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Abstract

In optics the nonlinear Scdinger equation (NLSE) which modelizes light-wave pragagn in an optical fibre is the most widely
solved by the Symmetric Split-Step method. The practiffadiency of the Symmetric Split-Step method is highly dependa the
computational grid points distribution along the fiber aherefore an #icient adaptive step-size control strategy is mandatory. A
lot of adaptive step-size methods designed to be used iniectipn with the Symmetric Split-Step method for solving tharious
forms taken by the NLSE can be found in the literature deditéd optics. These methods can be gathered together intupgr
Broadly speaking, a first group of methods is based on thergditsen along the propagation length of the behavior of @giv
optical quantity (e.g. the photons number) and the step-aizach computational step is set so as to guarantee thiatdte
properties of the quantity are preserved. Most of the tinresg¢rapproaches are derived under specific assumptionseastephsize
selection criterion depends on the fiber parameters. Thendegroup of methods makes use of some mathematical cortoepts
estimate the local error at each computational grid poidttha step-size is set so as to maintain it lower than a ptesttolerance.
This approach should be preferred due to its generality®bus siffers of a lack of understanding in the mathematical concdpts o
numerical analysis it involves. The aim of this paper is tegent an analysis of local error estimate and adaptivesitepcontrol
techniques for solving the NSLE by the Symmetric Split-Stegthod with all the unavoidable mathematical rigor reqliii@ a
comprehensive understanding of the topic.

Keywords: Symmetric Split-Step method, adaptive step-size contiai)inear Schisdinger equation, embedded Runge-Kutta
methods, Intercation Picture method, nonlinear optics

1. Introduction at frequencywyg in a local frame moving with the pulse at the

. L . . group velocityvy = ¢/ng whereng denotes the group index of
The Nonlinear Sclidinger Equation (NLSE) describes a the fibre,z represents the position along the fibethe time

wide class of physical phenomena among which propagatiom the local frame andy stands for the identity operator. In

|°f I|_ghtf|n an ?phtlcilll_fggr. If—|ere(,jwe z;l]re(;:oncerlr_leddey thl‘_a fOI'the situation considered here, the optical wave is assumiegl t
owing form of the referred as the Generalized Nonlinea o, o ectric fielde at frequencywo which is linearly polarized

Schidinger Equation (GNLSE) (see [1, 23]) along the vectog, transverse to the propagation’s directign

9 a@ Mina B O defined by the fiber axis and expressed as a function of positio
5@ 0 = —— Az + (Z 'mln—T protat) r = (%Y, 2) and timer in the form
n=2 ’

. E(r.7) = Az t) F(x y) gD g, (2)
+iy

i 0
To+— E] : (A(z, B((1- fr) A yf @
0 whereF(x, ) is the electric wave transverse representation also
4 fRf he(s) 1Az t — 5)12 d )) called the modal distribution arldis the wavenumber. The re-
R

lation between the “local” time¢in the retarded frame and the

where the complex valued functiof represents the slowly 2absolute timerist = 7 —z/vg. The physical fects for wave

varying pulse envelope of a quasi-monochromatic opticateva propagation in fibre taken into account in (1) are the follow-
ing. First, some linearfiects are expressed through the linear
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tial derivation with respect to time takes into account tiee d so that, at each computational step, a "local error” (or any r
persion of the nonlinearity through the simplified optidabek  lated quantity) is lower than a prescribed tolerance. Aetgrof
parameterrshock = 1/wp. Instantaneous Kerrfiect manifests  adaptive step-size strategies have been propound to berused
itself through the term (% fr)|A2. The delayed Raman con- conjunction with the S3F method. We can distinguish 2 types
tribution in the time domain is taken into account througé th of approaches. The one based on physical concepts (or physic
convolution product between the instantaneous podérand  intuition) where at each grid point the step-size is choseass
the Raman time response functibp The constantr repre-  a”local error” related quantity estimated from a physiaaq-
sents the fractional contribution of the delayed Ramanaese  tity matches the prescribed tolerance value. For instandke
to nonlinear polarization. so-called "nonlinear phase rotation method” [25] the stize-

The most widely used numerical method for solving theis chosen so that the phase change due to nonlinearity dbes no
NLSE or GNLSE in optics is the Symmetric Split-Step Fourierexceed a certain limit. In the "walk-of method”, the stepesi
(S3F) method, see e.g. [10, 11, 15, 25, 26], due to its péaticu is chosen to be inversely proportional to the product of the a
simplicity and dficiency for solving certain type of evolution solute value of the dispersion and the spectral bandwidtheof
partial diferential equations (PDE). The idea behind the S3Fsignal and the method applies to low power, multichannel sys
method applied to the GNLSE (1) is to decompose over eactems [25]. In [22, 24] a method termed the “uncertainty grinc
subinterval of a given subdivision of the fiber length the PDEple method” is propound where the determination of the step-
problem into a sequence of 3 simpler problems connected tsize is done from the values of a parameter derived from an
each other. One corresponding to a purely linear PDE problerimequality which in quantum mechanics gives rise to the unce
over the first half of the subinterval, the other over the wehol tainty principle between two non commuting operators. Init[6
subinterval corresponding to a nonlinear ordinarffedential  is shown that when losses in the fibre are neglected the follow
equation (ODE) problem with the time variable as a parameing quantity, referred as the “optical photon number” (OPill)
ter and last another purely linear PDE problem over the skconconserved
half of the subinterval, see e.g. [1, 21]. Of course solvimg t f Nest

; . . P2 =

sequence of 3 nested problems is not equivalent to solvimg th R
GNLSE (1) and an error, usually referred to as the "spliténg N
ror”, is introduced. However, the interest of this numeraga  where A denotes the Fourier transform of the slowly varying
proach is that each of the 3 nested problems can be solved muphilse envelope of the electric fiel] A is known as the ef-
more easily than the GNLSE (1) itself and the approximatedective mode areanes is the dfective index of the fibre, and
solution converges to the solution of the GNLSE (1) when théntegration hold over the entire spectrum of the optical evav
discretization step-size tends toward 0. The 2 linear P@Bpr amplitude assumed to have a bandwidth less #arin [14] it
lems have an explicit solution obtained by use of the Fourieis made use of the conservation of the OPN to estimate a "local
Transform tool whereas the nonlinear ODE problem is genererror” related quantity and to define an adaptive step-sire ¢
ally solved numerically by standard methods for ODE such agrol strategy termed the “Conservation Quantity Error (JQE
Runge-Kutta (RK) methods [7, 13]. Among them, the 4th or-method”. The CQE method applies to low loss fibres.
der classical RK method is the most famous due to the good An other approach for defining adaptive step-size strasegie
compromise it fers between accuracy and computational costconsists in using mathematical concepts from the field of nu-
Although the S3F method is the most widely used with the 4thmerical analysis. The "local error” is then defined as the er-
order RK method for solving the GNLSE (1), alternative ODE ror made by using the numerical scheme when computing an
solvers such as the Adams multistep methods have been invespproximation of the solution at the current grid point unde
tigated [12, 19]. A second kind of approximation error isrdie  the assumption that the value at the previous grid point was
fore introduced by the use of a numerical scheme for solvinggxact. In [25] the authors propound to use the well known
the ODE problem. step-doubling concept (often referred as Richardson galkaa

Of course, the practicalfigciency of a numerical method tion) [27] to estimate the local error when solving the NLSE b
such as the S3F method applied to the GNLSE (1) highly dethe S3F method. They termed their adaptive step-size gyrate
pends on the distribution of the discretization grid poaitsng  the "local error method” (LEM). The main advantage of such
the fibre and the use of an adaptive step-size control syratega numerical analysis based approach is that since no assump-
is mandatory. The idea behind an adaptive step-size syraeg tion on the physical quantities involved in the equation &l
to introduce the grid points during the progress of the computhe step-size strategy applies to an arbitrary set of paeme
tation taking into account the information available at tue-  in the NLSE. Note that a comprehensive numerical comparison
rent computation stage in order to determine the best ssiisgd ~ of the LEM and other adaptive step-size methods such as the
size (and therefore the next grid point) so as to maintainengi  "nonlinear phase rotation” method and the "walff>onethod is
predefined accuracy of the approximation. Namely, if compu-achieved in [25] on benchmark problems in optics. However a
tations have to be achieved at a given accuracy, the sizeeof tldrawback of the step-doubling method is a computationat-ove
steps have to be chosen small enough so as to attain theddesist of approximatively 50 % (when compared to the same S3F
accuracy but not smaller than required to avoid unnecedsary method with the “optimal” grid points distribution given ad-
crease of the computation time. Since it is not possibleatcpr vance) and some attempts have been made to find alternative
tice to know the final global error, the step-size is deteedin method with the same degree of generality, see e.g. [18].-How
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ever the method proposed in this journal in [18ffets from  whereL denotes the fibre length, and PDE (5) is solved together

misinterpretations in the mathematical concepts of nuraéri with the initial conditionA(0) = ag at the fibre entrance= 0

analysis used to derive the algorithm and this convincesf us avhereag is a known source term. Note that another splitting is

the soundness of a clarification on the topic of local errtir es possible: the term%aA(z) can be added to the linear opera-

mate and adaptive step-size control when solving the GNSLEor D instead of the nonlinear operatf.

by the S3F method. It is worth mentioning that the standard nonlinear
The paper is organized as follows. Section 2 is devotedchiddinger equation corresponds iigax = 2 in the defini-

to a succinct presentation of the S3F method aimed at settingpn (3) of ©® and to the nonlinear operator

the framework for the study of local error estimate appreach

made in section 3. We also discuss in section 3 some poten- . : 2 1

tial numerical issues and inconsistency between the thebry No: A@) = iy AZ)IA@I" - ﬁaA(z) ©)

adaptive step-size control and practical results obseraatl-

merical simulation experiments. In section 4 we detail how a

adaptive step-size control strategy for the S3F method ean pve setfr =

derived from the knowledge of the local error. Finally, we€o

clude in section 5 by a reference to an alternative method t8.2. The splitting approximation scheme

the S3F method, termed the "Interaction Picture” (IP) mdtho . .

that dfers the same advantages than the S3F method in terms!n the S3F method applied to the GNLSE (5), the interval

of ease of implementation and computational cost togetitar w [0, L] is divided intoK subintervals where the spatial grid points

some nicer features for adaptive step-size purposes. are denotedy, k € {0,...,K}, where 0= 2 <z < - <
Zx-1 < Zx = L. We denote byhy = z.1 — % the step-size

. . . between grid pointg andz.; and we se,,1 = % + % The

2. Overview of the Symmetric Split-Step method S3F method consists in solving over each subintea. 1]

2.1. Mathematical framework fork € {0, ..., K-1}, the following 3 nested problems with time
Let L2(R, C) denotes the infinite-dimensional vector spaceVarablet as a parameter and the operatorand \V defined as

of all complex-valued "square integrable” (also termeditén 1" (3) and (4):

energy”) functions which are defined on the real line and have

1 0
afinite energy nomif(| = ([, If(t)? dt)” . We denote by the 0@ =DU@  Vze[a.z.] @)
Fourier operator froni.?(R, C) to L(R, C) defined by continu- U(z) = A1(z)

ous extension of the Fourier Transform definition for intdaie

functions and computed for afl € L2(R, C) by an improper where Ac_1(z) represents the approximated solution at grid

which is formally retrieved from (4) in the special case when
0and Ywq = 0.

integral as pointz, computed at step— 1;
T
L imvt ol
ek 7O =lm f foemd V@ =NV@)  Vzelzzel ©
Alternatively we use the notatiofi() for the Fourier Trans- V(z) = U(z,1)
form of f and we use the notatioA~* for the inverse Fourier
Transform. whereU(z, ;) represents the solution to problem (7) at half grid
For a fixedz € [0,L] we denote byA(?) the first par-  POINtz, 1;
tial function of the slowly varying pulse envelogein z, i.e.
A2 : t € R —» A(zt). This notation will be used throughout d W
. —W(2) = DW(Z vz ,

the paper. We also denote ythe linear operator 0z (@)= DWE c [z"*% Zeri] 9)

Mmax i+l gn W(Zk+%) = V(2Z1)

D A@ - Y o 2 AD) 3) |
n=2 ' where V(z1) represents the solution to problem (8) at node

and byA’ the nonlinear operator Zi 1. An.approximated solution to the GNLSE (5.) qt grid
nodez is then given byAw(z1) = W(z.1). The principle
i 0 i it- ' i in fi
s+ 21 (A ((1 ~ fR) |A(z)|2 of the_Symmetrlc Split-Step scheme_z_|s d_eplcted infigure 2 Th
wq Ot main interest of such a decomposition is that each one of the
) 1 3 problems (7), (8) and (9) can be solved much more easily
+ fRIA@DI” x hR)) - EGA(Z) (4)  than the GNLSE (5) considered over the intenzl 1] and
for hy small enoughAy(z.1) provides an approximation of the
wherex stands for the convolution product. With these nota-solution to the GNLSE at grid poirk, ;.

N A@ - iy

tions, the GNLSE (1) reads From a mathematical point of view, it is well known [9]
) that the linear operatad defined in (3) generates a continuous
5,/ @=DAD+NA@Z)  vze[0.L] (5)  group of bounded operators @f(R, C), denoted (according



> Iy L hy whered : v - i 22:;* ﬁ—?(Zm/)” and the solution to problem (9)

___________ ‘ . atgrid pointz.; reads

D DD D D D
: S don e
- A VA O W(zer) = 7y o Vizea) €03 .
P e
“UU+U' When we are concerned by the standard nonlinear
N ! N } N Schibdinger equation where the nonlinear operatohas the

——————————— ! form given by Ny in (6), there also exists an explicit solution
to the nonlinear ODE problem (8). In the general case when
a # 0, the solution at grid poirg,; reads

Figure 1: Principle of the Symmetric Split-Step scheme (contjmutal stepk i
is displayed in the dashed box). V(Zee1) = U(Zk+%) eXp(—Ehk + %|U(Zk+%)|2(e”hk _ 1))

to its properties) by exg{) with z € R. Moreover, the solu- gnd wheny = 0
tion to the nonlinear problem (8) admits the following intaig

representation form V(@e1) = U(%1) exp(iyhdU (z.1)P).
Z
Vze [z, z1] V@ =U(z,:) exp( f NV(©) dg), Even if the 3 problems (7)—(8)—(9) have explicit solutiortsan
: % the nonlinear Sclidinger equation is considered, it doesn't sig-

This justifies why the approximated solution given by the g3pnify for all that the nonlinear Schdinger equation itself has

method by solving the sequence of nested problems (7)98)—(a" explicit solution. However an approximated solution can
is the most often formally written as be computed by the S3F method and the approximation error

solely lies in the use of a Split-Step scheme. Unlike, in the
more general case when the GNSLE is considered, a numer-
ical approximation scheme (such as a Runge-Kutta scheme) is

mandatory for solving the nonlinear ODE problem (8) resgiti

The convergence of Split-Step methods applied to varioug, 5 approximation error made up of the splitting error dre t
forms of the Schirdinger equation is widely documented in the e approximation error.

litterature, see e.g. [5, 20, 28] where the authors provettiea

global convergence order of the Symmetric Split-Step netho

is 2. Namely, in the situation considered here, the follgwin 3 | ocal error estimate theory
result holds for the local error [2]. Lek denotes the solution

to equation (5) and for ak € {0,..., K — 1} let Aw(z1) de- In the field of numerical analysis, an error estimate refers t
notes its approximation at grid poiat,, computed by solving g approximated value for the error on a numerically catedla
the three nested problems (7)—(8)—(9) with the initial adad ¢ antity. As mentioned in the introduction, the most gehera
A (2) = A(z) corresponding to the exact solution (because W&,y of designing an adaptive step-size control strateggists
are concerned by the local error) assumed to befiecntly i estimating the "local error” at each step of the S3F atani
smooth function. Then, fdu in & neighborhood of 0 we have ¢ the error made in computing the approximated solutian a
the following estimate: given grid point assuming that the data from the previous gri
3 oint was exact. At each grid point, the step-size is then-com
) = Adza) + O (10) Euted so that the local er?or ig lower than 21 predefined value
where we recall the significance of the big O notat@¢hn?):  (termed the tolerance). The tolerance is set dependingen th
there exists a positive numbe€rsuch that foth in a neighbor-  need of accurate results, e.g. to-4Qvith g ranging from 3
hood of O the local error satisfigi®\(z1) — Ax(Zi1)ll < Ciﬁ. to 9. Actually, it is the "global error” (i.e. the total errat a
From a practical point of view, the quantity of interest ig th given grid point ensued from the error accumulation from the
“global error”. The global error at grid poirg.,; takes into initial grid point) that we wish to know about but estimatitig
account the error accumulation from all the previkusl com-  global error with accuracy is mathematically and numelycal
putational steps and therefore from (10) we can deducetthat @ut of reach and therefore we must content ourselves with est
behaves i(h?) whereh = max_o__x hi. The Symmetric Split- mating the local error. Note that the global error resulfiogn
Step method is a 2nd order method. the error accumulation from the previous computationgbste
The 2 linear PDE problems (7) and (9) admit an explicit so-can be several order of magnitude upper than the toleramce fo
lution obtained by use of the Fourier Transform. The sotutio the local error.
to problem (7) at grid poimk+; reads In this section we carry out an analysis of the local errorwvhe
2 a numerical scheme is used for solving the nonlinear ODE-prob
e — oy e lem (8) on the one hand and to an analysis of the Split-Steg loc
U(Zk+%) =F v Aci(zv) e 2] error on the other hand.

Zi+1
Adaer) = expy D) expl [NV o) expCy D) Acs(a
Z



3.1. Local error when solving the nonlinear ODE problé®)  whereV(z.1) denotes the exact solution to problem (8) at grid
by a Runge-Kutta method pointz1 andyp (resp.¢p.1) is a function of theslementary dif-
The most &ective way for local error estimate when solving ferentialsof orderp (resp.p + 1) of the functiorz i N/(V(2)).
a nonlinear ODE problem is by using an Embedded RungeBY difference of these 2 relations we obtain
Kutta (ERK) method. ERK methods [7, 13] are special Runge-
. . . . [p+1] (ol _ [Pl 1 2
Kutta (RK) methods designed to deliver 2 approximations of Vil =V = op(@ V) T+ O™, (13)

the solution of the ODE problem under consideration corre- hat the local for
sponding to 2 RK schemes offt#irent convergence ordeps From (11) and (13) we deduce that the local error for pié

andp + 1. These 2 approximations of the solution can be con®'d€" RK metmd at grid poirg; can be approximated with
sidered as an accurate approximated solution (the one dechpu an error inO(h, ™) by
with the numerical scheme of higher orde# 1) and a coarse RK(p) [p+1] (ol
approximated solution (the one computed with the one of towe VteR 47 (0 ~ Vigr (0 = Viea () (14)
order p). For diiciency, the 2 RK schemes bear several com-
putational stages in common in order to reduce noticealgy thand the energy norm of the local error by
computational cost of the local error estimation. 1

In [18] the author uses (without mentioning it explicitly) a leKl(p) - ||€E+K1(p)|| ~ (f Mﬁl](t) _ V&g]l(t)r dt) . as)
ERK method of order 1 and 2(= 1) for solving problem (8) R
where the first order approximated solutiorgip; is given by

Vel = Uz 1) + hcas, a1 = N(U(%,1))

and the second order approximated solution is given by

It satisfiesLy” = O(hP™).

3.2. Split-Step local error estimation by step-doubling

As mentioned before, when the nonlinear Scfinger equa-
tion is considered (i.eN = Np as defined in (6)) the nonlin-

Because it represents a good compromise between accura@§’ ODE problem (8) admits an analytical solution and the lo-
and computational cost, the fourth order Runge-Kutta (RK4f@l error in the S3F method only amounts to the splittingrerro
scheme [7, 13] is more commonly used in conjunction with@s given by (10). In such a case, although an approach simi-
the S3F method. The RK4 method can be formulated as aldf to the one performed to estimate the local error when-solv
ERK method of order 3 and 4o(= 3), referred in the litera- ing a npnlinear ODE by an'ERK method could pe considered
ture as Dormand and Prince RK 4(3) T method [7, 13], which(involving 2 embedded Split-Step schemes dfefent orders
preserves the ease of implementation of the RK4 formula anf- 17]), the usual method for estimating the splitting lagraor
provides a local error estimate at no extra computationsi co IS Pased on the step-doubling technique. Actually, it isip-

(see [3] for the implementation details). The 4th order RK!ive step-size control used in conjunction with the S3F roeth
method delivers the approximated solution for solving the NLSE presented in [25]. The idea behind the

step doubling method (also known as Richardson extrapola-
tion method and widely used for adaptive step-size conirol i
quadrature methods for integral or ODE [27]) is the folloguin
The local error for the S3F method at grid poit; satisfies
ut_he following relation [5, 20, 28]

VA = U(Zeps) + Meaz, a2 = N(U(Zq 1) + 3hcan).

h
VE—]l = U(ZkJr%) + Ek (a’]_ + 200 + 23 + a4)

whereas = N(U (ZkJr%) + %hka'g) anday = N(U(Zk+%) + hka'g)
and the 3rd order RK method provides the approximated sol
ton i (55, = Azir) - Adzer) =CHE+O(M) (16
3 k
Vl£+]1 =U(z.y) + 30 (Sa1 + Saz + Sag + 2a4 + 3as) where C denotes a positive number independenthaf Let
U1 = Ax(z1) be the solution at grid point,,; computed
by the Symmetric Split-Step scheme (7)—(8)—(9) from grid
point z. using one step of sizég, and letUy,; be the so-
lution computed from grid poing using two half steps of
size hy/2, in both cases assuming the solutifp i(z) at
ajrid pointz to be exact (since we are interested in estimating
e local error). Additionally the following assumptiommde:

whereas = N(VI¥).

When solving problem (8) by the standard RK method of
order p, provided all the partial derivatives af » N(V(2)
exist and are continuous up to the orger 1, the local error is
known to behave a®@(hP*?), see e.g. [7, 13]. Let us detail the
way the local error can be estimated by using an ERK metho
with p = 1 or p = 3 as considered above. By use of the Taylor
expansion formula, one can show that the local errors fon eac

of the 2 methods are respectively given by [7, 13] (H) the local error after 2 half steps is twice the local
error after one half step
et = V(@) - VP, = op(zo VP R + O (12)
LRK(P+D) _ V(Zest) - yipHl (which consists in an approximation since the initial daia f
kel [ p‘fﬁ pi2 pi3 the second half-step is actually the approximated solwtoom-
= ¢ps1(Zo Vi )T+ O ) (12) puted after the first half-step and not the exact one). Then,



from (16) we deduce that 4. Local error analysiswhen solving the NL SE and GNL SE
by the S3F method
A(Zc:1) = Ukes = C I + O(h) (17)
o3 4.1. Local error analysis for the GNLSE
A(Z1) — U1 = 2C (?k) +0(hg) (18) In the case when the GNLSE (1) is solved by the S3F method,
a dedicated numerical method such as a Runge-Kutta method is
and therefore by dierence between these 2 relations we get t0 be used to solve the nonlinear ODE problem (8). As a con-
sequence, the local error consists in the error producetidy t
Split-Step scheme and the error produced by the 1)-th or-
der Runge-Kutta scheme & 1 or p = 3 for the 2 above men-
tioned ERK methods). Since the 2 linear PDE problems (7)
Thus the local error related to the Split-Step scheme at gridnd (9) are solved exactly by use of the Fourier Transform,
pointz.1 can be approximated, with an error@thy), by from (12) and (17) we deduce that the local error behaves for
hg in a neighborhood of 0 as

— 3
Uk+1 — Uk1 = Z C rﬁ + O(hﬁ) (19)

MER 0 ~CH > S G- wal).  (20)

1AGZ1) = Azl < C hg + K™ (22)
The energy norm of the local error at grid pomt, is then  whereC andK denote 2 positive numbers. The constant num-
expressed as berK depends on the elementaryfdrentials of order 3 of the

) mappingA(2) — N(A(2) whereasC depends on the elemen-
4 5 . )\2 tary differentials of ordemp + 1 of the mappingF : A2 +—
Lo = el ~ 3 ( fR [Uic+1(t) — Ui (1)1 dlt (21) DA(Z) + N(A(2). Therefore the 2 constant numb&sand K
depend in a dierent way on the physical parameters involved
and from (16) we haveffl = ()(hﬁ). in the GNLSE (1) and it can happen that they have values dif-
We have to point out that relation (20) gives an approximaferent by several order of magnitude. Note that the locarerr
tion of the local error corresponding to the solutign; com-  ¢&n not be estimated only for the nonlinear ODE problem (8)
puted by the Symmetric Split-Step scheme over the coarde gr@S it is done in [18] and in no case when= 1 the whole nu-
with step-sizehy. However the fine mesh grid soluti@i.+ is merical approximation scheme can be 4th order accurateeas th
a better approximation and in practice it is kept as the appro author states. Whep = 1, relation (22) shows that the global
imated solution and propagated along the fibre. This procesgonvergence order of the S3F method is 2.
is referred in the literature as the “local extrapolationdeio From a theoretical point of view, we deduce from (22) that
Moreover, by diterence of equation (17) and equation (18)Whenp = 3 the S3F method with problem (8) solved by the
pre_mump"ed by 4 we obtained under assumptim)(an RK4 scheme (referred as the S3F-RK4 method in the Sequel)
even more accurate approximation (referred in the liteests ~ has global convergence order 2 sincetipin a neighborhood
Richardson extrapolation)A(z.1) can be approximated with ©Of 0 we haveK by = O(h}). Thus, the local error (22) could be

an error inO(h{) (instead ofO(h?) as given by (18)) as estimated by the step doubling approach just as detailegtin s
tion 3.2. However in practice it can happen that under specia

1 circumstances (i.e. for a special set of values for the jghysi
Alzr1) = 3 (4 Uk () = Ui (0))- parameters involved in the GNLSE (1)) the value of the con-
stantC is much lower than the value &f. In such a case, when
The over-cost of estimating the local error in this way istbst  the convergence order of the S3F-RK4 method is explored on
of the computation of the coarse mesh grid solution and thisiumerical examples, the experimental convergence cume ca
cost is approximately half the cost of the computation ofithe  behave as a function of the step-digeroportional tch* instead
mesh grid solution since the step-size is twice larger. Tésts-  of h?. If so, the local error estimate presented in section 3.2 is
mating the local error using the step doubling approaclaiddi likely to provide wrong results since it was assumed that the
of an extra computational cost of 50% more than the cost of theonvergence order is 2. Actually, it is noffiiult to convince
computation of the approximated solution itself. In fabg &d-  oneself that whenever the nonlinedfeets predominate in the
ditional cost is slightly less than 50% since some computati  GNLSE (1) the convergence order observed experimentally wi
are shared by each of the 2 methods, and needs to be carried ¢t close to 4 an@ << K whereas when it is the lineaffects
only once. This approach is the one of the LEM [24]. that predominate the convergence order observed experimen
Finally, we would like to mention that the step-doubling ap-tally will be close to 2 anK << C. (Note that when dealing
proach could be used to estimate the local error when solvingith the convergence behavior, the 2 constéendC we are
the nonlinear ODE problem (8) in the S3F method by the RK4referring to may dfer from the constants appearing in the local
method. (In the above reasoning, equations (17) and (18)dwouerror estimate (22) but we have maintained the same notation
be replaced by (11) and (12).) However the computational cogor simplicity.)
of this way of estimating the local error of the RK4 method is In order to numerically illustrate the mathematical anislys
prohibitive compared to the use of the ERK4(3) method. presented in this section we have solved the GNLSE by the



S3F-RK4 method on a test example chosen to match with a tygias a slope cdicient close to 4 (dotted line labeled 4). In this

ical case of high speed data propagation throudth=a20 km

specific case the nonlineaftects predominate in the GNLSE

single mode fibre in optical telecommunication with a data’sand the error behavior is mainly governed for the step-size

carrier frequency located in the C band of the infrared spett

range considered in the simulation by the error committed

(fo = 193 Thz). The following set of fibre’s parameters werewhen solving the nonlinear ODE problem by the 4th order RK

used for the simulationa = 0.046knt, y = 43W-km™,
fr = 0.245,8, = -19.83pgkm?, B3 = 0.031pskm~? and

scheme. On the contrary, for a 5 mW peak power pulse (where
L = 1/2Lyy) the experimental convergence curve (solid line

Bn = 0forn > 4. An expression for the Raman time responsewith star symbols) has a slope d¢bheient close to 2 (dotted
function for silica core fibre is given in [1]. The source term line labeled 2). The linear dispersioffects predominate in
ap = A(z = 0) was represented as a first order Gaussian pulse:ithe GNLSE and the error behavior is mainly governed for the

ap it Pye 2T

whereT is the pulse half-width at/& intensity point andP

(23)

step-size range considered in the simulation by the ertarin
ent to the use of the Symmetric Split-Step scheme (the error
committed when solving the nonlinear ODE problem by the 4th
order RK scheme is much lower). The convergence curve cor-

is the pulse peak power. Simulations were carried out for ?esponding to a 25mW peak power pulse (where Ly, and

pulse-widthTy = 6.8 ps and for three flierent peak power val-

ues: Py = 5mW, 25 mW and 50 mW. As explained in [1] the

dispersive lengtt.p and nonlinear lengthy defined as

T2 1
Lp 0 and Lne = —
YPo

B 162 (24)

both linear dispersion and nonlinedfexts have a comparable
strength) shows a very interesting phenomenon (solid liitle w
circle symbols). The first part of the convergence curve has a
slope coéicient close to 4 whereas it is close to 2 on the sec-
ond part. This can be understood as follows. The value of the
constantC involved in the expression of the error related to the

provide the length scales over which dispersive or nontineause of the Symmetric Split-Step scheme is a little smallenth
effects become important for pulse evolution. In the test exthe value of the constait involved in the expression of the er-

ample considered here the dispersion length = 2.26 km
was kept constant and the nonlinear lenigtih was decreasing

ror of the RK scheme. As a consequence, for the largest values
of the step-sizéa in the range considered in the simulation we

from 465 km to 465 km while P, was increasing from 5mw haveK h* > C ¥ whereask h* < C ¥ whenh becomes small

to 50 mW. Thus when the pulse peak power was increasing tr@nough, i.e. for the lowest values in the range consideréutin
nonlinear Kerr §ect was becoming more important through Simulation.

propagation. The convergence curves representing thalglob To be comprehensive in the analysis of the results depicted
error at the fiber end for the energy norm when using a conon Figure 2, one can notice the somehow erratic behavior of
stant step-size S3F-RK4 method for solving the GNLSE versue curves for the largest values of the step-size (uppét rig
the step-size are depicted in Figure 2. The global error at fip corner). It can be explained by the large values of the global
end takes into account the error accumulation from the fiber e €rror for such step-sizes which are not really compatibké wi

trance and therefore its asymptotic behavior is propoaiom
the local error by a factor/h.

—_
=}
=

Normalized global error (a.u.)

Po=50 mW

10" i 10’ !
Step size (km)
Figure 2: Experimental convergence curve (logarithmic 3datehe S3F-RK4
method applied for solving the GNLSE on the test example witledint peak-
power values (solid lines). The convergence order is ranffiom 2 to 4 de-
pending on the importance of Kerr nonlinearity (theoretimalves in dotted
lines).

an asymptotic behavior analysis. As well one can notice a dis
tinguishing behavior of the curves for the smallest valifdbh®
step-size where the slope of the curves decreases (loweotef
ner). This can be explained by the roun@-@rror due to the fi-
nite precision (floating-point) arithmetic used on the coiep
Round-df error increases in proportion to the total number of
arithmetic operations (related to the number of steps héwm)

the smallest values of the step-size, it grows up to the pint
being comparable in magnitude to the error of the method and
becomes apparent on the curves.

To conclude this section we would like to emphasis the fact
that the simulation results we obtained do not reveal anjeiat
matical contradiction on the convergence order of the SBB-R
method: it is 2 and not 4. The apparent contradiction can be
understood as follows. The theoretical behavior is prowed f
a step-sizén arbitrarily close from 0 (in other words the prop-
erty is true asymptoticly wheh tends to 0) whereas the ex-
perimental curves are obtained certainly with small vahfes
but inevitably larger than a limit imposed by the performasc
of the computer. Wheg is several order of magnitude lower
thanK, it is not possible experimentally to reach valueshof

In Figure 2, one can observe that for a 50 mW peak powesmall enough so thak h* becomes much smaller thahh?.
pulse (wherel = 4Ly.) the experimental convergence curve On the contrary, on the range of experimental possible galue
(solid line with square symbols) drawn in a logarithmic scal for h we may haveC i much smaller thai h* and what it is
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observed on Figure 2 fd?; = 50 mW is this latter behavior. 5. Step-size control

5.1. Step-size control for the NLSE solved by the S3F method

For step-size control, a tolerance “tol” is given as bound on
the local error estimate. A step-size control strategy 3 cbn-
sists in rejecting the current step-size if it gives an ested
local error higher than the specified tolerance and in aecept

lg'ng the solution computed with this step-size otherwiseeréh
are 2 criteria usually employed for step-size control pagso
8 he criterion of error per step (EPS) selects the steplsizt

4.2. Local error analysis for the NLSE

The above mentionedfliiculty in estimating the asymptotic
behavior of the local error when solving the GNLSE by the S3
method disappears with the NLSE (where the nonlinear oper

tor is defined in (6)) since the nonlinear problem (8) is sdive each step so that the local error is lower than the toleravice t

analytically and only remains the splitting error. The Syetm whereas the criterion of error per unit step (EPUS) seldws t

ric Split-Step method is known to be second order accurate se . .
X . . : t ehy at h st that the local I th
e.g. [5, 20, 28], i.e. the global error behavior at grid paint SleP Siz€fl at each step o that the focal error 1S fower than

tol x hy. It is clear that for sfiiciently small tolerance value

----- EPUS criterion selects a smaller step-size than EPS ariteri
When the current step-size is rejected, a new smaller step-si
has to be chosen to recompute the solution over the current
step. As well, when the current step-size meets the toleranc
requirement for the local error it has to be scaled up for th n
step computations. In both case, the new step-size has to be
estimated using the available information on the previdep s
computations. On the basis of the results set in the previous
section, according to (16) we assume that there exists &ygosi
real numbecC such that the local error has the form

denotes a positive constant.

10"
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L3 = 63l = C .
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L

The optimal step-sizégyy is the one for which the local error
il estimately,; is the closest to the prescribed tolerance tel,

5 C hgpt = tol. By eliminating the constan® from these 2 rela-
’ tions we obtain that the optimal step-size is

Normalized global error (a.u.)

[
[S)
&
T

n n
—2 -1 0 1
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Step-size (km) tol

hopt = hk ; L .

k+1

Figure 3: Experimental convergence curve in logarithmices¢sdlid line with
square symbols) for the S3F method applied for solving the NaSEhe test
example. The theoretical convergence order 2 is depictedttedlline.

For robustness the step-size control has to be designedén or
to respond as smoothly as possible with real or apparenpabru
changes in behavior. This means that the step-size should no
In order to illustrate this behavior of the local error we @av vary from one step to the other by an excessive ratio. Thhgis t
solved the NLSE by the S3F method, neglecting the Raman inreason why it is imposed that the new step-size does notéxcee
duced frequency shift and self-steepenifig@s (.e. consider-  twice the current step-size above and half the current sitep-
ing the simplified expression (6) of the nonlinear operad)),(  below. As well, in order to avoid situations where the spedifi
for the same set of parameters as in section 4.1 when the pegllerance is ever exceeded resulting in rejecting too meepss
power valuePo = 50 mW. In Figure (3) we have depicted the a safety factor is sometimes introducedhify is the value of
experimental convergence curve in logarithmic scale, th&  the step-size estimated to give a predicted truncatiom equal
global error at fiber end versus the step length. We can obseryo the tolerance, then the smaller valuég,, for instance is

that the experimental convergence curve fits well the thieale  ysed instead. These considerations lead the followingszep
convergence order curve (the dotted line labeled 2 has & slogontrol formula

codficient equal to 2). Since the global error asymptotic be-

havior (which takes into account the error accumulatiomnfro . s/ tol

the fibe(r entrance) is proportional to the local error by dadiac Pnew = max[0.5, mm[Z.O ’ 0'9\/;)] My (25)

1/h, this result is in full accordance with relation (16). On the

contrary to the GNLSE case presented in section 4.1 where thehere “tol” denotes the tolerance value specified by the aser
global error behavior is a mixture of the error contribu@f  a bound on the local error and “err” denotes the estimation of
the splitting approximation and RK approximation (witlfifdi-  the local error for the current step. The 3 constants withesl
ent convergence orders), for the NLSE the error is only due t0.9, 0.5 and 20 are somewhat arbitrary and have to be regarded
the splitting approximation. as design parameters.



_ In order to numerically illustrate the above described -stepFble 1 Comparison of Step-Doubling or Local Error (SBM) method,
size control sFrategy, We_have solved the NLSE for th? seto RK4(3) method and Conservation Quantity Error (CQE) mettwodélving
parameters given in section 4.2 by the S3F method with locahe GNLSE by the S3F method with tolerance for the local ereotes 1076,
error estimations based on the Local Error method (LEM) [25]

(i.e. the Step-Doubling method presented in section 3.d) an

on the CQE method [14]. For an initial step-size of 10m, a__Method | CPUtime (s) | rel. quad. error| nb of steps
tolerance of 16° and a number of FFT grid points of® the SDLEM 186s 6610 2211
LEM method computes an approximated solution with a rel ERK4(3) 17s 23107 569
ative quadratic error of.24 10" using 124 steps. The com- CQE 22s 53107 850

putation (CPU) time was.Z7s on a AMD A8 Desktop Com-
puter with 8 GO RAM. With the same tolerance value, the CQE
method provides a solution with a relative quadratic error o
2.46 106 using 763 steps and a CPU time of 1gt Actually,

a relative quadratic error similar to the one of the LEM metho
is obtained with a tolerance of 510 The number of steps is
then 343 and the CPU time of & s.

and therefore select higher step-sizes than desirablereisen

is that the ERK4(3) method neglects the Splitting error. How
ever the global shape of the step-size curves are similénéd?
methods (in particular the position of the humps are the $ame
We can also observe that on this test example the CQE method
provides a step-size curve which is almost constant. It iesde
timates the local error as well and therefore select higtegr-s

GN!'SE so!ved b_y the S3F m_ethod ) size than desirable. The reason is that in the CQE method the
The dfficulty in designing anféicient step-size control strat- step-size is adjusted so as to guarantee the conservattba of

egy for the GNLSE solved by the S3F method is due to the facf .o nhoton number along the propagation and not directl
that the numerical error is compound of 2 kinds of approxima o1 estimation of the local error.

tion errors with diferent asymptotic behavior: the error arising

from the Split-Step scheme itself and the error coming friben t
Runge-Kutta scheme used to solve the nonlinear ODE problel 90
resulting from the Split-Step approach. A step-size cadridre ol
mula such as formula (25) requires the knowledge of the con
vergence order of the method but we have shown in section 4.
that the convergence order of the S3F method applied to th
GNLSE is hard to predict. It can vary from 2 to 4 depending
on the balance of linear and nonlinediieets. When we known

in advance the convergence ordenf the method and when
we are able to estimate the local error, a step-size cordrel f
mula similar to formula (25) with the cube root replaced by th
(p+ 1)" root (p = 2, 3 or 4) can be used.

For instance, when solving the GNLSE with the set of param
eters given in section 4.1 for a peak-power value .6\ the
nonlinear &ects predominate and it can be shown experimen 0 5 10 15 20
tally that the convergence order of the method is 4. We are the propagation length (k]
in a position to compare thefficiency of various methods for
step-size control on this specific case: Step-Doubling @alo Figure 4: Evolution of the step-size along the fiber for theEC@ethod,
Error (SDLEM) method, ERK4(3) method and Conservation ERK4(3) method and the SD when solving the GNLSE.

Quantity Error (CQE) method. For comparison purposes, we

have given in Table 1 the CPU time (in s.), the relative quigdra

error||Arer(L) — Ak-1(LII/IAer(L)Il at fiber end (wheréver de- g pjscussion

notes a reference solution computed with a very small cahsta

step-sizeh = 1 m andAx_1(L) the approximated solution at ~ When implementing a step-size control method, one must
fiber end) and the number of steps for the 3 methods. be aware of the following issues. First, all the estimates fo

If we wish a relative quadratic error at fiber end for thethe local error in the previous sections have been derived fo
ERK4(3) method similar to the one of the BIEM method  step-size in a neighborhood of 0 and they are used for step-
(= 710%), a tolerance of 5 16° has to be chosen. CPU time size control where the goal is to determine step-size ag larg
is then 118 s and the number of steps 3773. as possible to reduce the computational cost. It is one of the

A comparison of the evolution of the step-size along the fibereason why a good step-size control strategy must incluge sa
from an initial step-size of 10m and a tolerance of®@r  guard so that the step-size does not increase in an incoatide
the 3 methods is depicted on Figure 4. When compared to theay. Additionally, local error estimate is based on relatfb4)
SD/LEM method on this particular test example, we can ob-(resp. (20)) corresponding to an approximation of the pisc
serve that the ERK4(3) method underestimates the locatl errgart of the Taylor expansion (11) (resp. (17)) of the locaber

9

5.2. On the dficulty in designing a step-size control for the

ERK4(3)

size of the step [m]




for the RungeKutta scheme (resp. the Split-Step scheme). Forelative quadratic error of.310* using 605 steps and a CPU
hx small enough, the principal term in the local error expamsio time of 17s. Thus the ERK4(3)-IP method provides an accu-
is usually large in comparison with the other terms involvedracy very similar to the one provided by the £EM method,
in the expansion, which justifies its use to set the step kengt for one-tenth of the CPU time.
However, one must be aware that under special circumstances
this can not be anymore the case and the other terms in the ex-
pression of the local error expansion can overwhelm thecprin 7. Conclusion
pal term. Here again this is likely to happen when the step-si
hy is not small enough. We have presented an overview of the mathematical con-

As we have seen it, implementing a relevant step-size corsepts underlying adaptive step-size control techniquesdiv-
trol strategy based on an estimation of the local error fer th ing the NLSE or GNLSE. We have shown that when solving
S3F method when solving the GNLSE (1) is not so easy dughe NLSE (where the nonlinear problem (8) admits an explicit
to the accumulation of 2 kinds of approximation errors withsolution), the Step-Doubling method (also referred as the L
different asymptotic behavior: the error arising from the Split cal Error method [25]) is the method of choice for adaptive
Step scheme itself and the error coming from the Runge-Kuttatep-size control. One alternative approach would be t@ose
scheme used to solve the nonlinear ODE problem resultinfEmbedded Split-Step (ESS) scheme, see [4] for a presamtatio
from the Split-Step approach. Recently, an alternativehowet of the ESS method applied to the NLSE and a comparison of
to the S3F method for solving the GNLSE (and other similarthe 2 methods. We have also highlighted th#iclilty in de-
evolution type PDE such as the Gross-Pitaevskii equatias) h signing an adaptive step-size control strategy for sohthnegy
been propound. The method is termed the "Interaction Rittur GNLSE by the S3F method. The reason is that when solving
(IP) method. In a very similar way to the S3F method, the IPthe GNLSE by the S3F method, 2 kinds of approximation errors
method consists in decoupling the linear and nonlinearsénm  with different asymptotic behavior are involved: the error aris-
the GNLSE in order to make resolution simpler and the approxing from the Split-Step scheme itself and the error comingnfr
imated solution is identically obtained by solving a sequeenf  the Runge-Kutta scheme used to solve the nonlinear ODE prob-
linear PDE problems and nonlinear ODE problem in a giverlem resulting from the Split-Step approach. Thiffidulty can
sequential order. However, while in the S3F method the decowbe circumvented by using the Interaction Picture (IP) metho
pling of the linear and nonlinear terms is obtained at thé cbs instead of the Symmetric Split-Step method. The algorithms
an approximation (the splitting approximation), the IP noet  of the 2 methods are very similar but the IP method amounts
can be considered as exact since it amounts from a mathemditom a mathematical point of view to a change of unknown
ical point of view to a change of unknown. The IP methodand therefore the local error has only a contribution from th
has been developed in the 90’s by tRese-Einstein Conden- Runge-Kutta approximation scheme.
sate Theory Groupf R. Ballagh from the Jack Dodd Centre at
the University of Otago for solving the Gross-Pitaevskiuag
tion (GPE) in the context of Bose condensation. It was first de References
scribed in the Ph.D. thesis of B.M. Caradoc-Davies [8] fdvso _ , , , -
ing the GPE, Latter it has been applied for solving the GNLSE (1} & avel Norjest g opje e B, 30 o, 200,
in optics by J. Hult in [16] where an experimental comparison Picard.  The Interaction Picture method for solving the menli
of the IP method to Split-Step methods based on their numeri-  ear Schodinger equation in optics. Technical report, HAL CNRS
cal e‘ﬁciency on benchmark prob|ems in Optics is presented_ A (http://hal.archives-ouvertes.fr/hal-00850518) (submitted
comprehen;ive mathema}tical ana,‘lySiS of the properti(_alae)f t 0[3] giggﬂcJéﬁgﬁékﬂgalléégﬁaed Runge-Kutta scheme for step-size
IP method is presented in [2]. Since the IP method is based ~ control in the Interaction Picture methodComput. Phys. Commun.
on a change of unknown rather than on a splitting approxima-  184:1211-1219, 2013.
tion formula, implementing a step-size control strategyean 4] ﬁbgﬁ:zgragghfbgf?eg‘ E;Tt‘iziﬂ?]eg ﬁfs”t?éiﬁ:;Ce;rr(;dpgfgmigg the
on an estimation Of the local error for the GNLSE I_S stralght- (http://hal.archigves—qouvertes.Fr/h.al—00921656) (submitted
forward. Indeed, in the IP method the only approximation er- (0 3. Comput. Phys.), 2013.
ror results from the use of a Runge-Kutta scheme to solve thd5] C. Besse, B. Biégaray, and S. Descombes. Order estimates in time of
nonlinear ODE problem (which is slightly fiiérent to the non- splitting methods for the nonlinear Sédinger equationSIAM J. Numer.
linear ODE problem (8) in the S3F method). In [3] a costless Anal, 40(1):26-40, 2002. : . i

[6] K.J. Blow and D. Wood. Theoretical description of traersi stimu-
step-size control strategy for the IP method based on the use  |ated Raman scattering in optical fiberdEEE J. Quantum Electron.
of a 4th order embedded Runge-Kutta method, an termed the 25(12):2665-2673, 1989.
ERK4(3)-IP method, is propound. Indubitably the IP method [7] J.(_:.ButcherNumericaI methods for ordinary fierential equationsJohn
. . Wiley and Sons, 2008.

offers an elegam andiient method for SOIVmg the GNLSE [8] B.M. Caradoc-Davies. Vortex dynamics in Bose-Einstein condensate
and its vicinity with the S3F method makes its computer im- PhD thesis, University of Otago (NZ), 2000.
plementation easy from a S3F program. When solving the test9 T. CazenaveSemilinear Schrodinger Equation€ourant Lecture Notes

: ; s in Mathematics, AMS, New York, 2003.
example of section 5.2 by the ERK4}£3) IP method with an ini-\, & ‘eiterding, R. Glowinski, H. Oliver, and S. Poole. diable Split-Step
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