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Abstract

The paper is devoted to the solution of Laplace equation by the boundary ele-
ment method. The coupling between a finite element solution inside a bounded
domain and a boundary integral formulation for an exterior infinite domain can
be performed by producing a ”stiffness” or ”impedance matrix” which is equiv-
alent to the interaction coming from BEM, when coupled with FEM stiffness or
impedance matrix. It is shown in a first step that the use of classical Green’s
functions for plane domains can lead to impedance matrices which have eigen-
values of different signs, which is physically and numerically unsatisfying and
also to singular impedance matrices, corresponding to the classical degenerate
scale problem. Avoiding the degenerate scale problem is classically overcome by
adding to the Green’s function a constant which is large compared to the size
of the 2D domain. However, it is shown that this constant affects the solution
of exterior problems in the case of non-null resultant of the normal gradient at
the finite boundary. It becomes therefore important to precise the value of this
constant related to a characteristic length introduced into the Green’s function.
Using a ”slender body theory” allows to show that for long cylindrical domains
with a given cross section, the characteristic length is asymptotically equal to
the length of the cylindrical domain.Comparing numerical or analytical 3D and
2D solutions on circular cylindrical domains confirms this result for circular
cylinders.

Keywords: Elasticity, Laplace equation, Boundary Element Method, Plane
problems, Green’s function, Exterior problem, Impedance matrix

1. Introduction

The advantage of the boundary element method, compared to other approx-
imate solutions is the most obvious when the method is used for problems on
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unbounded domains, either for solving completely linear systems of partial dif-
ferential equations or very often as a complement of the finite element method
in the case of problems containing local non-linearities.

It is well known that, in the case of 2D problems, the fundamental solution
tends to infinity when the distance between source and observation point tends
to infinity, either for the case of Laplace equation or for the elasticity operator.
A consequence is that if the resultant of sources is not null, the solution does
not vanish at infinity. A main point of interest in the literature is the well-
posedness of the Exterior Boundary Value Problem. Due to the logarithmic
behaviour of the fundamental solution at infinity, the well-posedness has been
studied primarily in the case where the resultant of sources (or forces in problems
related to elasticity equations) on the finite boundary is null [1, 2, 3, 4, 5, 6, 7].
However many practical problems need the application of sources or forces whose
resultant is non-null; this case has been considered in [8, 9]. The validness of
the corresponding integral equation has been proved in details by [10] for the
standard integral equation using Somigliana equality (with a new kernel) and
by [11] for the regularized integral equation without restriction on the kernel
which is used. So, in this paper, we shall assume that the consideration of an
exterior problem by standard BEM is licit even if the resultant of sources or
forces applied at the boundary is non-null.

A second difficulty related to 2D problems is the loss of uniqueness of the
solution when the domain under consideration has specific dimensions and when
the classical logarithmic function for an infinite domain is used. It was early
recognized [12] and the usual practical way to circumvent this problem is to add
a constant to the Green’s function which must be adjusted to the dimensions of
the domain [13, 9]. This method leads however to the obtaining of the potential
up to an additional arbitrary constant value, this method being related to a
convenient ”scaling” of the distances introduced when using the fundamental
solution [14]. Other methods are used to perform a ”regularization” of the
problem and to recover the uniqueness [15, 16, 17, 18, 19, 20]. This problem
is recurrent within the literature [21, 22, 7, 23, 24]. The link between the
condition number of the BEM matrices and the scaling of the problem has been
also investigated [25]. Two points remain unclear in this context. First, it is
clear that some constants added to the fundamental solution must be avoided,
leading to non-uniqueness of the solution. However, it is not always clear if
all other values can still be used. Indeed, it is practically always considered
that the constant is arbitrary and that all solutions related to different values
of the arbitrary constant are the same, upto an additional constant. This paper
addresses these two points in the case of Laplace equation. The purpose of the
present paper is therefore :

- to present in section 2 an example where the use of the classical singular
solution for Laplace equation within the usual formulation of the boundary
integral equation leads to non physical solutions. The example recovers the loss
of uniqueness for some specific problems and shows that in addition to the loss
of uniqueness, some fundamental solutions can lead to a loss of positiveness of
the ”impedance matrix” induced by the boundary element formulation.
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- to prove next that for interior problems any constant added to the fun-
damental solution does not change the solution which is given up to an added
constant and that in the case of exterior problems, solutions related to different
constants added to the fundamental solution are different for Dirichlet or mixed
value problems. Therefore, it is clearly of importance to find the value of the
”right” constant related to a given physical problem or the right ”characteristic
length” associated to this problem.

- to show in section 3 by using the ”slender body theory” that the solution
to a given 2D boundary value problem can be obtained as the asymptotic limit
of the solution to an associate 3D problem over a long cylinder as soon as the
associated ”characteristic length” is equal to the length of the cylinder.

- to confirm in section 6 the result of the ”slender body theory” by comparing
the results coming from 3D problems over long cylinders, these results being
obtained by various analytical (section 4) or numerical (section 5) solutions.

2. Discussion of the direct formulation of the boundary element method

in the case of the exterior problem for Laplace equation

2.1. Example of loss of uniqueness and appearance of unphysical results on a

numerical solution built from the classical formulation of the exterior prob-

lem

Our discussion will start with the classical formulation of the exterior ”Dirich-
let” Boundary Value Problem. Let us therefore consider the solution u of the
exterior problem of Laplace equation on a plane domain D having a bound-
ary ∂D for Dirichlet boundary conditions. The classical discretized integral
equation writes (see appendix A):

[H][u] = [G][q] (1)

where [u] and [q] contain the nodal displacements and the nodal values of the
normal flux while [H] and [G] are built from the interpolation functions, the
geometry of the elements and from the Green’s function (and its derivatives).

The Green’s function which is used at the beginning is the classical expres-
sion for 2D problems given by:

G =
1

2π
ln(1/r) (2)

r being the distance between source and observation point.
The physical soundness of the results will be studied by using the eigenvalues

of:
- the matrix [G],
- the symmetric part [K] of the ”impedance matrix” [K1] (cf appendix A)

which allows the computation of the supply of energy from:

W =
1

2
[u]T [F ] =

1

2
[u]T [K1][u] =

1

2
[u]T [K][u] (3)
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Figure 1: The exterior 2D problem outside a square.

where [K1] is the ”impedance matrix” which is built by using matrices [H] and
[G] as in [26]:

[K1] = [Q][G]−1[H] (4)

where [Q] is a matrix allowing the condensation of boundary stresses on nodal
forces.

It may be noticed that the ”impedance matrix” [K1] is in general not sym-
metric, due to the fact that [G] and [H] are generally themselves not symmetric.
Let us consider a simple example which is the problem exterior to a square hav-
ing a side length equal to 2, as shown in Fig.1.

Eigenvalues of [K]
-6.06 1.58 1.58 1.72

Table 1: Eigenvalues of the matrix [K] when using the classical 2D Green’s function for
Laplace equation in the domain of Fig.1.

Table 1 displays the eigenvalues of matrix [K], showing that one of these
eigenvalues is negative, which is physically inconsistent, because it implies a
negative supply of energy for some boundary conditions. Now, let us show that
this situation is closely related to the well-known problem of loss of uniqueness
of the Dirichlet problem which is mentioned in many papers. Indeed, Fig.2
displays the smallest eigenvalue of matrix [G] for different sizes L of the side of
the square defining the boundary of the exterior problem, noticing that for any
value of L, all other three eigenvalues of [G] are positive.

Fig.2 shows that the smallest eigenvalue of matrix [G] vanishes when L =
Lmax = 1.543, becomes positive when L < Lmax and is negative when L >
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Lmax. It is worthwhile noticing that the critical length Lmax is not far from the
value obtained by [25] from different considerations, despite the roughness of
the boundary discretization in our example. The value L = Lmax corresponds
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Figure 2: Smallest eigenvalue of matrix [G] for different side-lengths.

to a matrix [G] which is singular and therefore to the loss of uniqueness of the
discretized Dirichlet boundary value problem. Let us now look at the extreme
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Figure 3: Critical eigenvalue of matrix [K] for different side-lengths.

eigenvalues of matrix [K]. Fig.3 displays the smallest eigenvalue of matrix [K]
as a function of L, when it is negative and the largest eigenvalue of this matrix
when all eigenvalues are positive, showing that the smallest eigenvalue of [K] is
also negative for all values of L > Lmax. However, the negative eigenvalue tends
to −∞ when L comes near Lmax with L > Lmax, coming obviously from the
fact that [K] is built from [G]−1. Obviously, the largest eigenvalue of [K] tends
to infinity when L comes near Lmax with L < Lmax, meaning that even if [K]
has all its eigenvalues positive, the supply of energy can be unphysically large
when L comes near Lmax. These results recover from a different point of view
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the results obtained in (Dijkstra and Mattheij, 2007) on the relation between
the logarithmic capacity of interaction matrices and the condition number of
[G] matrix.

So, this simple example shows that the boundary value problem related to
Dirichlet boundary condition may not be sound from a physical point of view.
It may lead either to non-uniqueness or to an unphysical supply of energy,
depending of the scale of the problem. There are two equivalent means to
overcome the problem: either effect a ”scaling”’ on the physical lengths defining
the boundary of the problem, or add a constant to the Green’s function of the
problem. These solutions are equivalent. Indeed, this is generally achieved by
using a Green’s function with the form:

G =
1

2π
ln(l/r) =

1

2π
ln(1/r) + C (5)

with C = 1
2π ln(l).

So, the main question is the choice of C or l. As shown before, these con-
stants must be chosen in a convenient range of values to ensure uniqueness and
positiveness of the impedance matrix. A current view is to consider that all
solutions are the same upto an additional constant. This is the question which
will be studied in the following.

2.2. Comparison of solutions related to different constants added to the funda-

mental solution

2.2.1. Interior problem

We consider the regularized integral equation for Laplace equation for inte-
rior problems and for fundamental solutions which are equal up to a constant
C, given by:

∫

∂D

(u(y)− u(x)
∂G(x,y)

∂n(y)
dSy =

∫

∂D

∂u

∂n
(G(x,y) + C)dSy (6)

Without internal sources, the integral
∫

∂D
∂u
∂ndSy is null, due to energy con-

servation. So, the solution of the integral equation does not depend of the
constant C. Therefore, the solution is perfectly defined as soon as Dirichlet
boundary condition is applied at least at one point and does not depend on
the constant introduced into the Green’s function. The constant added to the
Green’s function appears in the conditioning of the digitized system of equa-
tions, but not in the solution. For purely Neumann’s boundary conditions,
the solution is defined upto an arbitrary constant, contrarily to the case of the
exterior problem, as shown thereafter.

2.2.2. Exterior problem

For the exterior problems, the regularized integral equation reads:

u(x) +

∫

∂D

(u(y)− u(x)
∂G(x,y)

∂n(y)
dSy =

∫

∂D

∂u

∂n
(G(x,y) + C)dSy (7)
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As explained in the introduction, the boundary conditions for an exterior
problem do not need to be at equilibrium on the finite boundary. Therefore,
the integral

∫

∂D
∂u
∂ndSy is not null. As a consequence, the part containing the

constant term does not vanish and the solution depends explicitly of this con-
stant term.

At this stage, it can be seen that the problem of the constant which is
added to the Green’s function is not crucial in the case of the interior problem
as soon as the uniqueness is ensured, because the numerical solution does not
depend on the value of the constant added to the Green’s function. In the
case of the exterior problem, the solution of the boundary value problem by
the boundary element method depends explicitly of the constant added to the
Green’s function. In the case of Neumann’s boundary conditions, all solutions
related to different constants added to the Green’s function are equal upto a
constant. Indeed, let us now consider two solutions which are equal, up to a
constant Cu. It can be seen from equation(7) that Cu is related to the constant
C by:

Cu = C.

∫

∂D

∂u

∂n
dSy (8)

So, if one considers the solutions for Neumann’s boundary conditions related
to two values which are different by the constant C, they are equal upto an
added constant Cu given by this relation, which involves the resultant of the
flux through the finite boundary. As for the interior problem, the constant
added to the Green’s function does not modify the solution if the resultant of
the flux at the finite boundary is null.

In the case of mixed boundary conditions, the solutions corresponding to
different values of the constant added to the Green’s function can have very
different forms. So, it becomes crucial to define precisely the value of the con-
stant added to the Green’s function. This is the main question addressed in this
paper.

The consequence of the choice of the constant in the Green’s function on
the positiveness of the impedance can be seen in the example of an exterior
problem with a circular boundary on which a constant potential is imposed.
The classical solution of the problem is

u = A. ln(r) +B (9)

where A and B depend of the boundary conditions.
The boundary impedance related to the solution of this problem can be

recovered from the boundary integral formulation
Indeed, let us consider the exterior problem related to a boundary condition

u = u0 at r = R. The integral equation becomes:

u(x) +

∫

∂D

(u(y)− u(x))
∂G(x,y)

∂n(y)
dSy =

∫

∂D

∂u

∂n
(y)G(x,y)dSy (10)

For a constant potential at the boundary , the second integral vanishes and
the normal gradient ∂u

∂n = q is constant. Then the integral equation produces:
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u0 = q0

∫

∂D

1

2π
ln(l/r)dSy (11)

with r = ||y − x||.
The integration leads finally to:

u0 = q0R ln(l/R) (12)

which shows that the impedance q0
u0

at the boundary depends of the character-
istic length l and can be negative for small values of l.

2.3. Obtaining a physically satisfying solution

If one wants to recover solutions which are physically satisfying, it is neces-
sary to use a characteristic length which has a physical meaning, for the problem
under solution. This problem is obviously closely related to the non physical
nature of 2D solutions within an infinite plane which do not vanish at infinity.

From another point of view, 2D problems are usually encountered in two
cases:

- plane problems on domains which are very thin along one direction (typi-
cally plates or plane stress elasticity). These problems are only of the interior
kind.

- problems whose solutions correspond to fields which do not depend on one
space variable (typically plane strain elasticity). These problems can be either
of interior or exterior kind.

In this last case, the field is generally an approximation in a given restricted
domain of a 3D field solution of a 3D problem defined on all space.

So, it is natural in this last case to associate to the 2D problem a 3D problem
on a long cylinder, as in Fig.4, this cylinder having not necessarily a circular
section. The conditions on the lateral boundary of the cylinder are deduced
from the boundary conditions on the boundary of section Γ. The cylinder can
be either closed at its endings and in this case boundary conditions must be
added on the related surfaces Bα, B−α. In the following, it will be shown that
the restriction of the solution of the ”associated 3D problem” to the central
section of the cylinder is approximated by the solution of the 2D problem in the
vicinity of the cylinder as soon as the length of the cylinder is long enough.

This question will be studied by using three different approaches. In section
3, the comparison of the 2D and 3D solutions will be effected by using a method
usually known as the ”slender body theory” which consists in matching 2D
solution and 3D solution far from the cylinder in the midplane of the cylinder.
This solution will be provided for Neumann boundary solutions along the surface
of the cylinder. Next, in the following sections, the simplified case of a circular
cylinder will be studied. In section 4, known analytical solutions will be used
for obtaining the explicit impedance in the midplane obtained for Dirichlet
boundary conditions corresponding to a given constant potential at the cylinder.
Finally in section 5, the problem related to a circular cylinder will be solved by
using boundary elements for Dirichlet and Neumann boundary conditions.
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3. Relation between 2D and 3D problem obtained by the slender

body theory

3.1. Characteristic length obtained from the slender body theory

The method proposed in the following is to recover the same kind of potential
as in the previous subsection by starting from the well-posed 3D problem. We
will use a method based on the matching of a 2D solution and a 3D solution in
some area of the plane x3 = 0. Similar methods based on similar principles are
used in fluid mechanics [27, 28] and also in solid mechanics [29, 30].

Figure 4: The exterior 2D problem viewed as a part of the limit of a 3D problem.

A 2D Neumann exterior problem on the domain bounded by Γ with bound-
ary condition ∂u(x1, x2)/∂n = f(x1, x2) on Γ is considered as the limit when a
tends to infinity of a 3D Neumann problem (Figure 4) with the following bound-
ary condition on its boundary ∂Da: on Sa, ∂ua(x1, x2, x3)/∂n = f(x1, x2), on
Ba ∪B−a, ∂ua(x1, x2, x3)/∂n = 0 , with ∂Da = Sa ∪Ba ∪Ba. The ”diameter”
of Γ is defined by d = max

√

(x1 − y1)2 + (x2 − y2)2, (x,y) ∈ Γ.
We first consider the 3D problem. The integral representation of solution ua

is:

ua(x) =

∫

∂Da

∂ua

∂n
(y)G3D(x,y)dSy −

∫

∂Da

ua(y)H3D(x,y)dSy (13)

We assume here that
∫

∂Da

∂ua

∂n (y)dSy 6= 0, otherwise the solution does not

depend on the choice of the constant in the Green’s function (see 2.2.2). The
dominant term in the last equation is the first integral when r tends to infinity,
but some care is needed because the second term depends on a and is bounded
by A.sup

∂Da

|ua| (d/r), A being a constant depending on Γ. We will assume that

sup
∂Da

|ua| = O(ln(a/d)).

In fact, this conjecture is suggested by the results of numerical computations
in the case of axisymmetry which are shown thereafter in section 6.2. The figure
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9 shows that for the Neuman problem considered, the maximum value of u on
the boundary is obtained at z = 0. The figure 8 shows that the 3D solution for
z = 0 converges to the 2D solution when a → ∞. As this solution is given by
equation (12) with l = a, we can conclude that sup

∂Da

|ua| = O(ln(a/d)) in this

case.
If a ≫ r =

√

x2
1 + x2

2 ≫ d, we have the following asymptotic value of (13)
where F =

∫

Γ
f(y)dSy:

ua(x1, x2, x3 = 0) =

=
1

4π

∫

Γ

∫ a/2

−a/2

∂ua

∂n
G3D(x,y)dy3 +

d

r
O
(

ln(
a

d
)
)

=
1

4π

∫

Γ

∂ua

∂n
ln

(

a/2 +
√

(a/2)2 + (x1 − y1)2 + (x2 − y2)2

−a/2 +
√

(a/2)2 + (x1 − y1)2 + (x2 − y2)2

)

+
d

r
O
(

ln(
a

d
)
)

=
1

4π

∫

Γ

f ln







(

a/2 +
√

(a/2)2 + (x1 − y1)2 + (x2 − y2)2
)2

r2






+

d

r
O
(

ln(
a

d
)
)

=
F

2π
ln
(a

r

)

+O(
r2

a2
) +

d

r
O
(

ln(
a

d
)
)

(14)

If we consider the solution ua in the domain such that r/d >
(

ln(ad )
)2

then:

ua(x1, x2, x3 = 0) =
F

2π
ln
(a

r

)

+O(
r2

a2
) + O

(

(
d

r
)

1

2

)

(15)

We assume that the 3D problem in the midplane can be approximated by a
plane problem. The integral representation for the plane problem is:

u(x1, x2) =

∫

Γ

∂u

∂n
(y)G2D(x,y)dSy −

∫

Γ

u(y)H2D(x,y)dSy (16)

We set: G2D(x,y) = 1/2π ln(b/r); b is the arbitrary constant which appears
when solving 2D problems. If r ≫ d, we have the following asymptotic value:

u(x) =
F

2π
ln

(

b

r

)

+O(
d

r
) (17)

From comparing the 2D (17) and 3D (14) asymptotic values, one deduces
the relevant choice for the constant b is b = a. This result is compatible with
our assumption on sup

∂Da

|ua|. To approximate the 3D problem (with Neumann

boundary condition) related to a domain which is very long in the direction of
x3 = 0 by a 2D problem, it is nessary to adopt the Green’s function with a the
length of the domain:

Gp =
1

2π
ln(

a

r
) (18)
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i.e to fix the characteristic length used for overcoming non-uniqueness problems
at the value l = a.

Such a Green’s function with a physical definition of the related characteristic
length will be called ”physical Green’s function” in the following. It is shown
below that this Green’s function corresponds to the asymptotic field produced
by a line source having length a.

3.2. Construction of the physical Green’s function from a long line source

It is shown now that this 2D Green’s function corresponds exactly to the
asymptotic value of the field produced by a constant line density located along
the generating line of the cylinder related to the point source of the 2D boundary.
Indeed, let us consider the potential produced by a finite line source parallel to
the axis Oy3, centered at a point in the plane Oy1y2 and having a length a.

The potential produced at a point (y1, y2, 0) by that line source cutting the
plane (Oy1y2) at the position (x1, x2, 0) is given by an easy integration, leading
to:

ua =
1

4π
ln

(

a+
√
4.r2 + a2

−a+
√
4r2 + a2

)

(19)

where r =
√

(y1 − x1)2 + (y2 − x2)2.
The asymptotic value when a is large is then given by:

ua =
1

2π
ln(

a

r
) + O(r2/a2) (20)

which is exactly, at the first order, the singular solution obtained from the
slender body theory.

From another point of view, it introduces a natural characteristic length re-
lated to the dimension of the domain under study in the direction perpendicular
to the considered plane, as explained in the previous section.

The result obtained so far corresponds to the asymptotic value for long cylin-
ders. However, it is obviously of interest to verify this result by solutions related
to finite cylinders in order to see at which values of large cylinder lengths, the
asymptotic solution becomes satisfying. This will be the topic of the following
sections.

3.3. Discussion in relation with non-uniqueness

As stressed before, the constant added to the Green’s function must be large
enough to ensure the uniqueness of Dirichlet’s problem. It means that the
characteristic length l in the Green’s function must also be large enough. More
precisely, it was shown in [31] that the condition l>Rc is sufficient, where Rc is
the radius of the circle which is circumscribed to the 2D boundary. It can be seen
that this condition is verified by the physical Green’s function corresponding to
l = a in the case a ≫ Rc.

11



4. Analytical solutions of the Dirichlet problem for long bodies and

cylinders

This problem is widely documented in the literature for a constant value
of the potential, because it corresponds to the field produced by a cylindrical
conductor which is submitted to a given charge. The solution of this problem
produces the capacity of the conductor, which is in practice very useful. This
problem has been studied by using two different kinds of methods. The first one
corresponds to the solution for a thin straight wire and is produced again by an
asymptotic analysis. The second one corresponds to the analytical solution of
the field produced by a finite circular cylinder.

4.1. Asymptotic analysis for a thin straight wire

This analysis is an old problem which was first studied by Maxwell [32] and
revisited in [33]. The question is : for a given long conductor, what is the
distribution of the charge linear density λ as a function of the coordinate z
along the length of the cylinder? A first remark is that for a long ellipsoidal
conductor, the linear charge density λ is constant and independent of the ratio
of minor to major axis. Next, Jackson [33] shows that for a long conductor
with a variable radius R(z) such that R2(z) = ρ2.f(z) and a length a = 2α
the solution is governed by its asymptotic behaviour when ρ/α ≪ 1, which is
expressed by using the variable Λ = 2ln(a/ρ) with the form:

λ(ζ) = λ01−
1

Λ
ln(

1− ζ2

f(ζ)
) +

1

Λ2
[[ln(

1− ζ2

f(ζ)
)]2 − I] (21)

where ζ = z/α and I can be found when the shape function f(z) is known.
This linear charge density distribution ensures that the potential u is con-

stant along the wire with an approximation level corresponding to 1
Λ2 , its leading

term being given by:

u =
λ0Λ

4π
(22)

which is exactly the value given by (11) at the surface of the conductor by the
2D solution.

Indeed, due to the Gauss theorem, the normal gradient is related to the
linear charge density in the median plane by:

λ = 2π.R(0).
∂u

∂n
= 2π.R(0).q(0) (23)

Combining these two last equations provides the relation between the po-
tential and the value of the normal gradient in the midplane

u = R(0).ln(a/R(0)).q(0) (24)

which is the same as equation (12) with a = l.
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It is noteworthy that the second term in equation (21) provides the well
known weak singularity at the tips of the long conductor. However, this sin-
gularity does not affect the charge density in the neighbourhood of the median
plane, at the first order, as shown by the relation providing λ(ζ).

For a cylindrical conductor with circular cross-section, the constant I can
be exactly computed, which provides, up to second order in 1

Λ
:

λ(ζ) = λ01−
1

Λ
ln(1− ζ2) +

1

Λ2
[[ln(1− ζ2)]2 +

1

2
[ln(

1 + ζ

1− ζ
)]2 − π2

6
] (25)

This leads in the mean plane to the linear charge density:

λ = λ0(1−
π2

6Λ2
) (26)

This relation allows to obtain the correction at the second order in 1/Λ
between the impedance produced in the median plane by both 2D and 3D
solutions. Indeed, the potential is now given by:

u =
1

1− π2

6Λ2

R.ln(a/R).q(0) (27)

It must be noticed that the convergence is slow, because Λ involves a logarithmic
dependence as a function of the aspect ratio a/R. However, the convergence is
better for a cylinder than for the most general long body, because the difference
between 2D and 3D solutions for λ has the order 1/Λ2 for the cylinder, while
the order is 1/Λ for the most general long body.

4.2. Analytical solutions for a finite cylinder

4.2.1. A complete closed-form solution

The solution presented in the previous subsection is asymptotic for a thin
body when the aspect ratio is large enough. However, there exist a few solutions
for the finite cylinder to the problem involving constant Dirichlet boundary con-
ditions. This will allow to precise for which lengths the 2D solution is convenient
to represent the restriction of the 3D solution to the part of the midplane lo-
cated near the boundary. These solutions involve either the ”closed cylinder”
comprising the lateral cylindrical boundary and plane circular boundaries at
both tips of the cylinder [34, 35, 36] or the hollow cylinder which comprises
only the lateral cylinder [37, 38]. The hollow cylinder corresponds therefore to
a conductor whose orthogonal cross section is a thin circular layer.

The analytical solutions produce the distribution of surface charge density
induced by a constant given potential of the conductor, which allows to compute
the capacitance Q/u involving the total charge on the conductor induced by a
given surface potential u and also the distribution of the potential in all the
surrounding space. It was shown in [34] that the capacitance of the closed
cylinder is the same as the capacitance of the hollow cylinder as soon as the
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ratio H/R is greater than 2. Therefore, in the following, the results will be given
only for the hollow cylinder.

The solution for the hollow cylinder which is used in the following was pro-
vided by Verolino [37]. The solution is completely defined by the surface density
of charge at the surface of the cylinder. This density is defined on a circle at
height z by:

σ(z) =
2u√

α2 − z2

∞
∑

p=1

(−1)p−1CpT2p−2(z/α) (28)

where T2p−2 are Chebyshev polynomials and u is the given constant potential.
The series coefficients Cp are solutions of a linear system of equationsDnpCp =

δn1 characterized by matrix coefficients Dnp which are obtained by integrals of
products of Bessel functions. Formula (32) shows that this solution is again
singular at the tips of the cylinder.

It has been noticed during the computations that the expressions of the
matrix coefficients Dnp converge poorly and are unstable for large aspect ratios.
Practically, However, having constructed the matrix of coefficients Dnp, the
number of coefficients Cp to use for the convergence of the series is moderate,
typically inferior to 10.

4.2.2. A simplified closed-form solution

As explained previously, the convergence of the matrix terms allowing the
computation of the series coefficients in (31) is very unstable for large aspect
ratios of the cylinder. So, an approximate solution given by Scharstein [39] will
be also used in the following. It provides the charge density distribution with
the simple form:

σ(z) =
u

R
[c0 +

c1√
1− x2

] (29)

where x = z
α and c0 and c1 are explicit functions for large values of the aspect

ratio.
It is shown in [39] that this solution recovers the solution provided by [38]

for large aspect ratios of the cylinder.

5. Solution obtained by the Boundary Element Method in the ax-

isymmetric case

As explained previously, studying the Dirichlet problem with a constant
potential is very important for practical reasons, leading to the capacitance of
useful systems. As seen in section 3, the solution of 2D problems for large values
of aspect ratios produces asymptotically the solution of the 3D problem in the
midplane, as soon as the characteristic length is chosen correctly. In order
to evaluate the difference between 2D and 3D solutions in the intermediate
range of aspect ratios, the problem of a long cylinder with a circular cross-
section is solved in this section by using the Boundary Element Method. For
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any boundary conditions, this problem is fully 3D. A simplified version of the
problem is the axisymmetric case where the boundary conditions on the cylinder
do not depend of the azimuth. In this case, the problem can be solved as a 2D
problem in a plane containing its axis. For this axisymmetric problem, the
boundary conditions are fixed on the straight line (corresponding to r = R)
characterizing the bounding cylinder. The Green’s function to introduce into
this 2D problem is the integral related to a circular line source located along a
circle of radius R located at the height ζ which produces the field at height z
given by:

v(z, ζ) =
K(4/p2)

π.R.p
(30)

where p is related to the relative height z − ζ by:

p =

√

(z − ζ)2 + 4.R2

R
(31)

and where K is the complete elliptic integral of first kind.
The special function K presents itself in the literature under two forms. The

form corresponding to this formula is the one defined in formula 17.3.1, p.590
of[40], which is the same as the one used in Matlab software, but different from
the notation used in Maple software.

Similarly, the integral over a circle of the normal gradient of the 3D Green’s
function is given by:

w =
1

2π.R2p
[K(

4

p2
)− E(

4

p2
)] (32)

where E is the complete elliptic integral of second kind (formula 17.3.2, p.590
of [40]).

The integral equation for the potential u becomes:

u(z) +

∫ a/2

−a/2

[u(ζ)− u(z)]w.dζ =

∫ a/2

−a/2

v.
∂u

∂n
dζ (33)

The left integral is regular and v has a weak logarithmic singularity. So, from
a numerical point of view, this integral equation can be solved by the classical
ways of Boundary Element Method for plane problems, using a discretization of
the segment located between z = −a/2 and z = a/2 representing the section of
the cylinder by a plane containing its axis. Three kinds of solutions were used in
the following computations: constant elements, linear and quadratic elements.
The results are identical for these three kinds of approximations.

6. Numerical results

6.1. Dirichlet problem

The different solutions which were presented in the previous sections are
now used in order to be compared through different geometrical configurations,
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i.e. different values of the aspect ratio which is the ratio a/R between height
and radius of the cylindrical domain. As the 3D solution is assumed to produce
results in the midplane which are comparable to the 2D solution, the values of
impedance q/u, with q = ∂u

∂n (z = 0) are reported in Fig.5 as a function of the
aspect ratio for the different types of solutions described previously. In this case,
the potential at the cylinder is constant over its surface and the distribution of
sources is computed along the cylinder.

From this figure, the full 3D solution of Verolino (1995) compares very well
with the BEM solution for lower values of aspect ratio. For aspect ratios higher
than 50, the solution of Scharstein (2007) and of Jackson (2000) become also
satisfying, while for the highest values of aspect ratios, the full 3D solution
departs from the others, due to numerical instabilities when computing the
coefficients Cp of formula (32), as mentioned previously in subsection 4.2. The
2D solution computed with a characteristic length equal to the length of the
cylinder is then compared with these solutions and it can be seen that the 2D
solution recovers the 3D solutions for aspect ratios higher than 100, with a slight
overevaluation by a few percent. The 3D solution can be compared with the 2D
solution near the midplane, but departs obviously from the 3D solution due to
end effect. This end effect is recovered by the 3D BEM solution (obviously with
a finite end effect!), as it can be seen in Fig.6 where the value of q is reported as
a function of the position along the cylinder. In addition, it can be seen that the
value of q is nearly constant in the region around the midplane −25 < z < 25
(approximately half the cylinder length) and recovers the 2D value.

A last interesting result is the radial variation of the solution. Indeed, this
radial variation in the midplane is drawn in Fig.7 for both 2D and 3D solutions,
this result being obtained for an aspect ration a/R = 100. It can be seen that
both solutions are comparable in the vicinity of the cylinder (upto r = 10), but
that both solutions separate next, the 2D solution becoming obviously null for
r = a, while the 3D solution tends smoothly to zero for high radii.

6.2. Neumann problem

In this case, all points at the surface of the cylinder have a constant radial
gradient q and the potential is computed along the cylinder. As the BEM
solution was validated previously for other boundary conditions, this solution is
used again with Neumann boundary condition for comparison with 2D solution
in Fig.8 where the impedance in the midplane is reported again as a function
of the aspect ratio. It can be seen that the 2D solution produces values of
impedance which are nearly the same as for 3D solution even with moderate
aspect ratios as soon as H/a ≥ 5. The variation of the potential along the
length of the cylinder is reported in Fig.9 where it can be seen that there is
no more singularity at the tip of the cylinder and that the solution near the
midplane is correctly approximated by the 2D solution. These results are in
complete agreement with the asymptotic solution obtained in section 3 by the
slender body theory.
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Figure 5: Dirichlet boundary condition: comparison of impedances coming in the midplane
from fully analytical, asymptotic and numerical solutions.

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vertical position 

N
or

m
al

 g
ra

di
en

t q

 

 

3D BEM 

2D 

Figure 6: Dirichlet boundary condition: normal gradient along the cylinder as a function of
the position for an aspect ratio a/R = 100.
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Figure 7: Dirichlet boundary condition: potential as a function of the radial position for 2D
and 3D solutions related to an aspect ratio a/R = 100.
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Figure 8: Neumann boundary condition: comparison of impedances in the midplane for 2D
and 3D (BEM) solutions.
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position for an aspect ratio a/R = 50.
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7. Conclusion

In many situations, the boundary element method is used as a complement
to the finite element method for replacing an infinite part of the domain. An
”impedance matrix” can be built from the boundary element formulation. It
was shown in this paper that the use of the classical singular solution for Laplace
equation combined with the boundary element formulation can lead for plane
problems to ”impedance matrices” which are not positive definite or which have
very large eigenvalues. This leads to numerical problems when the combined
FEM-BEM problem is solved. This problem is close to the classical question
of the non-uniqueness of the Dirichlet’s boundary value problem for Laplace’s
equation. Indeed, it is known that the Green’s function for plane problems is
defined upto a constant term and that this constant must be large enough to
ensure uniqueness. Unfortunately, if for the interior problem with Dirichlet or
mixed boundary conditions, the solution does not depend on the added constant,
it is no more the case for the outer problem: the solution to these problems
depend explicitly of the added constant. So, it is crucial to provide a clear
procedure for defining such a constant, or in an equivalent way, the characteristic
length to introduce into the Green’s function.

In order to define the characteristic length to introduce into the Green’s
function, it is convenient from a physical point of view to consider a2D problem
as the limit of a 3D problem on a very long, but finite, cylindrical domain along
which boundary conditions do not depend on the position variable along the
direction of the length of the cylinder. The 2D solution is then the limit of the 3D
solution for large values of the length of the cylinder. Studying this problem by
the ”slender body theory” has produced the value of the characteristic length to
introduce into the Green’s function, which is exactly the length of the cylinder.

This result has been verified by using solutions for a large cylinder submitted
to Dirichlet or Neumann boundary conditions. All results confirm the value of
the characteristic length and show that the 2D solution produces an estimation
of the 3D solution near the cylinder in the vicinity of the midplane. This result
confirms also that the 2D BEM solution can be used even if the resultant of
the flux on the interior boundary is not null, as shown in [11]. Finally, the 2D
Green’s function is completely defined, the value of the characteristic length
being completely defined by the associated 3D problem, leading to a ”physical
Green’s function”. From a practical point of view, the field produced by the
”physical Green’s function” can also be seen as the one produced by a line source
whose length is the height of the cylinder along the direction orthogonal to the
computation plane.

This paper has been devoted to Laplace equation, but an extension to prob-
lems related to elasticity equations will be the subject of a future work.
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Appendix A. Appendix: Derivation of the impedance matrix from

classical integral equation

Let us consider the solution u of the exterior problem of Laplace equation
on a plane domain D having a boundary ∂D for Dirichlet boundary conditions.

u is therefore the solution within D of:

∆u = 0, (A.1)

with the boundary conditions u = u0 on ∂D.
The classical direct formulation of the boundary element method rests on

the formulation of a boundary integral equation on ∂D. Different expressions of
that integral equation exist, either involving ”free terms” or using regularized
expressions. As soon as a higher order interpolation of the solution on the
boundary is used, the regularized formulation is the most efficient.

Let us therefore start from the regularized integral equation for the exterior
problem obtained in [4], which rests on the regularization method introduced
by [41]:

u(x) +

∫

∂D

{[u(y)− u(x)]H(x,y)− q(y)G(x,y)}dSy = 0 (A.2)

where G is the Green’s function for Laplace equation and H the normal deriva-
tive computed from G. Points x and y are on the contour, while u and q are
the boundary values of the potential and of its normal gradient.

It is shown in [4] that the integral on the term containing H converges simply
and that it is not necessary to use a convergence of the ”Cauchy” type as for
other formulations.

The potential within D is given from the values of the potential and of the
flux on the boundary by the representation:

u(x) =

∫

∂D

{q(y)G(x,y)− u(y)H(x,y)}dSy (A.3)

The discretized boundary element formulation of that equation, using for
example a linear interpolation on all elements is:

[H][u] = [G][q] (A.4)

where [u] and [q] contain the nodal displacements and the nodal values of the
normal flux while [H] and [G] are built from the interpolation functions, the
geometry of the elements and from the Green’s function (and its derivatives).

One possibility to perform the coupling between the formulation of the exte-
rior problem and a finite element solution within the interior domain is to obtain
the ”impedance matrix” which allows to compute the ”concentrated nodal flux”
contained in matrix [F ] from the nodal values of the approximate potential.

This impedance matrix is given by [26]:

[K1] = [Q][G]−1[H] (A.5)
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where [Q] is built by summing the contributions of each element em defined by:

Qij =

∫

em

Ni(ξ)Nj(ξ)J(ξ)dξ (A.6)
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