.e. the set of affine conjugacy classes
of degree d polynomials, Bassanelli and Berteloot [BB3] prove that this convergence also
holds when |w| = 1. In the present paper, we prove that this actually holds for any w ∈ C.
Our main result can be stated as follows.

Theorem 1. — Let d ≥ 2 and w ∈ C be any complex number. Then the sequence
d−n[Pern(w)] converges in the weak sense of currents to the bifurcation current Tbif in
the moduli space Pd of degree d polynomials.

Notice that, when d = 2, the moduli space of quadratic polynomials is isomorphic to the
quadratic family (z2 + c)c∈C and that, in the quadratic family, this result is a particular
case of the main Theorem of [BG]. Notice also that for d ≥ 3, up to a finite branched
covering, Pd is isomorphic to C

d−1.

Let us now sketch the strategy of the proof of Theorem 1 developed in [BG] in the
quadratic case and then how to adapt it to our situation. It is known that there exists a
global potential ϕn of the current d−n[Pern(w)] that converges, up to extraction, in L1

loc
to a psh function ϕ ≤ L and that ϕ = L on hyperbolic components (see [BB3]).

In the quadratic case, the bifurcation locus is the boundary of the Mandelbrot set
M ⋐ C and C \M is a hyperbolic component, hence ϕ = L outside M . First, we explain
why the positive measure ∆L of the Mandelbrot set doesn’t give mass to the boundary of
connected components of the interior of M . Secondly, we establish a comparison lemma
for subharmonic function which, in that case, gives ϕ = L and the proof is complete.

To adapt the proof to the situation d ≥ 3, we first establish a generalization of the
comparison principle for plurisubharmonic functions. Again, it is known that ϕ = L on
the escape locus and we shall use the comparison principle recursively on the number of
critical points of bounded orbits in suitable local subvarieties of Pd.

Let us mention that the comparison principle we prove may be of independant interest.
In contrast to the classical domination Theorem of Bedford and Taylor (see e.g. [BT]),
we don’t need to be able to compare the Monge-Ampère masses of two psh functions
to compare them. Precisely, we prove the following which is a generalization in higher
dimension of [BG, Lemma 4].

Theorem 2 (Comparison principle). — Let X be a complex manifold of dimension
k ≥ 1. Assume that there exists a smooth psh function w on X and a strict analytic subset
Z of X such that (ddcw)k is a non-degenerate volume form on X \ Z. Let Ω ⊂ X be
a domain of X with C1 boundary and let u, v ∈ PSH(Ω) and K ⋐ Ω be a compact set.
Assume that the following assumptions are satisfied:

– v is continuous, supp((ddcv)k) ⊂ ∂K and (ddcv)k has finite mass,

– for any connected component U of K̊, (ddcv)k(∂U) = 0,
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– u ≤ v on Ω and u = v on Ω \K.

Then u = v on Ω.

Our strategy to apply Theorem 2 relies on describing (partially) the currents T k
bif in

restriction to suitable local analytic subvarieties of the moduli space Pd.
When 1 ≤ k ≤ d−2, using techniques developped in the context of horizontal-like maps

(see [DDS, Du2]), we build for parameters lying in an open dense subset of Pd \Cd a local
analytic subvariety passing through the parameter and in which the bifurcation measure
enjoys good properties. This is the subject of the following result.

Theorem 3. — There exists an open dense subset Ω ⊂ Pd\Cd such that for any {P} ∈ Ω,
if 0 ≤ k ≤ d−2 is the number of critical points of P with bounded orbit, then there exists an
analytic set X0 ⊂ Ω, a complex manifold X of dimension k and a finite proper holomorphic
map π : X → X0 such that {P} ∈ X0 and

1. the measure µX := π∗(T k
bif|X0) is a compactly supported finite measure on X ,

2. for any relatively compact connected component U of the open set X \ supp(µX ),
µX (∂U) = 0,

3. if {Q} lies in the non-relatively compact connected component of X \ supp(µX ), then
Q has at most k − 1 critical points of bounded orbit.

The proof of Theorem 3 is the combination of Theorem 3.2 and Claim of Section 5.2.

The last step of the proof of Theorem 1 consists in applying the comparison Theorem
in Pd for K = Cd. To this aim, we need to prove that the bifurcation measure µbif doesn’t
give mass to the boundary of components of the interior of Cd. Building on the description
of the bifurcation measure given by Dujardin and Favre [DF] and properties of invariant
line fields established by McMullen [Mc], we prove the following.

Theorem 4. — Let U ⊂ Pd be a connected component the interior of Cd. Then

µbif(∂U) = 0.

Let us finally explain the organization of the paper. Section 1 is devoted to required
preliminaries. In Section 2, we establish our comparison principle for psh functions. In
Section 3, we prove a slight more precise version of Theorem 3. Section 4 is concerned
with phe proof of Theorem 4. Finally, we give the proof of Theorem 1 in Section 5.

Acknowledgement We would like to thank Gabriel Vigny for many interesting and
helpful discussions. We also would like to thank Vincent Guedj for interesting discussions
concerning the comparison principle.

1. Preliminaries

1.1. A good parametrization of Pd, d ≥ 3

It is now classical that the moduli space of degree d polynomials, i.e. the space of degree
d polynomials modulo affine conjugacy, is a complex orbifold of dimension d− 1 which is
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not smooth when d ≥ 3. Here, we shall use the following parametrization

Pc,a(z) :=
1

d
zd +

d−1∑

j=2

(−1)d−jσd−j(c)
zj

j
+ ad,

where σj(c) is the monic symmetric polynomial in (c1, . . . , cd−2) of degree j. Observe that
the critical points of Pc,a are exactly c0, c1, . . . , cd−2 with the convention that c0 := 0, and

that the canonical projection π : Cd−1 −→ Pd which maps (c1, . . . , cd−2, a) ∈ C
d−1 to the

class of Pc,a in Pd is finite-to-one.
Recall that the Green function of Pc,a is the subharmonic function defined for z ∈ C by

gc,a(z) := lim
n→∞

d−n logmax
(
1, |Pn

c,v(z)|
)
,

and that the filled-in Julia set of Pc,a is the compact subset of C

Kc,a := {z ∈ C | (Pn
c,v(z))n≥1 is bounded in C} .

Remark that Kc,a = {z ∈ C | gc,a(z) = 0}. Recall also that the chaotic part of the dynamics

is supported by the Julia set Jc,a = ∂Kc,a of Pc,a. The function (c, a, z) ∈ C
d 7→ gc,a(z) is

actually a non-negative plurisubharmonic continuous function on C
d. We set

Bi := {(c, a) ∈ C
d−1 | ci ∈ Kc,a} = {(c, a) ∈ C

d−1 | gc,a(ci) = 0}

and Cd := {(c, a) ∈ C
d−1 | max0≤i≤d−2 (gc,a(ci)) = 0} =

⋂
i Bi. It is known that Kc,a is

connected if and only if (c, a) ∈ Cd. Let us finally set

H∞ := P
d−1(C)\Cd−1 = {[c : a : 0] ∈ P

d−1(C)} andHi := {[c : a : 0] ∈ H∞ : Pc,a(ci) = 0} .
We shall use the following (see [BB3, BH, DF]):

Theorem 1.1 (Bassanelli-Berteloot, Branner-Hubbard, Dujardin-Favre)

1. For any 0 ≤ i ≤ d− 2, the cluster set of Bi in P
d−1(C) coincides with Hi,

2. The divisor
∑d−2

i=0 Hi has simple normal crossings. In particular, if 1 ≤ k ≤ d − 2,

for any k-tuple 0 ≤ i1 < · · · < ik ≤ d − 2, the cluster set of
⋂k

j=1 Bij in P
d−1(C),

which is exactly
⋂k

j=1Hij , is a pure (d− 2− k)-dimensional algebraic variety of H∞,

3. The set Cd is a compact connected subset of Cd−1.

1.2. The bifurcation current

Classically, a parameter (c0, a0) ∈ C
d−1 is said J -stable if there exists a neighborhood

U ⊂ C
d−1 such that for any (c, a) ∈ U , there exists a homeomorphism ψc,a : Jc0,a0 → Jc,a

which conjugates Pc0,a0 to Pc,a, i.e. such that

ψc,a ◦ Pc0,a0(z) = Pc,a ◦ ψc,a(z), z ∈ Jc0,a0 .

The stability locus S of the family (Pc,a)(c,a)∈Cd−1 is the set of J -stable parameters and

the bifurcation locus is its complement Cd−1 \ S.

Definition 1.2. — We say that the critical point ci is passive at (c0, a0) ∈ C
d−1 if there

exists a neighborhood U ⊂ C
d−1 of (c0, a0) such that the family {(c, a) 7→ Pn

c,a(ci)}n≥1 is
normal on U . Otherwise, we say that ci is active at (c0, v0).
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It is known that the activity locus of ci, i.e. the set of (c0, a0) ∈ C
d−1 such that ci

is active at (c0, a0), coincides exactly with ∂Bi and that the bifurcation locus is exactly⋃
i ∂Bi (see e.g. [L, MSS, Mc]). We let

Ti := ddcgc,a(ci) .

Recall that the mass of a closed positive (1, 1)-current T on C
d−1 is given by

‖T‖ :=

∫

Cd−1

T ∧ ωd−2
FS = 〈T, ωd−2

FS 〉 ,

where ωFS stands for the Fubini-Study form on P
d−1(C) normalized so that ‖ωFS‖ = 1

and that, if T has finite mass, then it extends naturally as a closed positive (1, 1)-current

T̃ on P
d−1(C) (see [Dem]). We also let ‖T‖Ω := 〈T,1Ωωd−2

FS 〉 for any open set Ω ⊂ C
d−2.

One can prove the following (see [DeM, DF]).

Lemma 1.3 (Dujardin-Favre). — The support of Ti is exactly ∂Bi. Moreover, Ti has
mass 1 and Ti ∧ Ti = 0.

On the other hand, the measure µc,a := ddczgc,a(z) is the maximal entropy measure of
Pc,a and the Lyapounov exponent of Pc,a with respect to µc,a is given by

L(c, a) :=

∫

C

log |P ′
c,a|µc,a .

A double integration by part gives

L(c, a) = log d+

d−2∑

i=0

gc,a(ci).

In particular, the function L : Cd−1 → R is plurisubharmonic and continuous and the
(1, 1)-current ddcL =

∑
i Ti is supported by the bifurcation locus.

Definition 1.4. — The bifurcation current is Tbif :=
∑

i Ti = ddcL.

1.3. The higher bifurcation currents and the bifurcation measure of Pd

Bassanelli and Berteloot [BB1] introduce the higher bifurcation currents and the bifurca-
tion measure on C

d−1 (and in fact in a much more general context) by setting

T k
bif := (ddcL)k and µbif := (ddcL)d−1 .

Dujardin and Favre [DF] and Dujardin [Du2] study extensively the mesure µbif in the
present context. For our purpose, we first shall notice that Lemma 1.3 implies that

T k
bif = k!

∑

0≤i1<···<ik≤d−2

Ti1 ∧ · · · ∧ Tik(1)

is a positive closed (k, k)-current of finite mass. Let us set

G(c, a) := max
0≤i≤d−2

(gc,a(ci)) , (c, a) ∈ C
d−1

and, for any k-tuple I = (i1, . . . , ik) with 0 ≤ i1 < cdots < ik ≤ d− 2 and k ≤ d− 2,

GI(c, a) := max
1≤j≤k

(
gc,a(cij )

)
, (c, a) ∈ C

d−1 .

We shall use the following (see [DF, §6]):
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Proposition 1.5. — Let 1 ≤ k ≤ d− 2 and let I = (i1, . . . , ik) be a k-tuple with 0 ≤ i1 <
· · · < ik ≤ d− 2. Then Ti1 ∧ · · · ∧ Tik = (ddcGI)

k . Moreover, µbif = (d− 1)! · (ddcG)d−1.

One of the crucial points of our proof relies on the following property of the measure
µbif (see [DF, Proposition 7 & Corollary 11]).

Theorem 1.6 (Dujardin-Favre). — The support of µbif coincides with the Shilov
boundary ∂SCd ⊂ ∂Cd of the connectedness locus. Moreover, there exists a Borel set
B ⊂ ∂SCd of full measure for the bifurcation measure µbif and such that for all (c, a) ∈ B,

– all cycles of Pc,a are repelling,
– the orbit of each critical points are dense in Jc,a,
– Kc,a = Jc,a is locally connected and dimH(Jc,a) < 2.

1.4. Horizontal currents and admissible wedge product

Therefore, we also need some known results concerning horizontal currents. Let Ω ⊂ X
be a connected open set of a complex manifold.

Definition 1.7. — A closed positive (1, 1)-current T is horizontal in Ω×D if the support
of T is an horizontal subset of Ω× D, i.e. if there exists a compact set K ⋐ D such that

supp(T ) ⊂ Ω×K .

We define similarly vertical currents.

Mimating exactly the proof of [DDS, Lemma 2.3], one gets the following.

Lemma 1.8. — Let T be horizontal in Ω×D. Let, for any z ∈ Ω, µz := T ∧ [{z}×D] be
the slice of T on the vertical slice {z} × D. Then the function

u(z, w) :=

∫

{z}×D

log |w − s| dµz(s)

is a psh potential of T , i.e. T = ddcu.

Assume now that Ω ⊂ M, where M is a complex manifold of dimension n ≥ 2. Let
(Tα)α∈A be a measurable family of positive closed (q, q)-currents in Ω and let ν be a positive
measure on A such that α 7→ ‖Tα‖Ω is ν-integrable. The direct integral of (Tα)α∈A is the
current T defined by

〈T, ϕ〉 :=
∫

A
〈Tα, ϕ〉dν(α) ,

for any (d− q − 1, d− q − 1)-test form ϕ. We denote T by T =
∫
A Tαdν(α).

Recall also that, if T = ddcu is a closed positive (1, 1)-current and S is a closed positive
(p, p)-current with p + 1 ≤ n, we say that the wedge product T ∧ S is admissible if
u ∈ L1

loc(σS), where σS is the trace measure of S. It is classical that we then may define
T ∧ S := ddc(uS). Dujardin [Du2, Lemma 2.8] can be restated as follows:

Lemma 1.9. — Let T =
∫
A Tα dν(α) be a (1, 1)-current as above and let S be a closed

positive (p, p)-current with p+1 ≤ n. Assume that the product T ∧S is admissible. Then,
for ν-almost every α, Tα ∧ S is admissible and

T ∧ S =

∫

A
(Tα ∧ S) dν(α) .
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2. A comparison principle for plurisubharmonic functions

We aim here at proving Theorem 2. In the present section, X is a k-dimensional complex
manifold, k ≥ 1, for which there exists a smooth psh function w on X and a strict analytic
subset Z of X such that (ddcw)k is a non-degenerate volume form on X \ Z. Let also Ω
stand for a connected open subset of X with C1−smooth boundary and let PSH(Ω) stand
for the set of all p.s.h functions on Ω.

2.1. Mass comparison for Monge-Ampère measures

We now assume in addition that Ω is a compact subset of X . We let PSH−(Ω) be the set
of non-positive p.s.h functions on Ω. We shall need the following lemma. Even though it
looks very classical, we give a proof.

Lemma 2.1. — Let 0 ≤ j ≤ k and u, v ∈ PSH(Ω) be such that u = v on a neighborhood
of ∂Ω. Let ω be a smooth closed positive (1, 1)-form. Assume that the measures (ddcu)j ∧
ωk−j and (ddcv)j ∧ ωk−j are well-defined and that (ddcu)j ∧ ωk−j has finite mass. Then

∫

Ω
(ddcv)j ∧ ωk−j =

∫

Ω
(ddcu)j ∧ ωk−j.

Proof. — For j = 0, there is nothing to prove. We thus assume j > 0. For r > 0, we
denote by Ωr := {z ∈ Ω/d(z, ∂Ω) > r}. Let r > 0 be such that u = v in a neighborhood
of ∂Ωr and let χr ∈ C∞(Ω) have compact support and be such that 0 ≤ χr ≤ 1 and
χr = 1 on Ωr and χr = 0 on Ω \ Ωr/2. Let un be a decreasing sequence of smooth psh
functions on Ω converging to u and vn be a decreasing sequence of smooth psh functions
on Ω converging to v. As u = v in a neighborhood of ∂Ω, for n large enough, un = vn in
Ω \ Ωr and integration by parts yields
∫

Ω
χr(dd

cvn)
j ∧ ωk−j = −

∫

Ω
dχr ∧ dcvn ∧ (ddcvn)

j−1 ∧ ωk−j

= −
∫

Ω
dχr ∧ dcun ∧ (ddcun)

j−1 ∧ ωk−j =

∫

Ω
χr(dd

cun)
j ∧ ωk−j,

since un = vn on a neighborhood of supp(dχr) for n large enough. Letting n tend to
infinity gives :

∫

Ω
χr(dd

cv)j ∧ ωk−j =

∫

Ω
χr(dd

cu)j ∧ ωk−j.

For r′ ≤ r, we can choose χr′ ≥ χr. As r can be choosen arbitrarily close to 0, the
monotonic convergence Theorem gives the wanted result.

2.2. Classical comparison principle

We give here a local comparison theorem in the spirit of [BGZ, Corollary 2.3]. It is one
of the numerous generalizations of Bedford and Taylor classical comparison Theorem for
Monge-Ampère measures (see [BT]).The difference with respect to Benelkourchi, Guedj
and Zeriahi’s work consists in the boundary condition, which is of different nature. The
proof goes essentially the same way.
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Theorem 2.2 (Classical comparison principle). — Let u, v ∈ PSH−(Ω) be such
that (ddcu)k and (ddcv)k are well-defined finite positive measures. Assume that v ∈ C(Ω)
and

lim sup
Ω∋z→z0

(u(z) − v(z)) ≥ 0

for any z0 ∈ ∂Ω. Then
∫

{u<v}
(ddcv)k ≤

∫

{u<v}∪{u=−∞}
(ddcu)k.

Proof. — Let ǫ > 0 and w := max(u + ǫ, v). The measure (ddcw)k is well-defined and
w = u+ ǫ on a neighborhood of ∂Ω. Lemma 2.1, thus gives

∫

Ω
(ddcw)k =

∫

Ω
(ddcu)k.

On the other hand, according to [BGZ, Theorem 2.2], we have

1{u+ǫ<v}(dd
cv)k = 1{u+ǫ<v}(dd

cw)k et 1{u+ǫ>v}(dd
cu)k = 1{u+ǫ>v}(dd

cw)k.

Therefore, since {u+ ǫ ≤ v} ⊂ {u < v} ∪ {u = −∞}, we find:
∫

{u+ǫ<v}
(ddcv)k =

∫

{u+ǫ<v}
(ddcw)k =

∫

Ω
(ddcw)k −

∫

{u+ǫ≥v}
(ddcw)k

=

∫

Ω
(ddcu)k −

∫

{u+ǫ>v}
(ddcw)k −

∫

{u+ǫ=v}
(ddcw)k

≤
∫

Ω
(ddcu)k −

∫

{u+ǫ>v}
(ddcw)k =

∫

B

(ddcu)k −
∫

{u+ǫ>v}
(ddcu)k

≤
∫

{u+ǫ≤v}
(ddcu)k ≤

∫

{u<v}∪{u=−∞}
(ddcu)k.

As 1{u+ǫ<v} is an increasing sequence which converges pointwise to 1{u<v}, Lebesgue’s
monotonic convergence Theorem, we conclude making ǫ→ 0.

As in the classical case of locally uniformly bounded psh functions, we get as a conse-
quence of Theorem 2.2 the following local domination principle:

Corollary 2.3 (Classical domination principle). — Let u, v ∈ PSH−(Ω) be such
that (ddcu)k and (ddcu)k are finite well-defined positive measures. Assume that v ∈ C(Ω),
that u ≥ v (ddcu)k-a.e. and that lim supΩ∋z→z0(u(z) − v(z)) ≥ 0 for all z0 ∈ ∂Ω. Then
u ≥ v.

Proof. — We proceed by contradiction. Assume that the open set {u < v} is non-empty.
By our assumption on X , there exists w ∈ PSH(X ) ∩ C∞(X ) such that (ddcw)k is a non-
degenerate volume form on X \Z, where Z is an analytic subset of X . As Ω is a compact
subset of X , w is bounded on Ω and, up to adding some negative constant to w, we may
assume that w ≤ 0. For ǫ > 0, we set vǫ := v + ǫw, then vǫ ≤ v and {u < vǫ} ⊂ {u < v}.
If ǫ is small enough, the open set {u < vǫ} is also non-empty and

0 < ǫk
∫

{u<vǫ}
(ddcw)k ≤

∫

{u<vǫ}
(ddcvǫ)

k ≤
∫

{u<vǫ}
(ddcu)k ≤

∫

{u<v}
(ddcu)k = 0,

which is the wanted contradiction.
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2.3. Proof of Theorem 2

Let us first prove that u = v on ∂K. Let z0 ∈ ∂K. As v is continuous,

v(z0) = lim sup
K 6∋z→z0

v(z) lim sup
K 6∋z→z0

u(z) ≤ lim sup
z→z0

u(z) ≤ lim sup
z→z0

v(z) = v(z0) ,

and thus u = v on ∂K. Let now U be a connected component of K̊ and let us set

w(z) =

{
u(z) if z ∈ U

v(z) if z ∈ Ω \ U.

The function w is then psh on Ω \ ∂U and usc on Ω. Moreover, if z0 ∈ ∂U , w satisfies the
submean inequality at z0 in any non-constant holomorphic disk σ : D → Ω with σ(0) = z0.
Indeed, if r > 0 is small, then

w(z0) = u(z0) = u ◦ σ(0) ≤ 1

2π

∫ 2π

0
u ◦ σ(reiθ)dθ ≤ 1

2π

∫ 2π

0
w ◦ σ(reiθ)dθ ,

where the last inequality comes from the fact that, by definition of w, we have u ≤ w.
Thus, w is psh on Ω. By [Dem, Prop. 4.1, p. 150], since w = v outside of a compact
subset of Ω, the measure (ddcw)k is well-defined. According to Lemma 2.1, it comes

(ddcw)k(Ω) = (ddcv)k(Ω) .

Moreover, by definition of w, one has (ddcw)k = (ddcv)k on Ω \ U . Thus,

(ddcw)k(U) = (ddcw)k(Ω)− (ddcw)k(Ω \ U)

= (ddcv)k(Ω)− (ddcv)k(Ω \ U)

= (ddcv)k(U) = 0 ,

which gives (ddcw)k = (ddcv)k as measures on Ω. Since w ≥ v on supp((ddcv)k), this in
particular implies that w ≥ v, (ddcw)k-a.e in Ω.

To conclude, let W ⋐ Ω be an open set with smooth boundary such that K ⋐ W and
let M := supW v ∈ R. Set now w1 := w−M and v1 := v−M . From the above discussion,
we have w1, v1 ∈ PSH−(W ), (ddcw1)

k = (ddcv1)
k is a finite well-defined positive measure,

and w1 = v1 on supp((ddcw1)
k) and on a neighborhood of ∂W . According to Corollary

2.3, we then have w1 ≥ v1 on U , i.e. u = w = v on U . As this remains valid for any
connected component U of K̊, we have proved that u = v on K̊, which ends the proof.

3. Structure of some slices of the bifurcation currents

For any 1 ≤ q ≤ d− 2, we set ℓ = d− q,

Σℓ := {1, . . . , ℓ}N ,

and let σℓ : Σℓ → Σℓ be the full shift, i.e. σℓ(ǫ0ǫ1 · · · ) = ǫ1ǫ2 · · · .
When d := (d1, . . . , dℓ) ∈ (N∗)ℓ satisfy d =

∑
i di, we also let νd be the probability

measure on Σℓ, which is invariant by σℓ, and giving mass (dǫ0 · · · dǫn−1)/d
n to the cylinder

of sequences starting with ǫ0, . . . , ǫn−1.

Definition 3.1. — The measure νd is called the (d1d , . . . ,
dℓ
d )-measure on Σℓ.
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Let us remark that by definition, the measure νd doesn’t charge points.

For the whole section, we let I = (i1, . . . , ik) be a k-tuple with 0 ≤ i1 < . . . < ik ≤ d− 2
and we let Ic be the unique (d− 1− k)-tuple satisfying I ∪ Ic = {0, 1, . . . , d− 2}. We may
write Ic = (j1, . . . , jd−1−k). For any τ ∈ Sd−1−k, we let

UI,τ := {GI(c, a) < gc,a(cjτ(1))} ∩
d−k−2⋂

l=1

{gc,a(cjτ(l)) < gc,a(cjτ(l+1)
)} .

We aim here at proving the following.

Theorem 3.2. — For any (c, a) ∈ UI,τ∩{GI = 0}, there exists an analytic set X0 ⊂ UI,τ ,
a complex manifold X and a finite proper holomorphic map π : X → X0 such that:

1. X has dimension k and {GI ◦ π = 0} ∩ X ⋐ X ,
2. (ddcL ◦ π)k is a finite measure on X supported by ∂ ({GI ◦ π = 0} ∩ X ),
3. there exists 2 ≤ ℓ ≤ d − k and d = (d1, . . . , dℓ) ∈ (N∗)ℓ with d =

∑
i di and such

that, for any ǫ ∈ Σℓ, there exists k closed positive (1, 1)-current Tǫ,1, . . . , Tǫ,k on X
with L∞

loc potentials such that the product Tǫ1,1 ∧ · · · ∧ Tǫk,k is admissible for ν⊗k
d -a.e.

ǫ = (ǫ1, . . . , ǫk) ∈ Σk
ℓ and

(ddcL ◦ π)k = k!

∫

Σk
ℓ

Tǫ1,1 ∧ · · · ∧ Tǫk,k dν⊗k
d (ǫ) .

4. for any connected component U of the interior of {GI ◦ π = 0} ∩ X ,

(ddcL ◦ π)k(∂U) = 0.

3.1. Preliminaries to Section 3

Let us recall known results and description concerning the bifurcation currents and the
Böttcher coordinates at infinity of degree d polynomials (see e.g. [DF, Du2]). Let X be
any complex manifold and let (Pλ)λ∈X be any holomorphic family of degree d polynomials.

One can define a fibered dynamical system P̂ acting on X̂ := X × C as follows

P̂ : X × C −→ X × C

(λ, z) 7−→ (λ, Pλ(z)) .

The sequence d−n log+ |(P̂ )n| converges uniformly locally on X ×C to the continuous psh
function (λ, z) 7→ gλ(z), where gλ is the Green function of Pλ. Let us set

T̂X := ddcλ,zgλ(z)

and let p1 : X ×C → X and p2 : X ×C → C be the respective natural projections. Assume
in addition that (Pλ)λ∈X is endowed with d−1 marked critical points, i.e. that there exists
holomorphic functions c1, . . . , cd−1 : X → C with C(Pλ) = {c1(λ), . . . , cd−1(λ)}. In this
setting, one can easily see that

ddc (gλ(ci(λ)) = (p1)∗

(
T̂X ∧ [Ci]

)
,

where Ci = {(λ, ci(λ))} is the graph of the map ci(λ).
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Finally, we shall also use the Böttcher coordinate at ∞ of Pc,a, i.e. the biholomorphic

map ψc,a : Wc,a := {z ∈ C | gc,a(z) > G(c, a)} → C \ D(0, eG(c,a)) which satisfies ψc,a(z) =

z − 1
d−1 (c1 + · · ·+ cd−2) +O(z−1) at infinity and

ψc,a ◦ Pc,a(z) = (ψc,a(z))
d, z ∈Wc,a .

One can show that, for z ∈Wc,a, gc,a(z) = log |ψc,a(z)| (see e.g. [Mi2]).

3.2. The maximal entropy measure µc,a for (c, a) ∈ C
d−1 \ Cd

In the present section, we prove that, when exactly d−k−1 critical points of Pc,a escape, the
maximal entropy measure µc,a of Pc,a enjoys good decomposition properties with respect to
some (d1/d, . . . , dℓ/d)-measure νℓ for some 2 ≤ ℓ ≤ d− k. Namely, we prove the following.

Proposition 3.3. — Let (c, a) ∈ C
d−1 \Cd. Assume that d−k−1 critical points (counted

with mulitplicity) of Pc,a escape under iteration. Then, there exists k ≤ q ≤ d − 2 such
that one can decompose Kc,a as a disjoint union of (possibly non-connected) compact sets

Kc,a =
⋃

ǫ∈Σℓ

Kǫ

where ℓ = d − q. Moreover, ther exists d ∈ (N∗)ℓ and for any ǫ ∈ Σℓ, there exists a
probability measure µǫ supported by Kǫ such that µǫ = ∆gǫ, where gǫ is subharmonic and
locally bounded and

µc,a =

∫

Σℓ

µǫdνd(ǫ) .

Moreover, for any ǫ ∈ Σd−q, one has µc,a(Kǫ) = 0.

Proof. — We follow closely the strategy of the proof of [Du2, Theorem 3.12] and adapt it
to our situation. According to [Mi2, Theorem 9.3], the curve {z ∈ C | gc,a(z) = G(c, a) >
0} contains at least one critical point of Pc,a. Let us define a topological disk U0 by setting
U0 := {z ∈ C | gc,a(z) < d ·G(c, a)} and U1 := P−1

c,a (U0).

Lemma 3.4. — For n ≥ 0, any component of Un is a topological disk and Un+1 ⋐ Un.

We postpone the proof at the end of the section. As explained the proof of [Mi2,
Theorem 9.5], one can show that U1 has at least 2 distinct connected components. We thus
can disjoint open set V1, . . . , VN so that U1 = V1∪· · ·∪VN . Let us set Pi := Pc,a|Vi

: Vi → U0

is a ramified covering map of degree di ≥ 1.

Claim. — Let q ≥ k be the number of critical points of Pc,a lying in U1, counted with
multiplicity. Then U1 has ℓ := d− q distinct connected components and

d = d1 + · · · + dℓ.

Let us continue the proof of Propostion 3.3. For any ǫ ∈ Σd−q, we set

Kǫ := {z ∈ U0 ; P
m
c,a(z) ∈ Vǫm, m ≥ 0} =

⋂

n≥0

P−1
ǫ0

(
· · ·

(
P−1
ǫn (U0)

))
.

Beware that the set Kc,a has uncountably many connected components and that the
compact set Kǫ is not necessarily connected. In fact, whenever C(Pc,a) ∩ U1 6⊂ Kc,a,
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there must exist non-connected Kǫ. On the other hand, one clearly has

Kc,a =
⋃

ǫ∈Σℓ

Kǫ

and this decomposition naturally gives a continuous surjective map

hc,a : Kc,a −→ Σℓ

satisfying hc,a(z) = ǫ iff z ∈ Kǫ. The map hc,a semi-conjugates Pc,a on Kc,a to σℓ on Σℓ,
i.e. satisfies hc,a ◦ Pc,a = σℓ ◦ hc,a on Kc,a.

Proceeding as in [Du2], one can prove that, for any z ∈ U0 \ Kc,a, one can rewrite
d−n(Pn

c,a)
∗δz as follows

1

dn
(Pn

c,a)
∗δz =

1

dn

∑

ǫi∈{1,...,ℓ},i≤n

P ∗
ǫ0 · · ·P ∗

ǫn−1
δz

=
∑

ǫi∈{1,...,ℓ},i≤n

dǫ0 · · · dǫn−1

dn

[
1

dǫ0 · · · dǫn−1

P ∗
ǫ0 · · ·P ∗

ǫn−1
δz

]
.(2)

When n→ ∞, the following convergence holds independently of z,

1

dǫ0 · · · dǫn−1

P ∗
ǫ0 · · ·P ∗

ǫn−1
δz −→n→∞ µǫ ,

where the measure µǫ is a probability measure supported by ∂Kǫ. The measure µǫ is the
analogue of the Brolin measure for the sequence (Pǫi)i≥0. In particular, one can prove
that µǫ = ∆gǫ, where gǫ is a locally bounded subharmonic function.

As d−n(Pn
c,a)

∗δz converges to µc,a of Pc,a, making n→ ∞ in (2), one finds

µc,a =

∫

Σℓ

µǫdνd(ǫ) .

Let now ǫ ∈ Σℓ. By the formula above, as νd doesn’t charge points,

µc,a(Kǫ) = νd({ǫ}) = 0 ,

which ends the proof.

Proof of Lemma 3.4. — One first sees that

U1 = {z ∈ C | ∃x ∈ U0 s.t. Pc,a(z) = x}
= {z ∈ C | gc,a(Pc,a(z)) < d ·G(c, a)}
= {z ∈ C | gc,a(z) < G(c, a)} ⋐ {z ∈ C | gc,a(z) < d ·G(c, a)} = U0 ,

as gc,a is the Green function of the compact set Kc,a. Assume that some connected com-
ponent W of some U1 is not homeomorphic to a disk. Then C \W will have a bounded
component O which has to map to the unique unbounded component of C \W . Hence O
will contain a pole of Pc,a, whereas there are no poles of Pc,a in C.

Proof of the Claim. — The map Pc,a : P1 \U1 → P
1 \U0 is a branched covering of degree

d and, as χ(P1 \U0) = 1 and χ(P1 \U1) = 2−N . Let q ≥ k be such that d− q− 1 critical
points of Pc,a belong to U0 \U1, and as ∞ is a critical points of multiplicity d− 1 of Pc,a,
by Riemann-Hurwitz, one has

d · 1 = 2−N + (d− q − 1) + (d− 1) = 2d− q −N .
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We thus have N = d− q.
For any 1 ≤ j ≤ d − q, the map Pi : Vi → U0 is a branched covering. As Vi is a

topological disk, one has χ(Vi) = χ(U0) = 1 and the Riemann-Hurwitz formula gives

di = deg(Pi) = ri + 1 ,

where ri is the number of critical points of Pc,a contained in Vi, counted with multiplicities.
Making the sum over i, we find

d−q∑

i=1

di =

d−q∑

i=1

(ri + 1) = d− q +

d−q∑

i=1

ri = d ,

since
∑

i ri is the number of critical points contained in U1, i.e.
∑

i ri = q.

3.3. Proof of Theorem 3.2

We are now in position to prove Theorem 3.2. For the proof, we follow closely the strategy
of the proof of [Du2, Theorem 3.12]. Let (c0, a0) ∈ {GI = 0} ∩ UI . As gc0,a0(cj,0) > 0 for

any j ∈ Ic, there exists kj ≥ 1 such that gc0,a0(P
kj
c0,a0(cj,0)) = dkjgc0,a0(cj,0) > G(c0, a0).

Let us set

X1 :=
⋂

j∈Ic

{(c, a) ∈ UI,τ | ψc,a(P
kj
c,a(cj)) = ψc0,a0(P

kj
c0,a0(cj,0))} .

Then X1 is an analytic variety of dimension at least k. Up to taking an irreducible
component of X1, we may assume that it is irreducible. Moreover, it is contained in

Y :=
⋂

j∈Ic

{(c, a) ∈ UI,τ | gc,a(cj) = gc0,a0(cj,0)} .

The boundary of Y consists in parameters (c, a) for which GI(c, a) = gc0,a0(cjτ(1),0) > 0.

In particular, ∂X1 consists in parameters for which GI(c, a) = gc,a(cjτ(1)) > 0, hence

1. ∂X1 ⊂ ∂UI,σ and
2. {GI = 0} ∩ X1 ⋐ X1.

Let now q ≥ k be the integer given by Proposition 3.3 at the parameter (c0, a0) and let

X0 := X1 ∩ {d ·GI(c, a) < G(c0, a0)} .
Let finally π : X → X0 be a desingularization of X0. We denote by Pλ the polynomial
Pc,a if (c, a) = π(λ). Let also ci(λ) := ci ◦ π(λ). We also let λ0 ∈ X be such that
π(λ0) = (c0, a0). Let us remark that X still sasitsfies properties 1 and 2 aforementioned
and that (ddcGI ◦ π)k is supported by the compact set ∂{GI ◦ π = 0}. Let K ⋐ X be

a compact subset with {GI ◦ π = 0} ⋐ K̊. By the Chern-Levine-Nirenberg inequalities,
there exists a constant C > 0 such that

‖(ddcGI ◦ π)k‖ ≤ C · ‖GI ◦ π‖kL∞(K) < +∞ ,

According to (1) and Proposition 1.5, since supp(ddcgc,a(cj)) ⊂ {gc,a(cj) = 0}, one has

(ddcL)k = k!(ddcGI)
k on UI,τ .

It is thus left to prove that (ddcGI ◦ π)k satisfies the assertions 3 and 4 of the Theorem.

Remark that the labelling P−1
λ (U0) = V1∪· · ·∪Vℓ introduced in the proof of Proposition

3.3 does not depend on any choice. Moreover, according to the proof of Proposition 3.3
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and to the definition of X0, this decomposition persists in X and depends continously on
the parameter λ. We thus can define

P̂i : X × Vi −→ X × U0

by setting P̂i(λ, z) = (λ, Pi,λ(z)). Let us also set s(λ) := cjτ(1)(λ). Let R > 0 be big

enough so that U0,λ ⊂ D(0, R/2) for any λ ∈ X . Such an R exists by construction of X
(Take for example R = d2G(c0, a0)). Let ℓ, d ∈ (N∗)ℓ and νd be given by Proposition 3.3.
As we have seen in section 3.2, for any ǫ ∈ Σℓ and any λ ∈ X , the sequence

1

dǫ0 · · · dǫn−1

P ∗
ǫ0,λ · · ·P ∗

ǫn−1,λδs(λ) = ddcz

(
1

dǫ0 · · · dǫn−1

log
∣∣Pǫn−1,λ ◦ · · · ◦ Pǫ0,λ(z)− s(λ)

∣∣
)

converges to a measure µǫ,λ which has a L∞
loc logarithmic potential gǫ,λ.

Let now Γs be the graph of s, Γs := {(λ, s(λ)) ; λ ∈ X}. We can write

1

dn
(P̂ ∗)n[Γs] =

1

dn

∑

ǫi∈{1,...,ℓ}, i≤n−1

P̂ ∗
ǫ0 · · · P̂ ∗

ǫn [Γs] .(3)

For n ≥ 0, one also can set

T̂ǫ,n :=
1

dǫ0 · · · dǫn−1

P̂ ∗
ǫ0 · · · P̂ ∗

ǫn−1
[Γs]

= ddcλ,z

(
1

dǫ0 · · · dǫn−1

log
∣∣Pǫn−1,λ ◦ · · · ◦ Pǫ0,λ(z) − s(λ)

∣∣
)

= ddcλ,zuǫ,n ,

where we have set

uǫ,n(λ, z) :=
1

dǫ0 · · · dǫn−1

log
∣∣Pǫn−1,λ ◦ · · · ◦ Pǫ0,λ(z) − s(λ)

∣∣ .

It is obvious that the sequence (uǫ,n)n≥1 is locally uniformly bounded from above. Accord-
ing to Proposition 3.3, for any λ ∈ X , the functions uǫ,n|{λ}×D(0,R) converges in L1

loc to a
subharmonic function 6≡ −∞. Hence there exists a subsequence (uǫ,nk

) which converges

in L1
loc(X × D(0, R)) to a psh function uǫ,∞. Let us remark that T̂ǫ,n are all horizontal

currents with supports contained in X × D(0, R/2). Making n → ∞, we see that the

current T̂ǫ,∞ := ddcuǫ,∞ is horizontal. According to Lemma 1.8, one can write

uǫ,∞(λ, z) =

∫

D(0,R)
log |z − t| dµǫ,λ(t) + h(λ, z) = gǫ,λ(z) + h(λ, z) ,(4)

where h is pluriharmonic on X × D(0, R) and gǫ,λ(z) is the logarithmic potential of µǫ,λ.

In particular, the function (λ, z) 7→ gǫ,λ(z) is psh on X ×D(0, R) and the sequence T̂ǫ,n
converges in the weak sense of currents to T̂ǫ := ddcgǫ,λ(z).

Let now p1 : X × C → X and p2 : X × C → C stand for the canonical projections.

Let T̂ := ddcλ,zgλ(z). According to [DF, §3], 1
dn (P̂

∗)n[Γs] converges to T̂ as n → ∞. The

decomposition (3) then guarantees that

T̂ =

∫

Σℓ

T̂ǫ dνd(ǫ) .
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As T̂ has a continuous potential, T̂ ∧ [Cij ] is admissible. According to Lemma 1.9,

T̂ǫ ∧ [Cij ] is admissible for νd-a.e. ǫ ∈ Σℓ and one can write

π∗Tij = ddcgλ(cij (λ)) = (p2)∗

(
T̂ ∧ [Cij ]

)
=

∫

Σℓ

(p2)∗

(
T̂ǫ ∧ [Cij ]

)
dνd(ǫ) .

Let us set Tǫ,j := (p2)∗

(
T̂ǫ ∧ [Cij ]

)
, as soon as this product is admissible and Tǫ,j := 0

otherwise. When k = 1, we have justified item 3.
Assume now that k ≥ 2. For the sake of simplicity, write Σ = Σℓ and ν = νd. Again,

as the functions gλ(ci1(λ)), . . . , gλ(cik(λ)) are continuous, for any 1 ≤ m ≤ k, the wedge
product ddcgλ(ci1(λ))∧ · · · ∧ ddcgλ(cim(λ)) is admissible. By an easy induction, according
to Lemma 1.9 and to Fubini’s Theorem, for any 1 ≤ m ≤ k the product Tǫ1,1 ∧ · · · ∧Tǫm,m

is admissible for ν⊗m-a.e. ǫ = (ǫ1, . . . , ǫm) and,

k∧

j=1

ddcgλ(cij (λ)) =

∫

Σ


Tǫ,1 ∧

k∧

j=2

ddcgλ(cij (λ))


 dν(ǫ)

=

∫

Σ


Tǫ1,1 ∧

∫

Σ


Tǫ2,2 ∧

k∧

j=3

ddcgλ(cij (λ))


 dν(ǫ2)


 dν(ǫ1)

=

∫

Σ2


Tǫ1,1 ∧ Tǫ2,2 ∧

k∧

j=3

ddcgλ(cij (λ))


 dν(ǫ2)dν(ǫ1)

...

=

∫

Σk

(Tǫ1,1 ∧ · · · ∧ Tǫk,k) dν(ǫ1) · · · dν(ǫk) .

By Proposition 1.5, this yields item 3, letting Tǫ1,1 ∧ · · · ∧ Tǫk,k = 0 if it is not admissible.

Let us now prove item 4. When T̂ǫ ∧ [Cij ] is admissible, its support is included in

{(λ, z) ∈ X × D(0, R) ; z ∈ Kǫ,λ} ∩ Cij = {(λ, z) ∈ X × C ; cij (λ) ∈ Kǫ,λ} .

As a consequence, supp(Tǫ,j) ⊂ {λ ∈ X ; cij (λ) ∈ Kǫ,λ}. Let U be a connected component
of the interior of {GI ◦π = 0}. Then U is a stable component, i.e. the seuqences Pn

λ (cij (λ))
form normal families in U as families of holomorphic functions of the parameter. Hence
there exists ǫ0,j ∈ Σd−q and k holomorphically moving points zj(λ) ∈ Kǫ0,j ,λ such that

cij (λ) ≡ zj(λ) on U . This implies cij (λ) ∈ Kǫ0,j ,λ for any λ ∈ U and

〈
(ddcGI ◦ π)k,1U

〉
=

∫

Σk

〈
k∧

j=1

Tǫj ,j,1U

〉
dν⊗k(ǫ)

≤ ‖Tǫ0,1,1 ∧ · · · ∧ Tǫ0,k,k‖U ·
k∏

j=1

ν({ǫ0,j}) = 0 ,

which concludes the proof.
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4. The bifurcation measure doesn’t charge boundary components

Here, we prove Theorem 4, i.e. that as in the quadratic family, given any connected
component U of the interior of the connectedness locus Cd, the bifurcation measure doesn’t
give mass to the boundary of U . The proof of Theorem 4 relies uses the continuity of the
Julia set at some specific parameters due to Douady [Do], convergence of invariant line
fields established by McMullen [Mc], as well as a precise dynamical description of µbif-a.e.
polynomial due to Dujardin and Favre [DF].

4.1. Invariant line field and the Caratheodory topology

For the material of the present section, we refer to [Mc].

Definition 4.1. — Let U ⊂ C be an open set. A measurable line field on a Borel set of
positive area E ⊂ U is a Beltrami coefficient

ν = ν(z)
dz̄

dz

where ν(z) is a measurable map on U with |ν(z)| = 1 if z ∈ E and ν(z) = 0 otherwise.
Let V ⊂ C be another open set. We say that the line field ν is invariant by a holomorphic
map f : U → V , or f -invariant, if f∗ν = ν on U ∩ V .

Let us consider a sequence (Vn, xn) of pointed topological disks of P1. We say that
(Vn, xn) converges to (V, x) in the Caratheodory topology if

1. xn → x as n→ ∞,
2. for all compact set K ⊂ V , there exists N ≥ 1 such that K ⊂ Vn for all n ≥ N ,
3. for any open set U ⊂ P

1 containing x, if there exists N ≥ 1 such that U ⊂ Vn for all
n ≥ N , then U ⊂ V .

If (Un, xn) → (U, x) and (Vn, yn) → (V, y) in the Caratheodory topology and if fn :
Un → Vn is a suquence of holomorphic maps satisfying fn(xn) = yn whic converges
uniformly on compact subsets of U to f : U → V holomorphic with f(x) = y, we say that
fn : (Un, xn) → (Vn, yn) converges in the Carathéodory topology to f : (U, x) → (V, y).

Recall the following definition (see [Mc, §5.6]).

Definition 4.2. — We say that a sequence νn ∈ L∞(V,C) converges in measure to ν ∈
L∞(V,C) on V if for all compact K ⋐ V and all ε > 0,

lim
n→∞

Area ({z ∈ K ; |νn(z)− ν(z)| > ε}) = 0 .

According to [W, Proposition 2.37.3], a bounded sequence νn ∈ L∞(C,C) admits a sub-
sequence which converges in measure if and only if it is a Cauchy sequence in measure,
i.e. for any compact K ⋐ C and for any δ, ǫ > 0, there exists n ≥ 1 such that

Area ({z ∈ K : |νp(z)− νq(z)| > δ}) ≤ ǫ ,

for any p, q ≥ n.

In what follows, we shall use the following result of McMullen (see [Mc, Theorem 5.14]).
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Theorem 4.3 (McMullen). — Let fn : (Un, xn) → (Vn, yn) be a sequence of non-
constant holomorphic maps between disks. Assume that fn converges in the Caratheodory
topology to a non-constant holomorphic map f : (U, x) → (V, y) . Assume in addition that
there exists a measurable fn-invariant line field νn which converges in measure to ν on V .
Then ν is a measurable f -invariant line field. In particular, Area(supp(ν)) > 0.

4.2. Some pathologic filled-in Julia sets of positive area

In the present section, we aim at proving that, for polynomials belonging to the boundary
of queer components where Kc,a = Jc,a, the filled-in Julia set has positive area. Precisely,
we prove the following.

Theorem 4.4. — Let U ⊂ C
d−1 be a connected component of the interior of Cd. Assume

that there exists a parameter (c, a) ∈ U , the polynomial Pc,a has only repelling cycles and
let (c0, a0) ∈ ∂U . Then either Area(Jc0,a0) > 0 or Kc0,a0 has non-empty interior.

Proof. — As there exists (c, a) ∈ U such that Pc,a has only repelling cycles, one has
Jc,a = Kc,a and, as U ⊂ S, this implies that Jc,a = Kc,a for all (c, a) ∈ U . In particular,
U is not a hyperbolic component. By [MSS, Theorem E], for any (c, a) ∈ U , there
exists a Pc,a-invariant line field νc,a which is supported on the Julia set Jc,a of Pc,a, i.e.
νc,a ∈ L∞(C,C) satisfies P ∗

c,aνc,a = νc,a and there exists a Borel set Ec,a ⊂ Jc,a of positive
area such that |νc,a(z)| = 1 for all z ∈ Ec,a, and νc,a(z) = 0 for all z /∈ Ec,a.

Let us briefly recall how, in the present case, one can build this invariant line field.
Let (c1, a1) ∈ U be a base point that we have chosen and let ψc,a stand for the Böttcher
coordinate of ∞ of Pc,a. The family of analytic maps

φc,a(z) := ψ−1
c,a ◦ ψc1,a1(z), z ∈ C \ Jc1,v1 ,

defines a conformal holomorphic motion U × (C \ Jc1,a1) → C which satisfies

φc,a ◦ Pc1,a1(z) = ψ−1
c,a ◦ ψc1,a1(Pc1,a1(z)) = ψ−1

c,a(ψc1,a1(z)
d) = Pc,a ◦ φc,a(z) .

By the λ-Lemma, it extends as a quasiconformal holomorphic motion φ : U × P
1 → P

1

such that φc,a conjugates Pc1,a1 to Pc,a on C. Let µc,a be the Beltrami form on C satisfying

∂φ−1
c,a = µc,a ◦ ∂φ−1

c,a

almost everywhere on C. Then supp(µc,a) ⊂ Jc,a. If Area(supp(µc2,a2)) = 0 for some
(c2, a2) ∈ U , it would also be the case for all (c, a) ∈ U . By the above construction,
the maps φc,a would be a quasi-conformal homeomorphism which is holomorphic almost
everywhere, i.e. φc,a ∈ Aut(C). This contradicts the fact that the family (Pc,a)(c,a)∈Cd−1

is a finite ramified cover of the moduli space Pd. Hence the Beltrami form defined by

νc,a :=

{
µc,a(z)
|µc,a(z)|

· dz̄
dz if µc,a(z) 6= 0 ,

0 otherwise

defines an invariant line field for Pc,a.

Let us now proceed by contradiction, assuming that, for some (c0, a0) ∈ ∂U , one has
Jc0,a0 = Kc0,a0 and Kc0,a0 has Lebesgue measure zero. According to [Do, Corollaire 5.2],
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the map (c, a) 7→ Jc,a is continuous at (c0, a0). By [R, Corollary 6.5.2], for any (c, a) ∈ Cd,
the compact set Kc,a contains 0 and

Kc,a ⊂ D(0, 4
d−1
√
d) .

By Montel’s Theorem, the family (ψ−1
c,a)(c,a)∈U is a normal family and, for all z ∈ C \

D(0, 4d), one has lim(c,a)→(c0,v0) ψ
−1
c,a(z) = ψ−1

c0,v0(z), where ψc0,v0 is the Böttcher coordinate

at ∞ of Pc0,v0 . In particular, the family (ψ−1
c,a)(c,a)∈U converges locally uniformly to ψ−1

c0,v0

on C \ D as (c, a) → (c0, v0). Hence, for R > 0 big enough, the topological disk

(ψ−1
c,a(P1 \ D(0, R)),∞)

converges to the topological disk

(ψ−1
c0,a0(P

1 \ D(0, R)),∞)

in the Caratheodory topology, as (c, a) → (c0, a0), and for all (c, a) ∈ U ∪ {(c0, a0)},

D(0, 4
d−1
√
d) ∩ ψ−1

c,a(P
1 \ D(0, R)) = ∅ .

If we set

Uc,a := {z ∈ C ; gc,a(z) < logR} = ψ−1
c,a(C \D(0, R))

and Vc,a := Pc,a(Uc,a) = {z ∈ C ; gc,a(z) < d logR}, the open sets Uc,a and Vc,a are topo-

logical disks and (Uc,a, 0) → (Uc0,a0 , 0) and (Vc,a, a
d) → (Vc0,a0 , a

d
0) in the Caratheodory

topology as (c, a) → (c0, a0).

As Jcn,an converges in the Hausdorff topology to Jc0,a0 , one has

0 ≤ lim sup
n→∞

Area(Jcn,an) ≤ Area(Jc0,a0) = 0 ,

which means that limn→∞Area(Jcn,an) = Area(Jc0,a0) = 0.
Let K ⋐ C be a compact subset and δ, ǫ > 0. As supp(νcn,an) ⊂ Jcn,an , there exists

n ≥ 1 such that Area(supp(νcp,ap)) ≤ ǫ/2 for all p ≥ n. Let now p, q ≥ n. Then

{z ∈ K : |νcp,ap(z)− νcq,aq (z)| > δ} ⊂ supp(νcp,ap) ∪ supp(νcq,aq ) ,

hence

Area
(
{z ∈ K : |νcp,ap(z)− νcq,aq(z)| > δ}

)
≤ ǫ .

The sequence (νcn,an) is thus a Cauchy sequence in measure and we can find a sequence
{(cn, an)}n≥1 (maybe extracted from the previous one) which converges to (c0, a0) as n
tends to ∞ and such that νcn,an converges in measure to some function ν0 ∈ L∞.

Finally, since (Ucn,an , 0) → (Uc0,a0 , 0) and
(
Vcn,an , a

d
n

)
→

(
Vc0,a0 , a

d
0

)
converge in the

Carathéodory topology and since Pcn,an converges uniformly on compact subsets of C to
Pc0,a0 , we may apply Theorem 4.3 to the sequences (νcn,an) and

Pcn,an : (D(ci,n, R), ci,n) → (Vn, Pcn,an(ci,n)) .

The conclusion is that ν0 is a Pc0,a0-invariant line field on Jc0,a0 . In particular, Jc0,a0 must
have positive area, since it carries an invariant line field, which is a contradiction.
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4.3. Proof of Theorem 4

Recall that there exists a Borel set B ⊂ ∂SCd of full measure for the bifurcation measure
µbif and such that for all (c, a) ∈ B, (see Theorem 1.6)

– all cycles of Pc,a are repelling,
– the orbit of each critical points are dense in Jc,a,
– Kc,a = Jc,a is locally connected and dimH(Jc,a) < 2.

Let U ⊂ C
d−1 be a connected component of the interior of Cd. Then it is a stable compo-

nent, i.e. U ⊂ S. Assume first that there exists (c, a) ∈ U such that Pc,a has at least one

non-repelling cycle. As Pern(e
iθ) ⊂ C

d−1 \S for any n ≥ 1 and θ ∈ R, the polynomial Pc,a

has at least one attracting periodic point z(c, a) and it can be followed holomorphically on
U . Hence it extends as a continuous map z : U → C such that z(c, a) is periodic for Pc,a for

all (c, a) ∈ U . In particular, for all (c, a) ∈ ∂U , the polynomial Pc,a admits a non-repelling
periodic point. In particular, B ∩ ∂U = ∅ by Theorem 1.6, hence µbif(∂U) = 0.

Assume now that there exists (c, a) ∈ U such that all the periodic points of Pc,a are
repelling. Then, according to [MSS, Theorem E], for any (c, a) ∈ U , Pc,a carries an
invariant line field on its Julia set, Jc,a = Kc,a and Area(Jc,a) > 0. Let (c0, a0) ∈ ∂U , as
(c, a) ∈ U → (c0, a0), either all the cycles of Pc,a remain repelling, or at least one becomes
non-repelling. One thus has the following dichotomy:

1. all cycles of Pc0,a0 are repelling and thus Jc0,a0 = Kc0,a0 , or
2. there exists one cycle of Pc0,a0 which is non-repelling.

In the first case, according to Theorem 4.4, one has Area(Jc0,a0) > 0, hence (c0, a0) 6∈ B.
In the second case, according to Theorem 1.6, one has (c0, a0) 6∈ B. We thus have proved
that, in any case, ∂U ∩ B = ∅ and thus µbif(∂U) = 0.

5. Distribution of Pern(w) for any w ∈ C

The present section is dedicated to the proof of Theorem 1. In a first time, we recall the
construction of the hypersurface Pern(w) and equidistribution results concerning these
hypersurfaces established by Bassanelli and Berteloot [BB3].

5.1. The hypersurfaces Pern(w)

In what follows, we shall use the following (see [S, Mi1]):

Theorem 5.1 (Milnor, Silverman). — For any n ≥ 1, there exists a polynomial pn :
C
d → C such that degw pn(c, a, w) ∼ d−n/n and

1. If w 6= 1, pn(c, a, w) = 0 if and only if Pc,a has a cycle of exact period n and multiplier
w,

2. pn(c, a, 1) = 0 if and only if there exists q ≥ 1 such that Pc,a has a cycle of exact
period n/q and multiplier η a primitive q-root of unity.

We will be interested in the study of the hypersurfaces

Pern(w) := {(c, a) ∈ C
d−1 | pn(c, a, w) = 0} ,

for n ≥ 1 and w ∈ C. For w ∈ C, we also shall set Ln,w(c, a) := log |pn(c, a, w)| and
[Pern(w)] := ddcc,aLn,w .
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Bassanelli and Berteloot [BB2] show the following.

Theorem 5.2 (Bassanelli-Berteloot). — Let w ∈ C be such that |w| ≤ 1. Then
d−nLn,w converges to L in L1

loc(C
d−1). In particular, limn→∞ d−n[Pern(w)] = Tbif.

More generally, for any w ∈ C, they prove the following.

Proposition 5.3 (Bassanelli-Berteloot). — Fix w ∈ C. Up to extraction, the se-
quence (d−nLn,w) converges in L1

loc(C
d−1) to a p.s.h function ϕ which satisfies

– ϕ ≤ L on C
d−1,

– ϕ = L on hyperbolic components. In particular, ϕ 6≡ −∞.

5.2. Proof of Theorem 1

We are now in position to prove Theorem 1. Let us first remark that, since the natural
projection π : Cd−1 → Pd defined by π(c, a) = {Pc,a} is finite to 1, it is sufficient to prove
that equidistribution holds in the family (Pc,a)(c,a)∈Cd−1 .

Let w ∈ C be fixed. If |w| ≤ 1, then Theorem 5.2 gives the wanted result. We may
thus assume that |w| > 1. By Proposition 5.3, we may also sasume that (d−nkLnk,w)k≥0

converges in L1
loc to a psh function ϕ and that

1. ϕ ≤ L on C
d−1,

2. ϕ = L on hyperbolic components and in particular, ϕ 6≡ −∞,

Our strategy is to make inductively use of the comparison principle which is established
in Section 2 to prove that ϕ = L. First, let us define an open set U by setting

U :=

d−2⋃

k=0

Uk, with Uk :=
⋃

I

⋃

τ∈Sd−1−k

UI,τ ,

where I = (i1, . . . , ik) ranges over k-tuples with 0 ≤ i1 < · · · < ik ≤ d− 2 and where UI,τ

are the open sets defined in Section 3.

Claim. — U is an open and dense subset of Cd−1 \ Cd.

We may prove that L = ϕ on U . As L and ϕ are psh and as L is continuous, this yields
L = ϕ on C

d−1 \ Cd. Indeed, if (c, a) ∈ C
d−1 \ Cd, there exists U ∋ (cn, an) → (c, a) and

ϕ(c, a) ≤ L(c, a) = lim sup
n→∞

L(cn, an) = lim sup
n→∞

ϕ(cn, an) ≤ ϕ(c, a) .

For any (c, a) ∈ U , we let 0 ≤ k ≤ d − 2 be the number of critical points of Pc,a with

bounded orbit. If k = 0, then (c, a) ∈ E := C
d−1 \ ⋃

j Bj. Since E is in an hyperbolic

component, hence ϕ(c, a) = L(c, a). In particular, ϕ = L on U ∩ E .
Assume now that 1 ≤ k ≤ d− 2 and that ϕ = L on

U \
⋃

0≤i1<···<ik−1≤d−2

k−1⋂

j=1

Bij ,

i.e. on the locus on U where at least d − k critical points escape escape. Since k critical
points of Pc,a don’t escape, (c, a) ∈ {GI = 0} ∩ UI,τ for some k-tuple I and some τ ∈
Sd−1−k. Let us remark that {GI > 0} ∩ UI,τ is contained in the aforementioned open
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set, so that ϕ = L on {GI > 0} ∩ UI,τ . According to Theorem 3.2, there exists a a k-
dimensional manifold X , an analytic set X0 and a finite proper analytic map π : X → X0

such that

– X has dimension k,
– {GI ◦ π = 0} ⋐ X , in particular ϕ ◦ π = L ◦ π on X \ {GI ◦ π = 0},
– (ddcL ◦ π)k is a finite measure on X supported by ∂{GI ◦ π = 0},
– for any connected component U of the interior of {GI ◦ π = 0},

(ddcL ◦ π)k(∂U) = 0.

To apply the comparison Theorem 2, it remains to justify the existence of a smooth form
on X which is Kähler outside an analytic subset of X . Let ω := ddc‖(c, a)‖2 be the
standard Kähler form on C

d−1. Then the function λ 7→ ‖π(λ)‖2 is psh and smooth on X .
Moreover, the form

ωX := ddc‖π(λ)‖2 = π∗ (ω|X0)

is Kähler on X \Z, where Z is the analytic set of λ ∈ X where Dλπ doesn’t have maximal
rank. By Theorem 2, one has ϕ ◦ π = L ◦ π on X . In particular, ϕ(c, a) = L(c, a) and
ϕ = L on the open set

U \
⋃

0≤i1<···<ik≤d−2

k⋂

j=1

Bij .

By a finite induction, we have ϕ = L on U , hence on C
d−1 \ Cd.

The final step of the proof goes essentially the same way. According to Theorem 4,

– L is continuous and psh on C
d−1 and

(ddcL)d−1 = ‖(ddcL)d−1‖ · µbif
is supported on ∂SCd ⊂ ∂Cd,

– for any connected component U of C̊d, (ddcL)d−1(∂U) = 0,
– ϕ ≤ L and ϕ = L on Cd−1 \ Cd.

By Theorem 2, this yields ϕ = L. Since ϕ is any L1
loc limit of the sequence (d−nLn,w), the

sequence d−nLn,w converges in L1
loc to L, which ends the proof.

It thus remains to prove the Claim.

Proof of the Claim. — The openess is trivial by continuity of the maps (c, a) 7→ gc,a(cj).
For 0 ≤ k ≤ d− 2, I = (i1, . . . , ik) with 0 ≤ i1 < · · · < ik ≤ d− 2 and τ ∈ Sd−k−1, we let
Vk,I,τ ⊂ C

d−1 be the open set

Vk,τ := {GI < gc,a(cjτ(1)) ≤ · · · ≤ gc,a(cjτ(d−k−1)
)} ,

where {j1, . . . , jd−k−1} = Ic, so that
⋃

k,I,τ Vk,I,τ = C
2\Cd and UI,τ ⊂ Vk,I,τ . It is sufficient

to prove that UI,τ is dense in Vk,I,τ for any k and any τ to conclude.
Let now 0 ≤ k ≤ d−2 and τ ∈ Sd−1 be fixed. Assume by contradiction that Vk,I,τ \UI,τ

contains an open set Ω of Cd−1 \ Cd. Then, there exists 1 ≤ l ≤ d− k− 2 so that the map

φl : (c, a) 7→ gc,a(cjτ(l+1)
)− gc,a(cjτ(l))

is constant equal to 0 on Ω. On the other hand, as Ω ⊂ W := {gc,a(cjτ(l)) > 0} ∩
{gc,a(cjτ(l+1)

) > 0}, the functions gc,a(cjτ(l)) and gc,a(cjτ(l+1)
) are pluriharmonic on W ,

the function φl is pluriharmonic on the connected component V of W constaining Ω and
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vanishes on Ω. In particular, φl ≡ 0 on V , hence on V , by continuity of φl. This means
that the open set V is a connected component of {gc,a(cjτ(l)) > 0}.

Lemma 5.4. — The open set {(c, a) ∈ C
d−1 ; gc,a(cjτ(l)) > 0} is connected.

To conclude the proof of the Claim, we just have to remark that we have shown that
gc,a(cjτ(l)) ≡ gc,a(cjτ(l+1)

) on C
d−1, which is impossible, by Theorem 1.1.

Proof of Lemma 5.4. — If p ∈ H∞ \Hjτ(l), then C
d−1 can be foliated by all the complex

lines (ℓt)t∈A of Cd−1 direction p, where A is a (d − 2)-dimensional complex plane which
is transverse to the foliation. Let now ℓ be such a line. The choice of p guarantees that
ℓ ∩ {gc,a(jτ(l)) = 0} is a compact subset ℓ. In particular, if the set ℓ ∩ {gc,a(jτ(l)) > 0} is
not connected, it admits a bounded connected component U . By the maximum principle

sup
U

|Pn
c,a(cjτ(l))| = sup

∂U
|Pn

c,a(cjτ(l))| .

Since ∂U is a compact subset of {gc,a(cjτ(l)) = 0} ∩ ℓ, the sequence {Pn
c,a(cjτ(l))}n≥1 is

uniformly bounded on U , which contradicts the fact that V is a connected component of
ℓ ∩ {gc,a(jτ(l)) > 0}.

Now, if (c, a), (c′, a′) ∈ {gc,a(cjτ(l)) > 0}, the exists a ball B ⊂ A such that (c, a), (c′, a′) ∈
O :=

⋃
t∈B ℓt. Since B is compact in A, there exists R > 0 such that the set {gc,a(cjτ(l)) =

0}∩O is contained in B(0, R). Let now t0, t1 ∈ A be such that (c, a) ∈ ℓt0 and (c′, a′) ∈ ℓt1
and let (c0, a0) ∈ ℓt0\B(0, R)∩ℓt0 and (c1, a1) ∈ ℓt1\B(0, R)∩ℓt1 . As ℓt0∩{gc,a(cjτ(l)) > 0} is
a connected open set fℓt0 , there exists a continuous path γ0 : [0, 1] → ℓt0∩{gc,a(cjτ(l)) > 0}
with γ0(0) = (c, a) and γ0(1) = (c0, a0). One can find the same way a continuous path
γ1 : [0, 1] → ℓt1 ∩ {gc,a(cjτ(l)) > 0} with γ1(0) = (c1, a1) and γ1(1) = (c′, a′). Finally, the

choice of (c0, a0) and (c1, a1) easily gives a continuous path γ3 : [0, 1] → {gc,a(cjτ(l)) > 0}
which satisfies γ3(0) = (c0, a0) and γ3(1) = (c1, a1). The path γ := γ1 ∗ γ3 ∗ γ2 : [0, 1] →
{gc,a(cjτ(l)) > 0} is continuous and satisfies γ(0) = (c, a) and γ(1) = (c′, a′), which ends
the proof.
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