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ABSTRACT

This paper presents a series solution for the homogenization problem of a linear viscoelastic periodic
incompressible composite. The method uses the Laplace transform and the correspondence principle
which are combined with the classical expansion along Neumann series of the solution of the periodic
elasticity problem in Fourier space. The terms of the Neumann series appear as decoupled, containing
geometry dependent terms and viscoelastic properties dependent terms which are polynomial fractions
whose inverse Laplace transforms are provided explicitly.
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1. Introduction

The methods used for predicting the effective properties of
heterogeneous viscoelastic composites comprise solutions to the
problem of the complex moduli (Brinson and Lin, 1998) with appli-
cations to dynamic problems, but the most important practical
problem is to predict relaxation or creep functions. This last
objective is generally attained by using Laplace transform of the
equations, the main problem being to produce accurately the in-
verse Laplace transform. This was effected for Mori-Tanaka or
Self-Consistent modelings (Beurthey et al., 2000; Rougier et al.,
1994; Le et al., 2007), which allow to obtain the relaxation function
explicitly or by using a simple 1D integral. In addition, all effective
behaviours must comply with some asymptotic conditions, as
obtained for example in the case of Maxwell constituents (Suquet,
2012).

The determination of the effective properties of periodic media
using the classical Neumann series was used from a theoretical
point of view since a long time (Brown, 1955), for conductivity,
or for elasticity, by using the related Green’s tensors. The practical
application in conduction and elasticity rests on iterative schemes
and on the use of the Fourier transform because the Fourier trans-
form of the Green’s tensor is known explicitly for an homogeneous
medium in the case of elastic constitutive equations (Michel et al.,
1999, 2001; Monchiet and Bonnet, 2012; Moulinec and Suquet,
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2003, 1994, 1998; Bonnet, 2007). Approximate solutions based
on Nemat-Nasser et al. (1982), which use Fourier transforms of
the solutions, can produce explicit results in the case of viscoelastic
components (Luciano and Barbero, 1994; Barbero and Luciano,
1995; Hoang-Duc et al., 2013) but these solutions are no more
valid for high concentrations of inclusions or high contrasts. Accu-
rate solutions at any concentration were obtained either by
time-step integration (Lahellec and Suquet, 2007) or by numerical
Laplace inverse, generally using collocation methods (Yi et al,
1998). However, a method based on Fourier transform, but which
does not need numerical time-step integration or numerical
Laplace inversion would be highly desirable. This is the aim of
the paper.

In the following, this method will be called “NS method”. The
solution for determining the macroscopic behavior of viscoelastic
periodic media is developed by using the classical Neumann Series
for the effective elastic properties.

The paper is organized as follows: The constitutive relation used
for the individual constituents is presented in Section 2. Then, we
present in Section 3 simplified formulations of the effective prop-
erties of composite elastic media made of isotropic constituents
with a decoupling of elastic properties and geometry properties
in each term of the Neumann series. This decoupling appears only
in some specific cases, including the case of incompressible con-
stituents. This result is used in the next section to determine the
expression of the relaxation function of the viscoelastic periodic
composites at the macroscale. Finally, the method is checked
against results coming from previous works.



2. Linear viscoelastic behavior
2.1. Constitutive equations for an isotropic viscoelastic medium

In the following, a composite material is studied where the con-
stituting phases are either elastic or non ageing viscoelastic. The
constitutive stress-strain relation of a non-ageing viscoelastic
material is given classically (Christensen, 1969; Salencon, 2009),
by a Stieltjes integral as:

t
o(t) = /0 R(t—1): dz(:)dr —R(: ®)¢ 1
or reversely:

t
€(t) =/0 1) dz(:)dr = J(: ®)6 2)

where R, J are tensorial relaxation and creep functions. The dot de-
notes the time derivative and the convolution of two functions fand
g, denoted as “feg”, is defined by:

(Feg)(x) = / " fix— tg(tyde 3)

For a viscoelastic isotropic material, tensor R depends only on
two scalar functions Ri(t) and R,(t) which are relaxation functions
for compression and shear. The behavior of the material can be ex-
pressed by using the following form:

a(t) = R(t)®tré(t)1 + 2R, (t)me(t) (4)

where e is the deviator of the strain tensor.

The viscoelastic constitutive equations of an isotropic viscoelas-
tic material are therefore defined by two relaxation functions: R(t)
and Ry(t).

2.2. Laplace-Carson transform

The Laplace-Carson transform f*(p) of a real function
f(t), t = 0is obtained from its Laplace transform f(s) by:

f+(s) = sf(s) =s L " esf(tyde 5)

Effecting the Laplace-Carson transform of the first expression in (4)
leads to:

6" (s) = Ry(s)tre’(s)1 + 2R (s)e’(s) (6)

where s is the Laplace variable.

These expressions show that for any fixed value of s, the stress—
strain relation in Laplace-Carson space is formally equivalent to
the elasticity constitutive equation of an isotropic elastic material.
This constitutes the “correspondence principle”.

3. Decoupled forms of the overall properties of elastic periodic
composites in specific cases

The paper presents different forms of the overall properties un-
der the form of a series whose all terms are decoupled into two
parts: the first part depends only on the microstructure and the
second part depends only on the elastic properties. Such a decou-
pling is possible only in specific cases. So, different cases of series
comprising decoupled terms are presented: two different forms
(strain formulation and stress formulation) in the case of incom-
pressible media and the strain formulation for a specific case of
composite containing compressible materials. An example of result
obtained by this method is shown and the main results coming
from the literature are presented concerning the convergence of
the series.

3.1. Basic equations of the problem

Let us consider a periodic composite built on a periodic cell Q as
in Fig. 1 by translation along the three directions of the space.

One denotes by 2q; (i = 1,2,3), the dimension along direction x;
of a basic parallelepipedic cell. Then the displacement field
u = u(x), the strain field € = €(x) and the stress field ¢ = a(x) in-
duced by a macroscopic strain tensor E are solutions of:

€(x)=3{Vaux) +(Vauix)'}
V.a(x)=0

a(X) = C(X) : €(x)

u(x) = EX+ upe(x)

(7)

where the displacement field u,,, is Q-periodic and C(x) is the elas-
ticity tensor satisfying the periodicity condition:

C(x) =C(x+d)
3

d= ZZn,—a,-e,» (8)
i=1

where n; is an arbitrary integer. Strain and stress tensors are also
periodic:

{o’(x) =ao(x+d)

€(X) =€(Xx+d)=E+ €y ®)

3.2. Strain and stress fields in Fourier space

Because of the periodicity of the medium, the solution can be
developed into Fourier series, as proposed by Iwakuma and
Nemat-Nasser (1983) or Moulinec and Suquet (1994).

Let us consider a periodic function f(x) defined on the cell Q
defined by:

Q={x,-g<x<q(j=12.3)} (10)

with the condition of periodicity: f(x) = f(x +d)
This function can be expanded into Fourier series as follows:

fx)=S"F(ees, i=v-1 (11)
4
with:

fe =1 gy, g
fer= [fweav, &=72

Let us consider the periodic part u,, of the displacement field u
those constant part is assumed null:

Uper(X) = Y Uhper (£)€™ (13)
¢

:%. (no sum on j) (12)

where a prime on X indicates that n = /mn;, = 0 is excluded from
the summation. Each Fourier component is given by:

W (8= [ 062 (14)

oloja ——
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Fig. 1. Basic cell of a heterogeneous periodic medium.




Differentiating this periodic field produces the “periodic strain
field” €pr whose name comes from the differentiation of the peri-
odic displacement field. Spatial average of €, is null and its Fourier
expansion is:

Eper(x) = nger({)ei:x (]5)
4

Finally, the relation between these “periodic parts”, simultaneously
with the constitutive elasticity equation in Fourier space are:

€per(8) = H{E@ Uper (&) + Uper (8) @ &}
58 =i> C(E-0: {touE) (16)
[4

3.3. Solution of the localization problem by the strain formulation

The solution of the localization problem is obtained by using a
“reference medium” whose elasticity tensor is C°. The derivation
of the solution under the form of a Neumann series is given in text-
books (Milton, 2002).

This derivation is recalled in Appendix C for completeness and
produces the solution of the cell problem under the form of a Neu-
mann series which can be expressed as:

€X)={l-T*d6C+T*[pC(I *6C)] —---} : E (17)
where I' is the “strain Green'’s tensor’’ whose expression in the case

of an isotropic reference material is recalled in Appendix A.
In this expression, 5C is given by:

dC(x) = (C1 = C°)Ii(x) + (Cm — C°)Iu(x) (18)

In the following, the elastic properties of the “reference med-
ium” are taken as those of the matrix.

3.4. A decoupled formulation of the local strain in the case of
incompressible constituents

In the case of isotropic incompressible constituent materials
and using the previously defined reference medium, 5C must be re-
placed by the part of the elasticity tensor which concerns only
deviatoric parts of stresses and strains, given by:

O0C(X) = —=20,01(x)1 (19)
where 6, = i, — 4, and 1 is the fourth order identity tensor.

Moreover, in this case the Green’s tensor is a transversely iso-
tropic tensor which can be expressed, as recalled in Appendix A, as:

— [E4
= 2y (20)

where &4 is a function of wave vectors given in Appendix A.
Substituting (19), (20) into (17) leads to:

r(x)

N N 2
e(x):{n+i[54*l,+(‘i) [E“[l,(xa*l,)]—u};s 1)
Fog i

In this relation, only the deviatoric parts of the strains are signifi-
cant, because the volumetric strains are null. Under this form, it
can be seen that all terms are decoupled, being the products of
one part which is only a function of the distribution of the hetero-
geneities, through function I;, and another part which is only a func-
tion of the shear moduli. This feature will be conserved in the
following and will lead to the solution for effective viscoelastic
properties. It is worthwhile mentioning that a weaker version of
such a decoupling was mentioned previously by Iwakuma and
Nemat-Nasser (1983) in the case of the most general isotropic
material. However, such a weaker coupling does not allow to

provide in the most general case the same kind of solution as the
one given in the following section for viscoelastic media. Such a full
decoupling is the key of the viscoelastic solution, as it will be seen
thereafter. In the following subsection, the homogenized elasticity
tensor will be provided in the case of incompressible constituents.

3.5. Homogenization with the strain formulation for incompressible
materials

The behavior at the macroscopic scale can be written from devi-
atoric parts of macroscopic stress tensor at convergence, which
will be denoted thereafter by X. It is given as:

= (2 I+ 24t - I ) €(X)),, (22)

In (22), the notation (®) is used for referring to the volume average
of ®:

@), =y [ o 23)

The macroscopic deviatoric stress in (22) can be split into partial
deviatoric stresses:

=X +Xy (24)
with:

I = 2p,(li(x) - €*(x)),
{ZM = 2ty = (In(X) - €2(X)) -
We set:

Ao =fil

Bo = ful

=0 * (1. .. *
A <, E4 1 (E4 1) > (26)

! 1

IB,~=<IM' Eax [I...(Egx1)) >
‘H

i M

Then the effective tensor is given by:

o = 2y, (Ao + Zj (l‘%)im) + 2ty (Bu + X’: (Z—:)iBJ (27)

Note that, if we define F;(x) by:

Fi(X) = Eg [I... (Eg+ 1)) (28)
i

Then:

A+ B = ([I:i(x))v (29)

From another point of view, (Fi(x)), is given by the value of the Fou-
rier transform at point & = 0 as:

(Fi(x)) =F; (£=0) (30)

with:

Fi(§) = Ea|lrx...x (Ea- 1)) 31)
H.,—/

i

Tensor &4 being null for a null wavenumber, it leads to:
A+ B = 0 (32)

The effective elasticity tensor is finally given by:

eff - (611)”]
T =21 +2) A (33)
o (M)



Under this form, the effective elasticity tensor appears again as
composed of terms which are decoupled into distribution depen-
dent terms and shear moduli dependent terms.. Indeed, the deter-
mination of tensors A; depends only on the geometry of the basic
cell through tensor I;. This form allows to obtain in the following
section the effective viscoelastic properties of the composite. Before
to proceed with this step, it is worthwhile mentioning that the
strain formulation described previously is conditionally convergent,
as it will be seen in Section 3.9. More particularly, when the inclu-
sion is largely stiffer than the matrix, the use of the matrix proper-
ties for defining the reference material is no more possible, as it will
be shown thereafter.

In this case, a first solution may be to use the inclusion modulus
as reference modulus. Indeed, a formula similar to Eq. (21) can be
obtained by noticing that Iy(&) + [;(&) = 0 for any non-null wave-
vector. This new series solution does not converge for the same
kind of contrast between inclusion and matrix properties, as seen
thereafter.

Alternatively, a stress formulation can be used. The following
section shows that this stress formulation can also lead to the
effective elasticity tensor under the form of a Neumann series with
decoupled terms.

3.6. The series solution with decoupling using the stress formulation
The stress formulation is based on a Green's tensor which is dif-

ferent from the one used in the strain formulation. This new
Green'’s tensor A is given for an incompressible material by:

A =24y(3E +E3) (34)
where £, and E; are again elements of the Walpole's basis defined in
Appendix A.

The following steps are similar to the ones defined previously
by using again the properties of the matrix as the reference med-
ium and the stress Green's tensor. The iterative scheme of the
stress approach in this case is given by:

¢ (X) = T — A(X) * (65 : 6'(x)) (35)

where tensor S is the compliance tensor. In order to facilitate the
construction of the Neumann series with decoupled terms, the ma-
trix is selected again for the reference medium. Thus, the iterative
scheme can be reduced to:

6,:.,1(") -x —%[E' (I - o"(x)) (36)
1

where £’ = 3E, + E5. The expression for the effective compliance re-
lated to deviatoric parts of stresses and strains is then given by:

1 o0 6 i+1
s =—|(1+ (—1)'(i) A (37)
2ty ( ,z:.; Hy '
where tensor A] is defined by:
fi (i=0)
Ai= <l,, Ex .. (Exl) > (i>0)
W—J
1

(38)

This expression of the effective compliance related to deviatoric
stresses and strains is again obtained under the form of a series
with decoupled terms. The method which is described in the next
section for obtaining the effective properties of viscoelastic media
can be readily extended by using this stress formulation. As it will
be seen thereafter, the convergence domains of these two series
are not the same and the use of the stress formulation can be
needed for very stiff inclusions.

3.7. Series solution with decoupling for specific compressible materials

The previous subsections have provided the effective tensors of
elastic heterogeneous materials for incompressible materials.
However, the case of composite made of arbitrary compressible
materials cannot be formulated under a similar form because in
this case, the elasticity problem must be treated with the full
Green's tensor which comprises two terms related to different
elastic moduli, as seen in Appendix A. Therefore, it is generally
no more possible to separate the contribution of the elastic moduli
from the one of the geometry. However, a case which can lead to a
similar solution is the one where both phases have the same Pois-
son’s ratio.

In this previously defined specific case, the Green's tensor is
written again by taking the elastic tensor of the matrix to define
the reference medium as:

1 1 1,

RRRTER TR TP T o

with:

I7=c(V)E; + E4 (40)
1-2v

c(v)= g (41)

The elastic tensors of both phases can be written as:

C =3KJ + 2K =2uC’ (42)

where:

C =d(v)J+1 (43)
1+v

dv) =15, (44)

Then, the iterative scheme is:

€N (x) = E — H— My U+ (I,C'€V(x)) (45)
Hum

This form is similar to the one obtained for incompressible materi-

als, the only difference being in the computation of the tensorial

coefficients A; which now depend not only on the geometry, but

also on the Poisson’s ratio through tensor I'.

Obviously, this configuration is not physically realistic, because
when using it in the following section for the extension to visco-
elastic cases, it must be noticed that v must be the same for inclu-
sion and matrix, which means that the Poisson’s ratio for any value
of the “equivalent elastic moduli” obtained by the correspondence
principle is constant when Laplace variable s varies. However, it
can constitute a convenient way for checking fully numerical alter-
native solutions.

3.8. Numerical example in the case of elasticity

Obtaining the viscoelastic properties of the composite rests on
the solution obtained in elasticity. Before studying the extension
to viscoelasticity, results on an example of elastic composite will
be presented.

The case under study is related to the 2D problem of the elastic-
ity components of a composite made of fibers distributed along a
simple squared lattice (Fig. 5. The materials are assumed isotropic,
linearly elastic and incompressible. The shear moduli of the com-
ponents are: i, = 70 GPa and y, = 5 GPa.

The shape functions [; in the calculation of A, are given by
(Nemat-Nasser et al., 1982):



_2:54,(n)
n

where J, is the first order Bessel function. S; is the surface of the
inclusion, 1 is given by:

L(¢) (46)

1/2

2

n=R(&+& (47)

where R is the radius of the fiber.

As an example, Fig. 2 shows the values of C3J,, as a function of
the concentration of fibers compared to Voigt and Reuss bounds
and to the simplified solution proposed in Nemat-Nasser et al.
(1982). As the simplified solution will be used in the following, it
is worthwhile mentioning that the complete solution is close to
the simplified solution for lower concentrations, but departs from
this simplified solution at higher concentrations. Having studied in
previous works this comparison in the case of elasticity for numer-
ous kinds of heterogeneous media, it is possible to know when the
simplified solution leads to an exact value of elasticity tensor.
These results will be used in the following.

From a numerical point of view, the solution of the Neumann
series depends mainly on the number of terms Ny in the approxi-
mation retained for the Fourier transform and on the number of
terms N; retained in the Neumann series. Satisfying results were
obtained in the case of Fig. 2 by using N; = 64 x 64. This value will
be kept in the sequel where only the relation between the physical
or geometrical parameters and N, will be studied.

3.9. Results on convergence obtained from the literature

Classical results are already known on the convergence of the
Neumann series. Restricting to the case of incompressible materi-
als, these results can be summarized as follows:

e The Neumann series with the basic scheme (strain formulation)
is conditionally convergent. Based on a study of the spectrum of
the iteration operator, the convergence is ensured (sufficient
condition) if the shear modulus of the reference medium g,
complies with (Michel et al.,, 2001):

Iy >@>0 (48)

for any point x within the cell. For obtaining the decoupling in an
inclusion-matrix composite, this condition leads to:

(11—

—— NS method :
''''' Nemat-Nasser et al. approximate|
—+— Upper bound )
—+— Lower bound

eff
2323

[
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Fig. 2. Effective shear modulus obtained from the NS method compared with the
solution obtained by Iwakuma and Nemat-Nasser approximate. Both are compared
with Voigt and Reuss bounds.

20y > 1, >0 (49)
for the material of the matrix being used as a reference medium or
00 > 20l > [y >0 (50)

for the material of the inclusions being chosen as a reference
medium.

e The convergence of the Neumann series for the dual scheme
(stress formulation) is also conditionally convergent. The con-
vergence is ensured if the shear modulus of the reference med-
ium complies with:

o1 oo (51)
Mo~ 2pu(x)

e The previous conditions exclude the cases when the contrast is
infinite, i.e. for g, infinite or null. For the second case, there are
some divergences between authors, but some results have
shown that the convergence of the effective properties (maybe
without a strict convergence of the strain tensor at any point of
the cell) can be obtained for some geometries even if the con-
trast is infinite (y, = 0). This point will be studied thereafter.

e When the convergence is ensured for a finite contrast, the terms

of the series decrease as those of a geometrical series (Milton,
2002). The convergence criteria is related to the eigenvalue of
the iteration operator having the highest absolute value.
The strain tensor induced by the basic scheme is always compat-
ible.As a consequence, a classical way to ensure the convergence
of the local strain field is to ensure that the residue on the equi-
librium equation is small. Alternatively, the convergence of the
stress iterative scheme must be checked against the compatibil-
ity of the strains obtained at each iteration. Generally, the con-
vergence of effective properties is obtained largely before the
convergence of the local equilibrium or compatibility.

3.10. Results on convergence obtained from the decoupled formulation

A first result which can be recovered is the main feature of Neu-
mann’s series which is that the rate of convergence is the one of a
geometrical series. This result is readily recovered from the expres-
sion (44) of the Green'’s tensor. If one considers that tensors A; are
bounded by A, , the generic term of the series is bounded by

¢ 1
28y %)T which is clearly a geometrical series.
Hu

The convergence of the series as the one of a geometrical series
is classical, but the usual formulation does not allow to know the
contribution of the geometry of the heterogeneities in the different
terms of the series. With the decoupled expression of the terms of
the series, the contribution of the geometry can be studied by look-
ing at the components of the differents terms A; appearing in the
series, because these terms depend only on the geometry of the
heterogeneities. As an example, Fig. 3 displays the values of terms
Ay212 in a semi-logarithmic plot. It can be seen that these terms are
aligned along a straight line for a sufficient number of iterations,
which means that they behave as a geometrical series. This result
explains that for such a geometry, the series is convergent even if
the shear modulus of the inclusions is null. Indeed, in this case, the
contributions to the current term of the series of the part related to
the shear moduli is equal to 1, which does not ensure the conver-
gence only under the classical assumption of bounded A;. It is
clearly the decay of the A; terms as those of a geometrical series
which can ensure the convergence.

As a consequence, for every geometry such as the components
of A; converge as a geometrical series, the Neumann series con-
verges even for a null value of the shear modulus of the inclusions.
It is worthwhile noticing that such a property may be true only for
some specific geometries of the distributions of the components
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Fig. 4. Viscoelastic rheological scheme of Zener's type.

and that in the most general case, without a specific study, the con-
dition excluding the null value of shear modulus must be used.

4. Series solution for the viscoelastic properties

As seen before, the effective shear moduli related to the
homogenization problem can be expressed as a series of terms
decoupling the moduli of the phases and the geometry of the inclu-
sions. In addition, all components containing the moduli of the
phases are polynomial fractions of the Laplace variable. If the vis-
coelastic shear moduli of the phases are themselves expressed as
polynomial fractions of the Laplace variable, as for usual viscoelas-
tic materials, it means that all terms of the series are polynomial
fractions, whose inverse Laplace transform can be computed
explicitly. In the first part of this section, we consider therefore
an example of such a viscoelastic incompressible material made
of a viscoelastic matrix of Zener type containing elastic inclusions.
In the second part of this section, the convergence conditions are
studied.

4.1. The explicit relaxation kernel using the strain formulation

Let us consider an incompressible composite of inclusion-ma-
trix type where the matrix is viscoelastic of Zener type and con-
tains elastic inclusions. The behavior of the matrix in the
Laplace-Carson’s space is described by the relationship between
the deviators of stresses and strains in the form:

s=2u(s)e (52)
where coefficient p(s) is the shear modulus in Laplace-Carson space
defined by:

4 (1 +115) + oS

_ _ K
Iy = H(S) = YT (53)

Using the matrix as a reference medium and the strain formu-
lation, the effective tensor in Laplace-Carson’s space is given from
(33) by:

sy =2u(s)

o ((s) u,)"
I+ — | Ay (54)
Z,:( (s) '
where tensors A; can be determined independently by (26) and de-
pend only of the geometry of the periodic cell.

The objective is now to obtain explicitly the inverse Laplace
transforms of all terms of the series. We note that for a Zener-type
material, the shear modulus of the matrix in the Laplace-Carson
space has the form:

A +Bs
= 55
1) = e (55)
where A, B, C, D depend on the elastic and viscous moduli. We
put:

. Bs
s== (56)
which gives:
B /s +1
uis) = D (m) (57)
EB + FAs®
KG) — 1 = 5 DA (58)
and:
u(s) =y,  BE+FAS
u(s)  AB(s*+1) (59)
with:
E=A-puC
F=B-uD (60)
b=2
The Laplace transform of the effective modulus C%(s), is defined by:
. ef
ety =0 (61)

S
The relaxation function in the Laplace space becomes:

‘f;eil(s-)

_ BiyAg N B(21—Ag) s*+1 2"’;/&,-8(1"/;’
- AS AD s'(s+b) & A
i+1

(s*+a)

—_— (62)
(s* + 1)'(s* + b)s*
where:

F
o=—

F
=5 P=p o=zF (63)

which gives:
cotf ) 1 1 me
(s )=G,s—_+62—s_+b—;K,-L“ (64)
with:

By, B
G = TAO +m(2ﬂ - Ao)

B*b-1)

G2 =—pp

_ Balp
Ki =——A,

(s"+a
(s* + 1) (s* + b)s*

(21— Ao)
(65)

’:(i) _ )H]



The polynomial fraction L can be split into partial terms as:

o _HY HY N M)
(i) — 271 2 i
L - +s-+b+z . (66)

where the coefficients Hy, H,, M;(i) are determined from the poles:
5*=0,8=-b, s =-1:

- For the pole s* = 0:

A . i+1
Y = lim{s 10} = - 7
- For the pole s* = —b:
) i i+1
Hy' = lim, slc— ::) (o= (68)
oo —b(1 -b)
- For the pole s* = —1:
A O TR L [
M;(@) = JL“?]{(:' —Dt (ds')™ [5°(s* +b) >
which gives:
.11
M(i) = Em(m} +M) (70)
with:
. . 4D (s" + a)in
M} (i) = s.‘fﬂ{(ds-)u—j) [57 7y

M? (i) = - lim

S=-=1

d(i*i) (s" + a)i+1

Using Leibniz's formula leads to:

} (72)

ij

M} (i) ==Y ¢ i —j)a— 1) (73)
r=0
2/ = 1/; . i-rl ij-r 1 e
M) =) G i-pa-1)" =1 (m) (74)
r=0
Therefore:
M= _l i-j C,-n(a _ 1).'7”1 |:1 " (__1)171'4”] 75
J bis " b—1

where C¥ is the binomial coefficient defined as: C¥ = T

The relaxation function is obtained by combining the different
terms appearing in the Laplace transform:

R 1 1 L A |
CH (s =R —+R - I M; (i - 76
(s) 15t R ‘:ZU:ZI J()(5'+1)’ (76)
with:
m e
R =Gy - ) KHY (77)
i=1
m 2
Ry =Gy — Y _KHY (78)

i=1

The inverse Laplace transform is performed by using:

L {r(%)} — kf(ke) (79)

which leads to the relaxation function in non-dimensional time t*
which is determined explicitly by the following formula:

m i -1
(') = Ry + Rae ' — efrz ZKiMj((]'r_—)l])' (80)
i=1 j=1 :

Finally, the relaxation function is given explicitly by:

A oy B
cit)== { Ri +Ree ¥ —e ¥ "> ki, B—'} (81)
B Lo s G-

This expression of the effective relaxation function of the composite
material is given explicitly as a function of time.

An interesting question is the mathematical nature of this final
solution. A model which is often used for modeling inclusion-ma-
trix composites is the generalized self-consistent scheme. It was
shown in Beurthey et al. (2000) that the viscoelastic behavior ob-
tained from this model is characterized not only by discrete relax-
ation times, but also by a continuous bounded relaxation spectrum.
In comparison, the partial sums obtained in the present paper are
characterized only by two discrete relaxation times as it can be
seen in Eqs. (77) and (82). However, the second relaxation time
is related to a multiple pole as it can be seen in (77). The multiplic-
ity of the poles becomes very large when the number of terms of
the series tends to infinity. The mathematical structure of the pres-
ent solution seems to be quite different from the one obtained by
using the generalized self-consistent scheme.

4.1.1. Convergence conditions

The form of the series providing the relaxation kernel in time
domain is more complex than the form of the effective elasticity
tensor in the Laplace space. The elasticity tensor in Laplace space
is similar to the one obtained in the case of elasticity, but with
moduli which are a priori complex, because the result of Laplace
transform is usually defined in the complex plane. A necessary con-
dition for the convergence of the elasticity tensor in Laplace space
is that the convergence is ensured for any positive real value of the
Laplace variable s, i.e. for any value of the “equivalent elasticity
modulus” in Laplace space for positive real values of s.

From another point of view, the inversion of the Laplace trans-
form can be produced from the “restricted” Laplace transform pro-
duced by using only the positive real values of Laplace variables.
This was used recently by Indratno and Ramm (2009) which pro-
duced a numerical inversion of Laplace transform using only real
positive values of Laplace variable. Indeed, the complex values of
Laplace variables are used mainly for commodity, through other
practical inversion tools (Bromwich contour, Padé's approxi-
mant,...), but the use of all the complex plane for inversion is
not strictly necessary.

The previous necessary condition becomes a sufficient condi-
tion for constructing the Laplace transform on the real axis and
we will assume that the construction of such a “restricted” Laplace
transform of the series is sufficient for the convergence of this ser-
ies in time domain. Using for example the modulus of the matrix as
reference modulus and the Zener model, the previous condition
becomes:

2u(s) > 14, >0 (82)

For s real, the equivalent modulus y(s) is a monotonous func-
tion of s and the convergence condition must be met for s =0
and s = oo. Accepting a null value of g, for the reasons explained
in the previous section, this leads to:

0<py <2, (83)



and
0< gy <21ty + 1) (84)

and finally the first of these conditions is the most constraining.

Contrarily to the conditions obtained in the case of elasticity, it
was not completely proved that this condition, despite being based
on reasonable assumptions, is a sufficient condition of conver-
gence. However, it was found that this condition leads to the con-
vergence in time domain for all tests which were performed during
the present study.

Obviously, similar conditions can be obtained for the stress for-
mulation or when the modulus of the inclusion is chosen as
reference.

It is worthwhile recalling that the possibility of having y, =0
depends on the convergence of A; terms and may not be possible
for any geometries of heterogeneities.

5. Numerical application
5.1. Fiber composite

In this 2D numerical example, the macroscopic behavior of a
viscoelastic matrix of Zener type containing fibers whose cross sec-
tions are circular is studied as previously in the elastic case. The
sections of the fibers are distributed along a squared lattice
(Fig. 5). The physical parameters are defined in Table 1. The num-
ber of wave vectors used in the numerical tests is 64 x 64 for all
cases under study. The number of terms retained in the series is
determined for obtaining an accuracy of 107*. For ensuring the
convergence, the cases of lowest and highest moduli induced by
Zener's expression of the shear modulus on the real axis are taken
into account:

N = Sup{N(Sup{pty,(s)}), N(Inf{p1y(s)})} (85)

The 3D effective tensor of the overall material, taking into ac-
count the incompressibility, comprises 3 coefficients. The time
dependence of two of these components is given in Figs. 6 and 7.
The results obtained by using the simplified method described in
Hoang-Duc and Bonnet (2012) are also reported. As explained in
the previous section, the approximate FFT method described in
Iwakuma and Nemat-Nasser (1983) leads to the same results as
the complete FFT method for a large range of elasticity tensors.
The approximate FFT method was extended to viscoelasticity in
Hoang-Duc and Bonnet (2012). The simplified method was proved
to produce satisfying results in elasticity for moderate values of
concentrations and contrasts (let us say for Gy < p,/p, < Ca).
Using again the restriction of the Laplace transform to the real axis,
both methods produce therefore the same “restricted” Laplace
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Fig. 5. Basic periodic cell of the fiber composite with circular cross sections.

Table 1
Mechanical properties of an incompressible composite with a viscoelastic matrix of
Zener type.

Phase Inclu. Matrix
Ele. 1 Ele. 2
Concentration (%) 30 70
Shear modulus (GPa) 10 70 50
Shear viscosity (GPa day) 0 0.2
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Fig. 6. Component 22, (t) as a function of time, determined by the NS method and
by the FFT approximate solution of Hoang-Duc and Bonnet (2012).

- = =NS Method :
‘ © Solution of Hoang and Bonnet (2012) |:
55 _‘0 ........................

(GPa)

eff
1212

C
T
3

00 s enee e e b :
AR S : :
: ©0600000000060600

i

0.605 0.01
Time (day)

* 0 0.015

Fig. 7. Component CZ,, (t) as a function of time, determined by the NS method and
by the FFT approximate solution of Hoang-Duc and Bonnet (2012).

transforms as soon as Cy < f4,(s)/ 44, < C». Under this assumption,
the simplified FFT method can be considered as producing refer-
ence results.

Thus, the results produced by using the Neumann series are
compared with those obtained by the simplified FFT method de-
scribed in Hoang-Duc and Bonnet (2012). The contrast between
the phases and the concentration of those phases were obviously
chosen in order to be in the range of validity of the simplified
FFT method. The results are the same for both cases. Taking into ac-
count the strong differences between both formulations, it can be
concluded that the new method produces fine results.
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Fig. 8. Comparison of NS solution and approximate solution for a matrix containing
inclusions made of an incompressible fluid.

5.2. Saturated porous medium

As explained in the previous section, the convergence of the
Neumann series is ensured also for the case of a null value of the
inclusions modulus, at least for the geometry of microstructure
used in the example.

So, an extreme case of a fiber composite has been treated,
where an infinite contrast is obtained by filling the inclusions with
an incompressible fluid having a null shear modulus.The viscoelas-
tic behavior of the matrix is again of Zener type (Fig. 4). The relax-
ation time is given by 7 = F'b: 0.003 days. ”

Fig. 8 displays the evolution of the ratio E'f‘lffﬂ with time. For this

new result, it may be seen that the result obtained by the complete
solution departs from the one coming from the simplified solution,
as waited from the results obtained in elasticity.

The numerical results which were obtained for the simple peri-
odic microstructures under study are characterized by a fully
anisotropic behavior. In comparison, the results coming for exam-
ple from the generalized self-consistent theory (Beurthey et al.,
2000) lead to isotropic effective properties for isotropic properties
of the constituents. The difference comes obviously from the fact
that both models do not correspond to the same microstructure.
The generalized self-consistent theory approximates the interac-
tion between one given inclusion and the other ones, while the
method proposed in the present paper takes fully into account
the interactions between all inclusions contained in the periodic
medium.

6. Conclusion

A new solution for obtaining the effective properties of hetero-
geneous incompressible viscoelastic media made of isotropic vis-
coelastic constituents has been presented. This solution is based
on a classical formulation provided in the case of elasticity, which
uses the Green’s tensor in Fourier domain and the Neumann series.
The series for the elastic solution has been rewritten in a form
where all terms are decoupled: they comprise a geometrically
dependent part and a part depending on the physical properties.
A similar form is obtained for the viscoelastic composite in
Laplace-Carson domain. For usual rheological viscoelastic models,
each term can then be written as a polynomial fraction of the
Laplace variable, leading to an explicit expression of the inverse
Laplace transform. A comparison leading to satisfying results has

been made with a previous solution. The solution presents itself
under different forms, depending on the formulation used (stress
formulation or strain formulation) and also depending on the value
of reference medium used for the solution (matrix or inclusion). A
solution has been also given for compressible component phases
under restrictive conditions of the properties of both phases.

Appendix A. Green'’s tensors for an isotropic reference elastic
medium

The strain Green's tensor for an isotropic reference elastic med-
ium having Lamé constants £ and p is given by:

1

2—”[& (A1)

=— b+
20
where tensors E, and E4 are defined below as components of the
Walpole’s basis.
In the case of an incompressible material, this tensor reduces
to:

1
F=2—#(IE2+E4) (A2)

The stress Green'’s tensor is similarly given by:

A= 234+ 2p)

/:+2[l Ey +2[I|E3 (A.3)

In the case of an incompressible material, this tensor reduces to:
A =2u(3E, + E3) (A4)

The elements of the Walpole’s basis Walpole (1981, 1966) are
defined by taking a unit vector perpendicular to the isotropy plane.
For the applications in the context of Fourier transforms, this unit
vector is equal to a unit vector along a considered wavevector,
leading to:

E3(&) = K'BK" - E, (A.5)

k'=i-k (A.6)
with the condition |£| # 0, and:

_ 1
(ABB)yy = i(Aikle + AuBji) (A.7)

Appendix B. Inverse Laplace transform of a polynomial fraction
of the Laplace variable

For obtaining time dependent solutions to problems related to
viscoelasticity, it is necessary to proceed to the inversion of the La-
place transform. The inverse Laplace transform of a polynomial
fraction of the Laplace variable appears in many textbooks. Its
expression is recalled below for completeness.

If the Laplace transform of a function f(s) is a polynomial frac-
tion with numerator P(s) and denominator Q(s) such that the de-
gree of P(s) is less than the degree of Q(s) and if Q(s) has n
distinct zero o, k=1,2,3...., n, the inverse Laplace transform is
given by:
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In the case where the equation Q(s) = 0 has a multiple root of order
m, while the otherroots, 5. f,, ..., fn are simple, the decomposition
into elementary fractions takes the form:

Ps) & A "B
W~ ™ TR (B2)
where:
) 1 1 "
A= I ey gger (e =T} 0
_ Pp) '
")

The inverse Laplace transform is finally given by:

m tm—k n

fle)y= eﬂzAk m‘i‘ ;B,eﬁlt (B.4)

k=1

Appendix C. The local strain field within an heterogeneous
medium

The local strain field within the heterogeneous medium is
obtained classically (Milton, 2002) by solving an integral equation.
This appendix recalls how such an integral equation can be
obtained.

The solution of the localization problem is obtained by using
a “reference medium” whose elasticity tensor is C°. The cell
problem, which is defined by using heterogeneous properties,
is replaced by an equivalent problem for a periodic cell contain-
ing a homogeneous material having the elastic properties of the
“reference medium” and submitted to a suitable field of eigen-
strain €', or eigenstress a* (usually named polarization). Obvi-
ously these quantities are searched in the following in order to
ensure that stresses and strains in the heterogeneous medium
are the same as the ones obtained in the reference medium
when eigenstrain or eigenstress field are applied. The interest
of this new formulation is that the response of the homogeneous
“reference” medium, when eigenstrain or eigenstress field are
applied, is given explicity by the Green’s tensor. Indeed, using
equilibrium and compatibility equations lead to the relation be-
tween the local strain fields induced by a given eigenstress field
by:

€(8) =-T(®): 8 (C1)
where I is the “strain Green’s tensor”. A similar relation can be ob-
tained when using the eigenstrain field.

Writing that the application of the eigenstress field must pro-
duce the same local strains and stresses as the heterogeneous med-
ium leads to the integral equation of “Lippman-Schwinger-Dyson”
type for the strain tensor. To obtain this integral equation, a consis-
tency condition, exactly similar to the ones described in the cases
of single inhomogeneity problems can be written as:

C(x) : (E+ €er(x)) = C°: (E + €er(X)) + 64(X) (C2)

which produces the eigenstress field related to the “periodic strain
tensor”:

6t(x) = 0C : (E + €per(X)) (C3)
with:
5C = C(x) —C° (C4)

The use of the Green’s tensor allows to obtain the “periodic strain
field” €per(X) depending on the eigenstress through (C.1). In real
space, this relation can be written:

€per(X) = —T(X) + 6*(X) (C5)

where the star denotes the spatial convolution product. The consis-
tency condition (C.3) and relation (C.5) produce the value of the
strain tensor at the microscopic scale induced by the strain tensor
at the macroscopic scale:

€(x) = E - I(X)  (6C : €(x)) (C.6)

This is an integral equation, because it involves an integral contain-
ing € through the convolution product. For the case of a matrix-
inclusion material, the local elasticity tensor C can be written as:

C(X) = Y L(X)Cy (€.7)

where C, is the elasticity tensor of phase « and I, is the character-
istic function describing the volume of phase «. o = I for inclusion
and o = M for matrix. Then, (C.4) can be written as:

OC(X) = (C; = CO)y(x) + (Cy — C°) I (x) (C.8)

The formal solution of (C.7) produces the Neumann series (17)
of Section 2.
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