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Abstract

In optics the nonlinear Schrödinger equation (NLSE) which modelizes light-wave propagation in an optical fibre is the most widely
solved by the Symmetric Split-Step method. The practical efficiency of the Symmetric Split-Step method is highly dependent on the
computational grid points distribution along the fiber and therefore an efficient adaptive step-size control strategy is mandatory. A
lot of adaptive step-size methods designed to be used in conjunction with the Symmetric Split-Step method for solving the various
forms taken by the NLSE can be found in the literature dedicated to optics. These methods can be gathered together into 2 groups.
Broadly speaking, a first group of methods is based on the observation along the propagation length of the behavior of a given
optical quantity (e.g. the photons number) and the step-size at each computational step is set so as to guarantee that theknown
properties of the quantity are preserved. Most of the time these approaches are derived under specific assumptions and the step-size
selection criterion depends on the fiber parameters. The second group of methods makes use of some mathematical conceptsto
estimate the local error at each computational grid point and the step-size is set so as to maintain it lower than a prescribed tolerance.
This approach should be preferred due to its generality of use but suffers of a lack of understanding in the mathematical concepts of
numerical analysis it involves. The aim of this paper is to present an analysis of local error estimate and adaptive step-size control
techniques for solving the NSLE by the Symmetric Split-Stepmethod with all the unavoidable mathematical rigor required for a
comprehensive understanding of the topic.

Keywords: Symmetric Split-Step method, adaptive step-size control,nonlinear Schr̈odinger equation, embedded Runge-Kutta
methods, Intercation Picture method, nonlinear optics

1. Introduction

The Nonlinear Schr̈odinger Equation (NLSE) describes a
wide class of physical phenomena among which propagation
of light in an optical fiber. Here, we are concerned by the fol-
lowing form of the NLSE referred as the Generalized Nonlinear
Schr̈odinger Equation (GNLSE) (see [1, 23])
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where the complex valued functionA represents the slowly
varying pulse envelope of a quasi-monochromatic optical wave
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at frequencyω0 in a local frame moving with the pulse at the
group velocityvg = c/ng whereng denotes the group index of
the fibre,z represents the position along the fiber,t the time
in the local frame andId stands for the identity operator. In
the situation considered here, the optical wave is assumed to be
an electric fieldE at frequencyω0 which is linearly polarized
along the vectorex transverse to the propagation’s directionez

defined by the fiber axis and expressed as a function of position
r = (x, y, z) and timeτ in the form

E(r, τ) = A(z, t) F(x, y) e−i(ω0 τ−k z) ex (2)

whereF(x, y) is the electric wave transverse representation also
called the modal distribution andk is the wavenumber. The re-
lation between the “local” timet in the retarded frame and the
absolute timeτ is t = τ − z/vg. The physical effects for wave
propagation in fibre taken into account in (1) are the follow-
ing. First, some linear effects are expressed through the linear
attenuation/gain coefficient α and the linear dispersion coeffi-
cientsβn,2 ≤ n ≤ nmax. Some nonlinear effects are involved
through the nonlinear parameterγ. Moreover, first order par-
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tial derivation with respect to time takes into account the dis-
persion of the nonlinearity through the simplified optical shock
parameterτshock= 1/ω0. Instantaneous Kerr effect manifests
itself through the term (1− fR) |A|2. The delayed Raman con-
tribution in the time domain is taken into account through the
convolution product between the instantaneous power|A|2 and
the Raman time response functionhR. The constantfR repre-
sents the fractional contribution of the delayed Raman response
to nonlinear polarization.

The most widely used numerical method for solving the
NLSE or GNLSE in optics is the Symmetric Split-Step Fourier
(S3F) method, see e.g. [10, 11, 15, 25, 26], due to its particular
simplicity and efficiency for solving certain type of evolution
partial differential equations (PDE). The idea behind the S3F
method applied to the GNLSE (1) is to decompose over each
subinterval of a given subdivision of the fiber length the PDE
problem into a sequence of 3 simpler problems connected to
each other. One corresponding to a purely linear PDE problem
over the first half of the subinterval, the other over the whole
subinterval corresponding to a nonlinear ordinary differential
equation (ODE) problem with the time variable as a parame-
ter and last another purely linear PDE problem over the second
half of the subinterval, see e.g. [1, 21]. Of course solving this
sequence of 3 nested problems is not equivalent to solving the
GNLSE (1) and an error, usually referred to as the ”splittinger-
ror”, is introduced. However, the interest of this numerical ap-
proach is that each of the 3 nested problems can be solved much
more easily than the GNLSE (1) itself and the approximated
solution converges to the solution of the GNLSE (1) when the
discretization step-size tends toward 0. The 2 linear PDE prob-
lems have an explicit solution obtained by use of the Fourier
Transform tool whereas the nonlinear ODE problem is gener-
ally solved numerically by standard methods for ODE such as
Runge-Kutta (RK) methods [7, 13]. Among them, the 4th or-
der classical RK method is the most famous due to the good
compromise it offers between accuracy and computational cost.
Although the S3F method is the most widely used with the 4th
order RK method for solving the GNLSE (1), alternative ODE
solvers such as the Adams multistep methods have been inves-
tigated [12, 19]. A second kind of approximation error is there-
fore introduced by the use of a numerical scheme for solving
the ODE problem.

Of course, the practical efficiency of a numerical method
such as the S3F method applied to the GNLSE (1) highly de-
pends on the distribution of the discretization grid pointsalong
the fibre and the use of an adaptive step-size control strategy
is mandatory. The idea behind an adaptive step-size strategy is
to introduce the grid points during the progress of the compu-
tation taking into account the information available at thecur-
rent computation stage in order to determine the best suitedstep
size (and therefore the next grid point) so as to maintain a given
predefined accuracy of the approximation. Namely, if compu-
tations have to be achieved at a given accuracy, the size of the
steps have to be chosen small enough so as to attain the desired
accuracy but not smaller than required to avoid unnecessaryin-
crease of the computation time. Since it is not possible in prac-
tice to know the final global error, the step-size is determined

so that, at each computational step, a ”local error” (or any re-
lated quantity) is lower than a prescribed tolerance. A variety of
adaptive step-size strategies have been propound to be usedin
conjunction with the S3F method. We can distinguish 2 types
of approaches. The one based on physical concepts (or physical
intuition) where at each grid point the step-size is chosen so as
a ”local error” related quantity estimated from a physical quan-
tity matches the prescribed tolerance value. For instance,in the
so-called ”nonlinear phase rotation method” [25] the step-size
is chosen so that the phase change due to nonlinearity does not
exceed a certain limit. In the ”walk-of method”, the step-size
is chosen to be inversely proportional to the product of the ab-
solute value of the dispersion and the spectral bandwidth ofthe
signal and the method applies to low power, multichannel sys-
tems [25]. In [22, 24] a method termed the “uncertainty princi-
ple method” is propound where the determination of the step-
size is done from the values of a parameter derived from an
inequality which in quantum mechanics gives rise to the uncer-
tainty principle between two non commuting operators. In [6] it
is shown that when losses in the fibre are neglected the follow-
ing quantity, referred as the “optical photon number” (OPN), is
conserved

P(z) =
∫

R

neff Aeff

ω
|Â(z, ω)|2 dω

where Â denotes the Fourier transform of the slowly varying
pulse envelope of the electric fieldA, Aeff is known as the ef-
fective mode area,neff is the effective index of the fibre, and
integration hold over the entire spectrum of the optical wave
amplitude assumed to have a bandwidth less thanω0

3 . In [14] it
is made use of the conservation of the OPN to estimate a ”local
error” related quantity and to define an adaptive step-size con-
trol strategy termed the “Conservation Quantity Error (CQE)
method”. The CQE method applies to low loss fibres.

An other approach for defining adaptive step-size strategies
consists in using mathematical concepts from the field of nu-
merical analysis. The ”local error” is then defined as the er-
ror made by using the numerical scheme when computing an
approximation of the solution at the current grid point under
the assumption that the value at the previous grid point was
exact. In [25] the authors propound to use the well known
step-doubling concept (often referred as Richardson extrapola-
tion) [27] to estimate the local error when solving the NLSE by
the S3F method. They termed their adaptive step-size strategy
the ”local error method” (LEM). The main advantage of such
a numerical analysis based approach is that since no assump-
tion on the physical quantities involved in the equation is made,
the step-size strategy applies to an arbitrary set of parameters
in the NLSE. Note that a comprehensive numerical comparison
of the LEM and other adaptive step-size methods such as the
”nonlinear phase rotation” method and the ”walk-off” method is
achieved in [25] on benchmark problems in optics. However a
drawback of the step-doubling method is a computational over-
cost of approximatively 50 % (when compared to the same S3F
method with the “optimal” grid points distribution given inad-
vance) and some attempts have been made to find alternative
method with the same degree of generality, see e.g. [18]. How-

2



ever the method proposed in this journal in [18] suffers from
misinterpretations in the mathematical concepts of numerical
analysis used to derive the algorithm and this convinces us of
the soundness of a clarification on the topic of local error esti-
mate and adaptive step-size control when solving the GNSLE
by the S3F method.

The paper is organized as follows. Section 2 is devoted
to a succinct presentation of the S3F method aimed at setting
the framework for the study of local error estimate approaches
made in section 3. We also discuss in section 3 some poten-
tial numerical issues and inconsistency between the theoryof
adaptive step-size control and practical results observedon nu-
merical simulation experiments. In section 4 we detail how an
adaptive step-size control strategy for the S3F method can be
derived from the knowledge of the local error. Finally, we con-
clude in section 5 by a reference to an alternative method to
the S3F method, termed the ”Interaction Picture” (IP) method,
that offers the same advantages than the S3F method in terms
of ease of implementation and computational cost together with
some nicer features for adaptive step-size purposes.

2. Overview of the Symmetric Split-Step method

2.1. Mathematical framework
Let L2(R,C) denotes the infinite-dimensional vector space

of all complex-valued ”square integrable” (also termed ”finite
energy”) functions which are defined on the real line and have

a finite energy norm‖ f ‖ =
(∫

R
| f (t)|2 dt

) 1
2
.We denote byF the

Fourier operator fromL2(R,C) toL
2(R,C) defined by continu-

ous extension of the Fourier Transform definition for integrable
functions and computed for allf ∈ L

2(R,C) by an improper
integral as

∀ν ∈ R F ( f )(ν) = lim
T→+∞

∫ T

−T
f (t) e2iπνt dt.

Alternatively we use the notation̂f (ν) for the Fourier Trans-
form of f and we use the notationF −1 for the inverse Fourier
Transform.

For a fixed z ∈ [0, L] we denote byA(z) the first par-
tial function of the slowly varying pulse envelopeA in z, i.e.
A(z) : t ∈ R 7→ A(z, t). This notation will be used throughout
the paper. We also denote byD the linear operator
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where⋆ stands for the convolution product. With these nota-
tions, the GNLSE (1) reads

∂

∂z
A(z) = DA(z) +N(A(z)) ∀z ∈ [0, L] (5)

whereL denotes the fibre length, and PDE (5) is solved together
with the initial conditionA(0) = a0 at the fibre entrancez = 0
wherea0 is a known source term. Note that another splitting is
possible: the term− 1

2αA(z) can be added to the linear opera-
torD instead of the nonlinear operatorN .

It is worth mentioning that the standard nonlinear
Schr̈odinger equation corresponds tonmax = 2 in the defini-
tion (3) ofD and to the nonlinear operator

N0 : A(z) 7→ iγ A(z) |A(z)|2 −
1
2
αA(z) (6)

which is formally retrieved from (4) in the special case when
we setfR = 0 and 1/ω0 = 0.

2.2. The splitting approximation scheme

In the S3F method applied to the GNLSE (5), the interval
[0, L] is divided intoK subintervals where the spatial grid points
are denotedzk, k ∈ {0, . . . ,K}, where 0= z0 < z1 < · · · <

zK−1 < zK = L. We denote byhk = zk+1 − zk the step-size
between grid pointszk andzk+1 and we setzk+ 1

2
= zk +

hk

2 . The
S3F method consists in solving over each subinterval [zk, zk+1]
for k ∈ {0, . . . ,K−1}, the following 3 nested problems with time
variablet as a parameter and the operatorsD andN defined as
in (3) and (4):



∂

∂z
U(z) = DU(z) ∀z ∈ [zk, zk+ 1

2
]

U(zk) = Ak−1(zk)
(7)

where Ak−1(zk) represents the approximated solution at grid
point zk computed at stepk− 1;
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V(zk) = U(zk+ 1
2
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whereU(zk+ 1
2
) represents the solution to problem (7) at half grid

point zk+ 1
2
;
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∂z
W(z) = DW(z) ∀z ∈ [zk+ 1

2
, zk+1]

W(zk+ 1
2
) = V(zk+1)

(9)

whereV(zk+1) represents the solution to problem (8) at node
zk+1. An approximated solution to the GNLSE (5) at grid
nodezk+1 is then given byAk(zk+1) = W(zk+1). The principle
of the Symmetric Split-Step scheme is depicted in figure 1. The
main interest of such a decomposition is that each one of the
3 problems (7), (8) and (9) can be solved much more easily
than the GNLSE (5) considered over the interval [zk, zk+1] and
for hk small enough,Ak(zk+1) provides an approximation of the
solution to the GNLSE at grid pointzk+1.

From a mathematical point of view, it is well known [9]
that the linear operatorD defined in (3) generates a continuous
group of bounded operators onL2(R,C), denoted (according
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Figure 1: Principle of the Symmetric Split-Step scheme (computational stepk
is displayed in the dashed box).

to its properties) by exp (zD) with z ∈ R. Moreover, the solu-
tion to the nonlinear problem (8) admits the following integral
representation form

∀z ∈ [zk, zk+1] V(z) = U(zk+ 1
2
) exp

(∫ z

zk

N(V(ζ)) dζ

)
.

This justifies why the approximated solution given by the S3F
method by solving the sequence of nested problems (7)–(8)–(9)
is the most often formally written as

Ak(zk+1) = exp(
hk

2
D) exp

(∫ zk+1

zk

N(V(ζ)) dζ

)
exp(

hk

2
D) Ak−1(zk).

The convergence of Split-Step methods applied to various
forms of the Schr̈odinger equation is widely documented in the
litterature, see e.g. [5, 20, 28] where the authors prove that the
global convergence order of the Symmetric Split-Step method
is 2. Namely, in the situation considered here, the following
result holds for the local error [2]. LetA denotes the solution
to equation (5) and for allk ∈ {0, . . . ,K − 1} let Ak(zk+1) de-
notes its approximation at grid pointzk+1 computed by solving
the three nested problems (7)–(8)–(9) with the initial condition
Ak1(zk) = A(zk) corresponding to the exact solution (because we
are concerned by the local error) assumed to be a sufficiently
smooth function. Then, forhk in a neighborhood of 0 we have
the following estimate:

A(zk+1) = Ak(zk+1) + O(h3
k) (10)

where we recall the significance of the big O notationO(h3
k):

there exists a positive numberC such that forhk in a neighbor-
hood of 0 the local error satisfies‖A(zk+1) − Ak(zk+1)‖ ≤ Ch3

k.
From a practical point of view, the quantity of interest is the
“global error”. The global error at grid pointzk+1 takes into
account the error accumulation from all the previousk+1 com-
putational steps and therefore from (10) we can deduce that it
behaves inO(h2) whereh = maxi=0,...,k hi . The Symmetric Split-
Step method is a 2nd order method.

The 2 linear PDE problems (7) and (9) admit an explicit so-
lution obtained by use of the Fourier Transform. The solution
to problem (7) at grid pointz

k+
1
2
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U(z
k+

1
2
) = F −1[ν 7→ Âk−1(zk, ν) ed̂(ν)

hk

2
]

whered̂ : ν 7→ i
∑nmax

n=2
βn

n! (2πν)
n and the solution to problem (9)

at grid pointzk+1 reads

W(zk+1) = F −1[ν 7→ V̂(zk+1, ν) ed̂(ν)
hk

2
]
.

When we are concerned by the standard nonlinear
Schr̈odinger equation where the nonlinear operatorN has the
form given byN0 in (6), there also exists an explicit solution
to the nonlinear ODE problem (8). In the general case when
α , 0, the solution at grid pointzk+1 reads

V(zk+1) = U(zk+ 1
2
) exp

(
−
α

2
hk +

iγ
α
|U(zk+ 1

2
)|2(eαhk − 1)

)

and whenα = 0

V(zk+1) = U(zk+ 1
2
) exp

(
iγhk|U(zk+ 1

2
)|2

)
.

Even if the 3 problems (7)–(8)–(9) have explicit solutions when
the nonlinear Schrödinger equation is considered, it doesn’t sig-
nify for all that the nonlinear Schrödinger equation itself has
an explicit solution. However an approximated solution can
be computed by the S3F method and the approximation error
solely lies in the use of a Split-Step scheme. Unlike, in the
more general case when the GNSLE is considered, a numer-
ical approximation scheme (such as a Runge-Kutta scheme) is
mandatory for solving the nonlinear ODE problem (8) resulting
in an approximation error made up of the splitting error and the
ODE approximation error.

3. Local error estimate theory

In the field of numerical analysis, an error estimate refers to
an approximated value for the error on a numerically calculated
quantity. As mentioned in the introduction, the most general
way of designing an adaptive step-size control strategy consists
in estimating the ”local error” at each step of the S3F algorithm,
i.e. the error made in computing the approximated solution at a
given grid point assuming that the data from the previous grid
point was exact. At each grid point, the step-size is then com-
puted so that the local error is lower than a predefined value
(termed the tolerance). The tolerance is set depending on the
need of accurate results, e.g. to 10−q with q ranging from 3
to 9. Actually, it is the ”global error” (i.e. the total errorat a
given grid point ensued from the error accumulation from the
initial grid point) that we wish to know about but estimatingthe
global error with accuracy is mathematically and numerically
out of reach and therefore we must content ourselves with esti-
mating the local error. Note that the global error resultingfrom
the error accumulation from the previous computational steps
can be several order of magnitude upper than the tolerance for
the local error.

In this section we carry out an analysis of the local error when
a numerical scheme is used for solving the nonlinear ODE prob-
lem (8) on the one hand and to an analysis of the Split-Step local
error on the other hand.
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3.1. Local error when solving the nonlinear ODE problem(8)
by a Runge-Kutta method

The most effective way for local error estimate when solving
a nonlinear ODE problem is by using an Embedded Runge-
Kutta (ERK) method. ERK methods [7, 13] are special Runge-
Kutta (RK) methods designed to deliver 2 approximations of
the solution of the ODE problem under consideration corre-
sponding to 2 RK schemes of different convergence ordersp
andp+ 1. These 2 approximations of the solution can be con-
sidered as an accurate approximated solution (the one computed
with the numerical scheme of higher orderp+ 1) and a coarse
approximated solution (the one computed with the one of lower
order p). For efficiency, the 2 RK schemes bear several com-
putational stages in common in order to reduce noticeably the
computational cost of the local error estimation.

In [18] the author uses (without mentioning it explicitly) an
ERK method of order 1 and 2 (p = 1) for solving problem (8)
where the first order approximated solution inzk+1 is given by

V[1]
k+1 = U(zk+ 1

2
) + hk α1, α1 = N(U(zk+ 1

2
))

and the second order approximated solution is given by

V[2]
k+1 = U(zk+ 1

2
) + hk α2, α2 = N(U(zk+ 1

2
) + 1

2hk α1).

Because it represents a good compromise between accuracy
and computational cost, the fourth order Runge-Kutta (RK4)
scheme [7, 13] is more commonly used in conjunction with
the S3F method. The RK4 method can be formulated as an
ERK method of order 3 and 4 (p = 3), referred in the litera-
ture as Dormand and Prince RK 4(3) T method [7, 13], which
preserves the ease of implementation of the RK4 formula and
provides a local error estimate at no extra computational cost
(see [3] for the implementation details). The 4th order RK
method delivers the approximated solution

V[4]
k+1 = U(zk+ 1

2
) +

hk

6
(α1 + 2α2 + 2α3 + α4)

whereα3 = N(U(zk+ 1
2
) + 1

2hkα2) andα4 = N(U(zk+ 1
2
) + hkα3)

and the 3rd order RK method provides the approximated solu-
tion

V[3]
k+1 = U(zk+ 1

2
) +

hk

30
(5α1 + 5α2 + 5α3 + 2α4 + 3α5)

whereα5 = N(V[4]
k+1).

When solving problem (8) by the standard RK method of
order p, provided all the partial derivatives ofz 7→ N(V(z))
exist and are continuous up to the orderp+ 1, the local error is
known to behave asO(hp+1), see e.g. [7, 13]. Let us detail the
way the local error can be estimated by using an ERK method
with p = 1 or p = 3 as considered above. By use of the Taylor
expansion formula, one can show that the local errors for each
of the 2 methods are respectively given by [7, 13]

ℓ
RK(p)
k+1 = V(zk+1) − V[p]

k+1 = ϕp(zk,V
[p]
k ) hp+1

k + O(hp+2
k ) (11)

ℓ
RK(p+1)
k+1 = V(zk+1) − V[p+1]

k+1

= ϕp+1(zk,V
[p+1]
k ) hp+2

k + O(hp+3
k ) (12)

whereV(zk+1) denotes the exact solution to problem (8) at grid
pointzk+1 andϕp (resp.ϕp+1) is a function of theelementary dif-
ferentialsof orderp (resp.p+ 1) of the functionz 7→ N(V(z)).
By difference of these 2 relations we obtain

V[p+1]
k+1 − V[p]

k+1 = ϕp(zk,V
[p]
k ) hp+1

k + O(hp+2
k ). (13)

From (11) and (13) we deduce that the local error for thep-th
order RK method at grid pointzk+1 can be approximated with
an error inO(hp+2

k ) by

∀t ∈ R ℓ
RK(p)
k+1 (t) ≈ V[p+1]

k+1 (t) − V[p]
k+1(t) (14)

and the energy norm of the local error by

LRK(p)
k+1 = ‖ℓ

RK(p)
k+1 ‖ ≈

(∫

R

∣∣∣∣V[p+1]
k+1 (t) − V[p]

k+1(t)
∣∣∣∣
2

dt

) 1
2

. (15)

It satisfiesLRK(p)
k+1 = O(hp+1

k ).

3.2. Split-Step local error estimation by step-doubling

As mentioned before, when the nonlinear Schrödinger equa-
tion is considered (i.e.N = N0 as defined in (6)) the nonlin-
ear ODE problem (8) admits an analytical solution and the lo-
cal error in the S3F method only amounts to the splitting error
as given by (10). In such a case, although an approach simi-
lar to the one performed to estimate the local error when solv-
ing a nonlinear ODE by an ERK method could be considered
(involving 2 embedded Split-Step schemes of different orders
[4, 17]), the usual method for estimating the splitting local error
is based on the step-doubling technique. Actually, it is theadap-
tive step-size control used in conjunction with the S3F method
for solving the NLSE presented in [25]. The idea behind the
step doubling method (also known as Richardson extrapola-
tion method and widely used for adaptive step-size control in
quadrature methods for integral or ODE [27]) is the following.
The local error for the S3F method at grid pointzk+1 satisfies
the following relation [5, 20, 28]

ℓSS
k+1 = A(zk+1) − Ak(zk+1) = C h3

k + O(h4
k) (16)

whereC denotes a positive number independent ofhk. Let
uk+1 = Ak(zk+1) be the solution at grid pointzk+1 computed
by the Symmetric Split-Step scheme (7)–(8)–(9) from grid
point zk using one step of sizehk, and let ũk+1 be the so-
lution computed from grid pointzk using two half steps of
size hk/2, in both cases assuming the solutionAk−1(zk) at
grid pointzk to be exact (since we are interested in estimating
the local error). Additionally the following assumption ismade:

(H) the local error after 2 half steps is twice the local
error after one half step

(which consists in an approximation since the initial data for
the second half-step is actually the approximated solutioncom-
puted after the first half-step and not the exact one). Then,
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from (16) we deduce that

A(zk+1) − uk+1 = C h3
k + O(h4

k) (17)

A(zk+1) − ũk+1 = 2C

(
hk

2

)3

+ O(h4
k) (18)

and therefore by difference between these 2 relations we get

ũk+1 − uk+1 =
3
4

C h3
k + O(h4

k). (19)

Thus the local error related to the Split-Step scheme at grid
point zk+1 can be approximated, with an error inO(h4

k), by

∀t ∈ R ℓSS
k+1(t) ≈ C h3

k ≈
4
3

(̃uk+1(t) − uk+1(t)). (20)

The energy norm of the local error at grid pointzk+1 is then
expressed as

LSS
k+1 = ‖ℓ

SS
k+1‖ ≈

4
3

(∫

R

|̃uk+1(t) − uk+1(t)|2 dt

) 1
2

(21)

and from (16) we haveLSS
k+1 = O(h3

k).
We have to point out that relation (20) gives an approxima-

tion of the local error corresponding to the solutionuk+1 com-
puted by the Symmetric Split-Step scheme over the coarse grid
with step-sizehk. However the fine mesh grid solutioñuk+1 is
a better approximation and in practice it is kept as the approx-
imated solution and propagated along the fibre. This process
is referred in the literature as the “local extrapolation mode”.
Moreover, by difference of equation (17) and equation (18)
pre-multiplied by 4 we obtained under assumption (H) an
even more accurate approximation (referred in the literature as
Richardson extrapolation):A(zk+1) can be approximated with
an error inO(h4

k) (instead ofO(h3
k) as given by (18)) as

A(zk+1) ≈
1
3

(
4 ũk+1(t) − uk+1(t)

)
.

The over-cost of estimating the local error in this way is thecost
of the computation of the coarse mesh grid solution and this
cost is approximately half the cost of the computation of thefine
mesh grid solution since the step-size is twice larger. Thus, esti-
mating the local error using the step doubling approach is liable
of an extra computational cost of 50% more than the cost of the
computation of the approximated solution itself. In fact, the ad-
ditional cost is slightly less than 50% since some computations
are shared by each of the 2 methods, and needs to be carried out
only once. This approach is the one of the LEM [24].

Finally, we would like to mention that the step-doubling ap-
proach could be used to estimate the local error when solving
the nonlinear ODE problem (8) in the S3F method by the RK4
method. (In the above reasoning, equations (17) and (18) would
be replaced by (11) and (12).) However the computational cost
of this way of estimating the local error of the RK4 method is
prohibitive compared to the use of the ERK4(3) method.

4. Local error analysis when solving the NLSE and GNLSE
by the S3F method

4.1. Local error analysis for the GNLSE

In the case when the GNLSE (1) is solved by the S3F method,
a dedicated numerical method such as a Runge-Kutta method is
to be used to solve the nonlinear ODE problem (8). As a con-
sequence, the local error consists in the error produced by the
Split-Step scheme and the error produced by the (p+ 1)-th or-
der Runge-Kutta scheme (p = 1 or p = 3 for the 2 above men-
tioned ERK methods). Since the 2 linear PDE problems (7)
and (9) are solved exactly by use of the Fourier Transform,
from (12) and (17) we deduce that the local error behaves for
hk in a neighborhood of 0 as

‖A(zk+1) − Ak(zk+1)‖ ≤ C h3
k + K hp+2

k (22)

whereC andK denote 2 positive numbers. The constant num-
berK depends on the elementary differentials of order 3 of the
mappingA(z) 7→ N(A(z)) whereasC depends on the elemen-
tary differentials of orderp + 1 of the mappingF : A(z) 7→
DA(z) + N(A(z)). Therefore the 2 constant numbersC andK
depend in a different way on the physical parameters involved
in the GNLSE (1) and it can happen that they have values dif-
ferent by several order of magnitude. Note that the local error
can not be estimated only for the nonlinear ODE problem (8)
as it is done in [18] and in no case whenp = 1 the whole nu-
merical approximation scheme can be 4th order accurate as the
author states. Whenp = 1, relation (22) shows that the global
convergence order of the S3F method is 2.

From a theoretical point of view, we deduce from (22) that
when p = 3 the S3F method with problem (8) solved by the
RK4 scheme (referred as the S3F-RK4 method in the sequel)
has global convergence order 2 since forhk in a neighborhood
of 0 we haveK h5

k = O(h3
k). Thus, the local error (22) could be

estimated by the step doubling approach just as detailed in sec-
tion 3.2. However in practice it can happen that under special
circumstances (i.e. for a special set of values for the physical
parameters involved in the GNLSE (1)) the value of the con-
stantC is much lower than the value ofK. In such a case, when
the convergence order of the S3F-RK4 method is explored on
numerical examples, the experimental convergence curve can
behave as a function of the step-sizeh proportional toh4 instead
of h2. If so, the local error estimate presented in section 3.2 is
likely to provide wrong results since it was assumed that the
convergence order is 2. Actually, it is not difficult to convince
oneself that whenever the nonlinear effects predominate in the
GNLSE (1) the convergence order observed experimentally will
be close to 4 andC << K whereas when it is the linear effects
that predominate the convergence order observed experimen-
tally will be close to 2 andK << C. (Note that when dealing
with the convergence behavior, the 2 constantsK andC we are
referring to may differ from the constants appearing in the local
error estimate (22) but we have maintained the same notation
for simplicity.)

In order to numerically illustrate the mathematical analysis
presented in this section we have solved the GNLSE by the
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S3F-RK4 method on a test example chosen to match with a typ-
ical case of high speed data propagation through aL = 20 km
single mode fibre in optical telecommunication with a data’s
carrier frequency located in the C band of the infrared spectrum
( f0 = 193 Thz). The following set of fibre’s parameters were
used for the simulation:α = 0.046 km−1, γ = 4.3 W−1km−1,
fR = 0.245, β2 = −19.83 ps2km−1, β3 = 0.031 ps3km−1 and
βn = 0 for n ≥ 4. An expression for the Raman time response
function for silica core fibre is given in [1]. The source term
a0 = A(z= 0) was represented as a first order Gaussian pulse:

a0 : t 7→
√

P0 e−
1
2 (t/T0)2

(23)

whereT0 is the pulse half-width at 1/e intensity point andP0

is the pulse peak power. Simulations were carried out for a
pulse-widthT0 = 6.8 ps and for three different peak power val-
ues: P0 = 5 mW, 25 mW and 50 mW. As explained in [1] the
dispersive lengthLD and nonlinear lengthLNL defined as

LD =
T2

0

|β2|
and LNL =

1
γP0

(24)

provide the length scales over which dispersive or nonlinear
effects become important for pulse evolution. In the test ex-
ample considered here the dispersion lengthLD = 2.26 km
was kept constant and the nonlinear lengthLNL was decreasing
from 46.5 km to 4.65 km whileP0 was increasing from 5 mW
to 50 mW. Thus when the pulse peak power was increasing the
nonlinear Kerr effect was becoming more important through
propagation. The convergence curves representing the global
error at the fiber end for the energy norm when using a con-
stant step-size S3F-RK4 method for solving the GNLSE versus
the step-size are depicted in Figure 2. The global error at fiber
end takes into account the error accumulation from the fiber en-
trance and therefore its asymptotic behavior is proportional to
the local error by a factor 1/h.

Figure 2: Experimental convergence curve (logarithmic scale) for the S3F-RK4
method applied for solving the GNLSE on the test example with different peak-
power values (solid lines). The convergence order is ranging from 2 to 4 de-
pending on the importance of Kerr nonlinearity (theoreticalcurves in dotted
lines).

In Figure 2, one can observe that for a 50 mW peak power
pulse (whereL � 4LNL) the experimental convergence curve
(solid line with square symbols) drawn in a logarithmic scale

has a slope coefficient close to 4 (dotted line labeled 4). In this
specific case the nonlinear effects predominate in the GNLSE
and the error behavior is mainly governed for the step-size
range considered in the simulation by the error committed
when solving the nonlinear ODE problem by the 4th order RK
scheme. On the contrary, for a 5 mW peak power pulse (where
L � 1/2LNL) the experimental convergence curve (solid line
with star symbols) has a slope coefficient close to 2 (dotted
line labeled 2). The linear dispersion effects predominate in
the GNLSE and the error behavior is mainly governed for the
step-size range considered in the simulation by the error inher-
ent to the use of the Symmetric Split-Step scheme (the error
committed when solving the nonlinear ODE problem by the 4th
order RK scheme is much lower). The convergence curve cor-
responding to a 25 mW peak power pulse (whereL � LNL and
both linear dispersion and nonlinear effects have a comparable
strength) shows a very interesting phenomenon (solid line with
circle symbols). The first part of the convergence curve has a
slope coefficient close to 4 whereas it is close to 2 on the sec-
ond part. This can be understood as follows. The value of the
constantC involved in the expression of the error related to the
use of the Symmetric Split-Step scheme is a little smaller than
the value of the constantK involved in the expression of the er-
ror of the RK scheme. As a consequence, for the largest values
of the step-sizeh in the range considered in the simulation we
haveK h4 > C h2 whereasK h4 < C h2 whenh becomes small
enough, i.e. for the lowest values in the range considered inthe
simulation.

To be comprehensive in the analysis of the results depicted
on Figure 2, one can notice the somehow erratic behavior of
the curves for the largest values of the step-size (upper right
corner). It can be explained by the large values of the global
error for such step-sizes which are not really compatible with
an asymptotic behavior analysis. As well one can notice a dis-
tinguishing behavior of the curves for the smallest values of the
step-size where the slope of the curves decreases (lower left cor-
ner). This can be explained by the round-off error due to the fi-
nite precision (floating-point) arithmetic used on the computer.
Round-off error increases in proportion to the total number of
arithmetic operations (related to the number of steps here). For
the smallest values of the step-size, it grows up to the pointof
being comparable in magnitude to the error of the method and
becomes apparent on the curves.

To conclude this section we would like to emphasis the fact
that the simulation results we obtained do not reveal any mathe-
matical contradiction on the convergence order of the S3F-RK4
method: it is 2 and not 4. The apparent contradiction can be
understood as follows. The theoretical behavior is proved for
a step-sizeh arbitrarily close from 0 (in other words the prop-
erty is true asymptoticly whenh tends to 0) whereas the ex-
perimental curves are obtained certainly with small valuesof h
but inevitably larger than a limit imposed by the performances
of the computer. WhenC is several order of magnitude lower
than K, it is not possible experimentally to reach values ofh
small enough so thatK h4 becomes much smaller thanC h2.
On the contrary, on the range of experimental possible values
for h we may haveC h2 much smaller thanK h4 and what it is
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observed on Figure 2 forP0 = 50 mW is this latter behavior.

4.2. Local error analysis for the NLSE

The above mentioned difficulty in estimating the asymptotic
behavior of the local error when solving the GNLSE by the S3F
method disappears with the NLSE (where the nonlinear opera-
tor is defined in (6)) since the nonlinear problem (8) is solved
analytically and only remains the splitting error. The Symmet-
ric Split-Step method is known to be second order accurate see
e.g. [5, 20, 28], i.e. the global error behavior at grid pointzk

is Ek = ‖Ak(zk) − A(zk)‖ ≤ Ch2 whereh = maxi=1,...,k hi andC
denotes a positive constant.
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Figure 3: Experimental convergence curve in logarithmic scale (solid line with
square symbols) for the S3F method applied for solving the NLSEon the test
example. The theoretical convergence order 2 is depicted in dotted line.

In order to illustrate this behavior of the local error we have
solved the NLSE by the S3F method, neglecting the Raman in-
duced frequency shift and self-steepening effects (i.e. consider-
ing the simplified expression (6) of the nonlinear operator (4)),
for the same set of parameters as in section 4.1 when the peak
power valueP0 = 50 mW. In Figure (3) we have depicted the
experimental convergence curve in logarithmic scale, i.e.the
global error at fiber end versus the step length. We can observe
that the experimental convergence curve fits well the theoretical
convergence order curve (the dotted line labeled 2 has a slope
coefficient equal to 2). Since the global error asymptotic be-
havior (which takes into account the error accumulation from
the fiber entrance) is proportional to the local error by a factor
1/h, this result is in full accordance with relation (16). On the
contrary to the GNLSE case presented in section 4.1 where the
global error behavior is a mixture of the error contributions of
the splitting approximation and RK approximation (with differ-
ent convergence orders), for the NLSE the error is only due to
the splitting approximation.

5. Step-size control

5.1. Step-size control for the NLSE solved by the S3F method

For step-size control, a tolerance “tol” is given as bound on
the local error estimate. A step-size control strategy [7, 13] con-
sists in rejecting the current step-size if it gives an estimated
local error higher than the specified tolerance and in accept-
ing the solution computed with this step-size otherwise. There
are 2 criteria usually employed for step-size control purposes.
The criterion of error per step (EPS) selects the step sizehk at
each step so that the local error is lower than the tolerance tol
whereas the criterion of error per unit step (EPUS) selects the
step sizehk at each step so that the local error is lower than
tol × hk. It is clear that for sufficiently small tolerance value
EPUS criterion selects a smaller step-size than EPS criterion.
When the current step-size is rejected, a new smaller step-size
has to be chosen to recompute the solution over the current
step. As well, when the current step-size meets the tolerance
requirement for the local error it has to be scaled up for the next
step computations. In both case, the new step-size has to be
estimated using the available information on the previous step
computations. On the basis of the results set in the previous
section, according to (16) we assume that there exists a positive
real numberC such that the local error has the form

LS S
k+1 = ‖ℓ

S S
k+1‖ = C h3

k.

The optimal step-sizehopt is the one for which the local error
estimateLk+1 is the closest to the prescribed tolerance tol,i.e.
C h3

opt = tol. By eliminating the constantC from these 2 rela-
tions we obtain that the optimal step-size is

hopt = hk
3

√
tol

Lk+1
.

For robustness the step-size control has to be designed in order
to respond as smoothly as possible with real or apparent abrupt
changes in behavior. This means that the step-size should not
vary from one step to the other by an excessive ratio. That is the
reason why it is imposed that the new step-size does not exceed
twice the current step-size above and half the current step-size
below. As well, in order to avoid situations where the specified
tolerance is ever exceeded resulting in rejecting too many steps,
a safety factor is sometimes introduced: ifhopt is the value of
the step-size estimated to give a predicted truncation error equal
to the tolerance, then the smaller value 0.9hopt for instance is
used instead. These considerations lead the following step-size
control formula

hnew = max

0.5 , min

2.0 ,0.9
3

√
tol
err


 hk (25)

where “tol” denotes the tolerance value specified by the useras
a bound on the local error and “err” denotes the estimation of
the local error for the current step. The 3 constants with values
0.9, 0.5 and 2.0 are somewhat arbitrary and have to be regarded
as design parameters.

8



In order to numerically illustrate the above described step-
size control strategy, we have solved the NLSE for the set of
parameters given in section 4.2 by the S3F method with local
error estimations based on the Local Error method (LEM) [25]
(i.e. the Step-Doubling method presented in section 3.2) and
on the CQE method [14]. For an initial step-size of 10 m, a
tolerance of 10−6 and a number of FFT grid points of 214, the
LEM method computes an approximated solution with a rel-
ative quadratic error of 1.24 10−5 using 124 steps. The com-
putation (CPU) time was 7.17s on a AMD A8 Desktop Com-
puter with 8 GO RAM. With the same tolerance value, the CQE
method provides a solution with a relative quadratic error of
2.46 10−6 using 763 steps and a CPU time of 14.7s. Actually,
a relative quadratic error similar to the one of the LEM method
is obtained with a tolerance of 5 10−6. The number of steps is
then 343 and the CPU time of 6.77 s.

5.2. On the difficulty in designing a step-size control for the
GNLSE solved by the S3F method

The difficulty in designing an efficient step-size control strat-
egy for the GNLSE solved by the S3F method is due to the fact
that the numerical error is compound of 2 kinds of approxima-
tion errors with different asymptotic behavior: the error arising
from the Split-Step scheme itself and the error coming from the
Runge-Kutta scheme used to solve the nonlinear ODE problem
resulting from the Split-Step approach. A step-size control for-
mula such as formula (25) requires the knowledge of the con-
vergence order of the method but we have shown in section 4.1
that the convergence order of the S3F method applied to the
GNLSE is hard to predict. It can vary from 2 to 4 depending
on the balance of linear and nonlinear effects. When we known
in advance the convergence orderp of the method and when
we are able to estimate the local error, a step-size control for-
mula similar to formula (25) with the cube root replaced by the
(p+ 1)th root (p = 2, 3 or 4) can be used.

For instance, when solving the GNLSE with the set of param-
eters given in section 4.1 for a peak-power value of 0.5 W the
nonlinear effects predominate and it can be shown experimen-
tally that the convergence order of the method is 4. We are then
in a position to compare the efficiency of various methods for
step-size control on this specific case: Step-Doubling or Local
Error (SD/LEM) method, ERK4(3) method and Conservation
Quantity Error (CQE) method. For comparison purposes, we
have given in Table 1 the CPU time (in s.), the relative quadratic
error‖Aref(L) − AK−1(L)‖/‖Aref(L)‖ at fiber end (whereAref de-
notes a reference solution computed with a very small constant
step-sizeh = 1 m andAK−1(L) the approximated solution at
fiber end) and the number of steps for the 3 methods.

If we wish a relative quadratic error at fiber end for the
ERK4(3) method similar to the one of the SD/LEM method
(≈ 7 10−4), a tolerance of 5 10−10 has to be chosen. CPU time
is then 118 s and the number of steps 3773.

A comparison of the evolution of the step-size along the fiber
from an initial step-size of 10 m and a tolerance of 10−6 for
the 3 methods is depicted on Figure 4. When compared to the
SD/LEM method on this particular test example, we can ob-
serve that the ERK4(3) method underestimates the local error

Table 1: Comparison of Step-Doubling or Local Error (SD/LEM) method,
ERK4(3) method and Conservation Quantity Error (CQE) method for solving
the GNLSE by the S3F method with tolerance for the local error set to 10−6.

Method CPU time (s) rel. quad. error nb of steps
SD/LEM 186 s 6.6 10−4 2211
ERK4(3) 17 s 2.3 10−2 569

CQE 22 s 5.3 10−2 850

and therefore select higher step-sizes than desirable. Thereason
is that the ERK4(3) method neglects the Splitting error. How-
ever the global shape of the step-size curves are similar forthe 2
methods (in particular the position of the humps are the same).
We can also observe that on this test example the CQE method
provides a step-size curve which is almost constant. It underes-
timates the local error as well and therefore select higher step-
size than desirable. The reason is that in the CQE method the
step-size is adjusted so as to guarantee the conservation ofthe
optical photon number along the propagation and not directly
on an estimation of the local error.

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90
si

ze
 o

f t
he

 s
te

p 
[m

]

propagation length [km]

ERK4(3)

CQE

SD

Figure 4: Evolution of the step-size along the fiber for the CQE method,
ERK4(3) method and the SD when solving the GNLSE.

6. Discussion

When implementing a step-size control method, one must
be aware of the following issues. First, all the estimates for
the local error in the previous sections have been derived for a
step-sizehk in a neighborhood of 0 and they are used for step-
size control where the goal is to determine step-size as large
as possible to reduce the computational cost. It is one of the
reason why a good step-size control strategy must include safe-
guard so that the step-size does not increase in an inconsiderate
way. Additionally, local error estimate is based on relation (14)
(resp. (20)) corresponding to an approximation of the principal
part of the Taylor expansion (11) (resp. (17)) of the local error
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for the Runge-Kutta scheme (resp. the Split-Step scheme). For
hk small enough, the principal term in the local error expansion
is usually large in comparison with the other terms involved
in the expansion, which justifies its use to set the step length.
However, one must be aware that under special circumstances
this can not be anymore the case and the other terms in the ex-
pression of the local error expansion can overwhelm the princi-
pal term. Here again this is likely to happen when the step-size
hk is not small enough.

As we have seen it, implementing a relevant step-size con-
trol strategy based on an estimation of the local error for the
S3F method when solving the GNLSE (1) is not so easy due
to the accumulation of 2 kinds of approximation errors with
different asymptotic behavior: the error arising from the Split-
Step scheme itself and the error coming from the Runge-Kutta
scheme used to solve the nonlinear ODE problem resulting
from the Split-Step approach. Recently, an alternative method
to the S3F method for solving the GNLSE (and other similar
evolution type PDE such as the Gross-Pitaevskii equation) has
been propound. The method is termed the ”Interaction Picture”
(IP) method. In a very similar way to the S3F method, the IP
method consists in decoupling the linear and nonlinear terms in
the GNLSE in order to make resolution simpler and the approx-
imated solution is identically obtained by solving a sequence of
linear PDE problems and nonlinear ODE problem in a given
sequential order. However, while in the S3F method the decou-
pling of the linear and nonlinear terms is obtained at the cost of
an approximation (the splitting approximation), the IP method
can be considered as exact since it amounts from a mathemat-
ical point of view to a change of unknown. The IP method
has been developed in the 90’s by theBose-Einstein Conden-
sate Theory Groupof R. Ballagh from the Jack Dodd Centre at
the University of Otago for solving the Gross-Pitaevskii equa-
tion (GPE) in the context of Bose condensation. It was first de-
scribed in the Ph.D. thesis of B.M. Caradoc-Davies [8] for solv-
ing the GPE. Latter it has been applied for solving the GNLSE
in optics by J. Hult in [16] where an experimental comparison
of the IP method to Split-Step methods based on their numeri-
cal efficiency on benchmark problems in optics is presented. A
comprehensive mathematical analysis of the properties of the
IP method is presented in [2]. Since the IP method is based
on a change of unknown rather than on a splitting approxima-
tion formula, implementing a step-size control strategy based
on an estimation of the local error for the GNLSE is straight-
forward. Indeed, in the IP method the only approximation er-
ror results from the use of a Runge-Kutta scheme to solve the
nonlinear ODE problem (which is slightly different to the non-
linear ODE problem (8) in the S3F method). In [3] a costless
step-size control strategy for the IP method based on the use
of a 4th order embedded Runge-Kutta method, an termed the
ERK4(3)-IP method, is propound. Indubitably the IP method
offers an elegant and efficient method for solving the GNLSE
and its vicinity with the S3F method makes its computer im-
plementation easy from a S3F program. When solving the test
example of section 5.2 by the ERK4(3)-IP method with an ini-
tial step-size of 10 m, a tolerance of 10−6 and a number of FFT
grid points of 214, we obtain an approximated solution with a

relative quadratic error of 3.7 10−4 using 605 steps and a CPU
time of 17 s. Thus the ERK4(3)-IP method provides an accu-
racy very similar to the one provided by the SD/LEM method,
for one-tenth of the CPU time.

7. Conclusion

We have presented an overview of the mathematical con-
cepts underlying adaptive step-size control techniques for solv-
ing the NLSE or GNLSE. We have shown that when solving
the NLSE (where the nonlinear problem (8) admits an explicit
solution), the Step-Doubling method (also referred as the Lo-
cal Error method [25]) is the method of choice for adaptive
step-size control. One alternative approach would be to usean
Embedded Split-Step (ESS) scheme, see [4] for a presentation
of the ESS method applied to the NLSE and a comparison of
the 2 methods. We have also highlighted the difficulty in de-
signing an adaptive step-size control strategy for solvingthe
GNLSE by the S3F method. The reason is that when solving
the GNLSE by the S3F method, 2 kinds of approximation errors
with different asymptotic behavior are involved: the error aris-
ing from the Split-Step scheme itself and the error coming from
the Runge-Kutta scheme used to solve the nonlinear ODE prob-
lem resulting from the Split-Step approach. This difficulty can
be circumvented by using the Interaction Picture (IP) method
instead of the Symmetric Split-Step method. The algorithms
of the 2 methods are very similar but the IP method amounts
from a mathematical point of view to a change of unknown
and therefore the local error has only a contribution from the
Runge-Kutta approximation scheme.
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