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Abstract

In optics the nonlinear Schrodinger equation (NLSE) whiatdelizes light-wave propagation in an optical fiber is theshwidely
solved by the Symmetric Split-Step method. The practiffadiency of the Symmetric Split-Step method is highly depernda the
computational grid points distribution along the fiber anerefore an #icient adaptive step-size control strategy is mandatory. A
lot of adaptive step-size methods designed to be used ingctipn with the Symmetric Split-Step method for solving trarious
forms taken by the NLSE can be found in the literature dedit&t optics. These methods can be gathered together intupgr
Broadly speaking, a first group of methods is based on theraditsen along the propagation length of the behavior of &giv
optical quantity (e.g. the photons number) and the step-@izach computational step is set so as to guarantee thatdha
properties of the quantity are preserved. Most of the tinresg¢rapproaches are derived under specific assumptionseastephsize
selection criterion depends on the fiber parameters. Thandegroup of methods makes use of some mathematical cortoepts
estimate the local error at each computational grid poidttha step-size is set so as to maintain it lower than a plesttolerance.
This approach should be preferred due to its generality®@bussiifers of a lack of understanding in the mathematical concédpts o
numerical analysis it involves. The aim of this paper is tegent an overview of local error estimate and adaptive sitepeontrol
techniques for solving the NSLE by the Symmetric Split-Stegthod with all the unavoidable mathematical rigor reqifice a
comprehensive understanding of the topic.

Keywords: Symmetric Split-Step method, adaptive step-size comimi)inear Schrddinger equation, embedded Runge-Kutta
methods, Intercation Picture method, nonlinear optics

1. Introduction at frequencywy in a local frame moving with the pulse at the
i o i i group velocityvg = ¢/ng whereng denotes the group index of
‘The Nonlinear Schrodinger Equation (NLSE) describes gpe fiper, z represents the position along the fibethe time
wide class of physical phenomena among which propagatiop, the |ocal frame and’q stands for the identity operator. In
of light in an optical fiber. Here, we are concerned by the fol-hg station considered here, the optical wave is assuaiee t
lowing form of the NLSE referred as the Generalized Nonlinea 5, electric fieldE at frequencywo which is linearly polarized

Schrodinger Equation (GNLSE) (see [1, 17]) along the vectoe, transverse to the propagation’s directign

P (@) Ty pogn defined by the fiber axis and expressed as a function of positio
= =7 jmicn 2 r = (X, v, 2) and timer in the form
AR =~ AZY + (Zz' A t)] (xY.2)

| E(r.7) = Az F(x y)e e, 2)
+ly

1o+ gl (Aeo(a- e @
wo Ot whereF(x,y) is the electric wave transverse representation also
called the modal distribution aridis the wavenumber. The re-
lation between the “local” timéin the retarded frame and the
) absolute timer ist = 7 — z/vg. The physical fects for wave
where the complex valued functioh represents the slowly yrgpagation in fibre taken into account in (1) are the follow-
varying pulse envelope of a quasi-monochromatic opticaewa ing. First, some linearfeects are expressed through the linear
attenuatioygain coéficienta and the linear dispersion cfie
Email addressesstephane . balac@univ-rennesi.fr (Stéphane cientsfBn, 2 < N < Nmax.  Some nonlinear féects are involved
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tial derivation with respect to time takes into account tiee d a "local error” related quantity estimated from a physiaahg-
persion of the nonlinearity through the simplified optidabek  tity matches the prescribed tolerance value. For instantke
parameterrspock = 1/wp. Instantaneous Kerrfiect manifests  so-called "nonlinear phase rotation method” [19] the tize-
itself through the term (% fr)|A®. The delayed Raman con- is chosen so that the phase change due to nonlinearity does no
tribution in the time domain is taken into account through th exceed a certain limit. In the "walkf method, the step-size
convolution product between the instantaneous potérand  is chosen to be inversely proportional to the product of the a
the Raman time response functibp The constanfi repre-  solute value of the dispersion and the spectral bandwidtheof
sents the fractional contribution of the delayed Ramanaiesp  signal and the method applies to low power, multichannel sys
to nonlinear polarization. tems [19]. In [16, 18] a method termed the “uncertainty grinc

The most widely used numerical method for solving theple method” is propound where the determination of the step-
NLSE or GNLSE in optics is the Symmetric Split-Step Fouriersize is done from the values of a parameter derived from an
(S3F) method, see e.g. [9, 10, 12, 19, 20], due to its paaticul inequality which in quantum mechanics gives rise to the tnce
simplicity and éficiency for solving certain type of evolution tainty principle between two non commuting operators. Int[5
partial diferential equation (PDE). The idea behind the S3Hs shown that when losses in the fiber are neglected the follow
method applied to the GNLSE (1) is to decompose over eachng quantity, referred as the “optical photon number” (OFB!)
subinterval of a given subdivision of the fiber length the PDEconserved
problem into a sequence of 3 simpler problems connected to P@) = f Neft
each other. One corresponding to a purely linear PDE problem R
over the first half of the subinterval, the other over the whol .
subinterval corresponding to a nonlinear ordinarffedential ~ WhereA denotes the Fourier transform of the slowly varying
equation (ODE) problem with the time variable as a parametepulse envelope of the electric field Ag is known as the ef-
and last another purely linear PDE problem over the secolfid hafective mode areane is the éfective index of the fiber, and
of the subinterval, see e.g. [1]. Of course solving this sege  integration hold over the entire spectrum of the optical evav
of 3 nested problems is not equivalent to solving the GNLSE (Lamplitude assumed to have a bandwidth less tann [11] it
and an error, usually referred to as the "splitting errag’intro-  is made use of the conservation of the OPN to estimate a "lo-
duced. However, the interest of this numerical approachas t cal error” related quantity and to define an adaptive steg-si
each of the 3 nested problems can be solved much more easitgntrol strategy termed the Conservation Quantity Err@Eg
than the GNLSE (1) itself and the approximated solution conmethod. The CQE method applies to low loss fibers.
verges to the solution of the GNLSE (1) when the discretirati An other approach for defining adaptive step-size strasegie
step-size tends toward 0. The 2 linear PDE problems have atonsists in using mathematical concepts from the field of nu-
explicit solution obtained by use of the Fourier Transfooolt merical analysis. The "local error” is then defined as the er-
whereas the nonlinear ODE problem is generally solved nuror made by using the numerical scheme when computing an
merically by standard methods for ODE such as Runge-Kuttapproximation of the solution at the current grid point unde
methods [6]. A second kind of approximation error is therefo the assumption that the value at the previous grid point was
introduced by the use of a numerical scheme for solving thexact. In [19] the authors propound to use the well known
ODE problem. step-doubling concept (often referred as Richardson gataa

Of course, the practicalfigciency of a numerical method tion) [21] to estimate the local error when solving the NLSE b
such as the S3F method applied to the GNLSE (1) highly dethe S3F method. They termed their adaptive step-size grate
pends on the distribution of the discretization grid poaltsng  the "local error method” (LEM). The main advantage of such
the fiber and the use of an adaptive step-size control syrateg numerical analysis based approach is that since no assump-
is mandatory. The idea behind an adaptive step-size syrageg tion on the physical quantities involved in the equation &de,
to introduce the grid points during the progress of the computhe step-size strategy applies to an arbitrary set of pamme
tation taking into account the information available at tve-  in the NLSE. Note that a comprehensive numerical comparison
rent computation stage in order to determine the best ssiitggd ~ of the LEM and other adaptive step-size methods such as the
size (and therefore the next grid point) so as to maintainergi  "nonlinear phase rotation” method and the "walf*onethod is
predefined accuracy of the approximation. Namely, if compuachieved in [19] on benchmark problems in optics. However a
tations have to be achieved at a given accuracy, the sizeeof tidrawback of the step-doubling method is a computationatove
steps have to be chosen small enough so as to attain theddesist of approximatively 50 % (when compared to the same S3F
accuracy but not smaller than required to avoid unnecessary method with the “optimal” grid points distribution given ad-
crease of the computation time. Since it is not possible@tpr vance) and some attempts have been made to find alternative
tice to know the final global error, the step-size is deteadin method with the same degree of generality, see e.g. [14].-How
so that, at each computational step, a "local error” (or @y r ever the method proposed in this journal in [14}feus from
lated quantity) is lower than a prescribed tolerance. Aetgidf ~ misinterpretations in the mathematical concepts of nuraéri
adaptive step-size strategies have been propound to baérusedanalysis used to derive the algorithm and this convincesus o
conjunction with the S3F method. We can distinguish 2 typeshe soundness of a clarification on the topic of local errtir es
of approaches. The one based on physical concepts (or physienate and adaptive step-size control when solving the GNSLE
intuition) where at each grid point the step-size is chogeass by the S3F method.
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The paper is organized as follows. Section 2 is devotedto an It is worth mentioning that the standard nonlinear
overview of the S3F method and it is aimed at setting the frameSchrodinger equation correspondsnig.x = 2 in the defini-
work for the study of local error estimate approaches made ition (3) of © and to the nonlinear operator
section 3. We also discuss in section 3 some potential numer-
ical issues and inconsistency between the theory of adaptiv No : A@2) — iy A@) IA@)1? (6)
step-size control and practical results observed on nwaileri
simulation experiments. In section 4 we detail how an agapti Which is formally retrieved from (4) in the special case when
step-size control strategy for the S3F method can be derivede setfr = 0 and Ywo = 0.
from the knowledge of the local error. Finally, we conclude
in section 5 by a reference to an alternative method to the S3§ > The splitting approximation scheme
method, termed the "Interaction Picture” (IP) method, thiat
fers the same advantages than the S3F method in terms of easdn the S3F method applied to the GNLSE (5), the interval
of implementation and computational cost together withsom [0, L] is divided intoK subintervals where the spatial grid points
nicer features for adaptive step-size purposes. are denotedy, k € {0,...,K}, where 0= 75 < 73 < --- <

Zk-1 < Zx = L. We denote byhy = z.1 — % the step-size
] ] ] between grid pointg andz.; and we se,,1 = % + h—zk The
2. Overview of the Symmetric Split-Step method S3F method consists in solving over each ‘subintemakf 1]
fork € {0, ..., K-1}, the following 3 nested problems with time
variablet as a parameter and the operatorand N defined as

Let L?(R, C) denotes the infinite-dimensional vector spacein (3) and (4):
of all complex-valued "square integrable” (also termeditéin
energy”) functions which are defined on the real line and have { aﬁzu(z) - DU

2.1. Mathematical framework

3 Yz € (2, 1] .
a finite energy normjf|| = (fR|1°(t)|2 dt)2 . We denote byF the (7)
Fourier operator from.(R, C) to L?(R, C) defined by continu-
ous extension of the Fourier Transform definition for intdge
functions and computed for afl € IL?(R, C) by an improper

integral as

U(z) = Ac-1(z)

where A_1(z) represents the approximated solution at grid
pointz, computed at step— 1;

gzv(z) =NW\V®@)  Vze[z %]
V(z) = U(z1)

T .
wveR F(H) = lim f _fo ™ gt (8)

Alternatively we use the notatioﬁ(v) for the Fourier Trans-

form of f and we use the notatioA~* for the inverse Fourier whereU (Z'“%) represents the solution to problem (7) at half grid

Transform. pointz, s;
For a fixedz € [0,L] we denote byA(Z) the first par- P
tial function of the slowly varying pulse envelogein z, i.e. 6_W(Z) = DW(2 Vze [Zk+%,2k+1]
A(2) : t € R > A(z t). We also denote b the linear operator z )
W(Zk+%) = V(zu1)
Nmax jn-1 Pl
D:AD - ZBHW%A(Z) (3)  whereV(z.1) represents the solution to problem (8) at node
n=2 Z.1. An approximated solution to the GNLSE (5) at grid node
and byA the nonlinear operator Z1 IS then given byA(z1) = W(z.1). The principle of the

Symmetric Split-Step scheme is depicted in figure 1. The main
i 0 2 interest of such a decomposition is that each one of the 3 prob
Lo+ w_oﬁ] ’ (A(Z) ((1 - fr) |A(Z)| lems (7), (8) and (9) can be solved much more easily than the
GNLSE (5) considered over the interval,[z.1] and for hg
+ fr |A(z)|2 * hR)) _ EQA(Z) (4) small enough”(z1) provides an approximation of the solu-
2 tion to the GNLSE at grid poirty, 1.

From a mathematical point of view, it is well known [8]
that the linear operataD defined in (3) generates a continuous
group of bounded operators d@f(R, C), denoted (according

o to its properties) by exE{) with z € R. Moreover, the solu-
5_ZA(Z) =DARQ+N(A@)  Vze[0,L] (®) " tion to the nonlinear problem (8) admits the following intelg
representation form
whereL denotes the fiber length, and PDE (5) is solved together

with the initial conditionA(0) = agp at the fiber entrance = 0 V() = z VIO d
whereag is a known source term. Vz€ (20 2e1] V(2 =U(Z.4) exp LN( (¢)) dz .

N A2 - iy

wherex stands for the convolution product. With these nota-
tions, the GNLSE (1) reads



When we are concerned by the standard nonlinear
Schrodinger equation where the nonlinear operafdnas the
form given by Ny, there also exists an explicit solution to the
nonlinear ODE problem (8). In the general case when 0,
the solution at grid poirtty, 1 reads

V(#t1) = U (3 1) exr)(—%hk - %|U(zk+%)|2(eﬂhk - 1))

and whenr =0

Figure 1: Principle of the Symmetric Split-Step scheme (ootational stefk V(zi1) = U (Zk+%) eXp(iyhk|U (Zk+%)|2) .
is displayed in the dashed box).
Even if the 3 problems (7)—(8)—(9) have explicit solutiortsan

the nonlinear Schrodinger equation is considered, itilbsig)-
This justifies why the approximated solution given by the S3Rify for all that the nonlinear Schrodinger equation itdehs
method by solving the sequence of nested problems (7)-9B)—(an explicit solution. However an approximated solution can
is the most often formally written as be computed by the S3F method and the approximation error
h - h solely lies in the use of a Split-Step scheme. Unlike, in the
A(Zs1) = eXp(ka) exp( NV()) d{,’) eXp(EkD) Ac1(z).  more general case when the GNSLE is considered, a numer-
z ical approximation scheme (such as a Runge-Kutta scheme) is

The convergence of Split-Step methods applied to Variougnandatoryfor solving the nonlinear ODE problem (8) resgiti

forms of the Schrodinger equation is widely documentetién t inan approxi_mati_on error made up of the splitting error ared t
litterature, see e.g. [4, 15, 22] where the authors provititea ODE approximation error.

: 9. [4,15,22] p
global convergence order of the Symmetric Split-Step netho
is 2. Namely, in the situation considered here, the follgvin 3. Local error estimate
result holds for the local error [2]. Lek denotes the solution
to equation (5) and for ak € {0,...,K — 1} let Ac(z,1) de- In the field of numerical analysis, an error estimate refers t
notes its approximation at grid point.; computed by solving an approximated value for the error on a numerically catedla
the three nested problems (7)—(8)—(9) with the initial gbad ~ quantity. As mentioned in the introduction, the most gehera
Ay, (z) = A(z) corresponding to the exact solution (because wevay of designing an adaptive step-size control strateggists
are concerned by the local error) assumed to befficantly  in estimating the "local error” at each step of the S3F aloni
smooth function. Then, fdn, in a neighborhood of 0 we have i.€. the error made in computing the approximated soluti@n a

the following estimate: given grid point assuming that the data from the previoud gri
point was exact. At each grid point, the step-size is then-com
A(Zci1) = A(Zia1) + O(3) (10)  puted so that the local error is lower than a predefined value

(termed the tolerance). The value of the tolerance is set de-
where we recall the significance of the big O notat®(y):  pending on the need of accurate results, e.g. td Wth g
there exists a positive numb€rsuch that fothy in a neighbor-  ranging from 3 to 9. Actually, it is the "global error” (i.ehé
hood of 0 the local error satisfigi\(z.1) — A1)l < Ch}.  total error at a given grid point ensued from the error acdamu
From a practical point of view, the quantity of interest i® th tion from the initial grid point) that we wish to know abouttbu
“global error”. The global error at grid poirs.1 takes into  estimating the global error with accuracy is mathematjcaiid
account the error accumulation from all the previasl com-  humerically out of reach and therefore we must content our-
putational steps and therefore from (10) we can deduce thaklves with estimating the local error. Note that the gl@edr
it behaves inO(h?) whereh = maxq_xh«. The Symmetric  resulting from the error accumulation from the previous eom
Split-Step method is a 2nd order method. putational steps can be several order of magnitude upper tha
The 2 linear PDE problems (7) and (9) admit an explicit solu-the tolerance for the local error.
tion obtained by use of the Fourier Transform [2]. The soluti  The next 2 sections are devoted to an analysis of the local
to problem (7) at grid point 1 reads error when a numerical scheme is used for solving the naaline
2 ODE problem (8) on the one hand and to an analysis of the
U 1 —~ o) D Split-Step local error on the other hand.
(Zk+%) =F v Acala,v) e 2]

3.1. Local error when solving the nonlinear ODE problem by

whered : v - i > e %(Zm/)“ and the solution to problem (9) a Runge-Kutta method
at grid pointz reads The most &ective way for local error estimate when solv-
_ —he ing a nonlinear ODE problem is by using an embedded Runge-
W(zZi1) = F v - V(ze1, v) €02 Kutta method. Embedded Runge-Kutta (ERK) methods [6] are



special Runge-Kutta (RK) methods designed to deliver 2 apFrom (11) and (12) we deduce that the local error for kit
proximations of the solution of the ODE problem under con-order RK method at grid poirg,; can be approximated with
sideration corresponding to 2 RK schemes dffegient conver-  an error in()(hl'(”z) by
gence orderp andp + 1. These 2 approximations of the so- RK(P) (0+1] .
lution can be considered as an accurate approximatedaoluti VteR 6,70 ~ VT () - Vi) (13)
(the one computed with the numerical scheme of higher order
p + 1) and a coarse approximated solution (the one compute%n
with the one of lower ordep). For dficiency, the 2 RK schemes )
bear several computational stages in common in order teeedu LRKP) — 1) RKP) (f 'V&Ef](t) -~ V&fll(t)' dt) . (14)
noticeably the computational cost of the local error estioma R
In [14] the author uses (without mentioning it ex.plicitlyl) a |t satisfiesl_ffl(p) _ O(hl’(”l).
ERK method of order 1 and 2o(= 1) where the first order
approximated solution ia1 is given by 3.2. Split-Step local error estimation by step-doubling
1 _ _ As mentioned before, when the nonlinear Schrodinger equa-
Vigr = U(Zi 1) + e, a1 = N(U(%.1)) tion is considered (i.e\V = Np) the nonlinear ODE problem (8)
admits an analytical solution and the local error in the S3F
method only amounts to the splitting error as given by (10). |
v —y +heas, a»=N(U + I an) such a case, although an approach similar to the one perfiorme
1= Ul ) +heaz, a2 = N(UGq ) + zheas) to estimate the local error when solving a nonlinear ODE by an
Because it represents a good compromise between accura@jpbedded Runge-Kutta method could be considered (inlvin
and computational cost, the fourth order Runge-Kutta (RK4y €mbedded Split-Step schemes dfetient orders), the usual
scheme [6] is more commonly used in conjunction with the S3Fnethod for estimating the splitting local error is based lo t
method and in [3] the authors propound an ERK method of orStép-doubling technique. Actually, it is the adaptive sigge
der 3 and 4 = 3) which preserves the ease of implementationcOntrol used in conjunction with the S3F method for solving
of the RK4 formula and provides a local error estimate at no exthe NLSE presented in [19]. The idea behind the step doubling

tra computational cost. The 4th order RK method delivers thénethod (also known as Richardson extrapolation method and
approximated solution widely used for adaptive step-size control in quadraturénme

ods for integral or ODE [21]) is the following. The local erro
for the S3F method at grid poimt,; satisfies the following re-
lation [2]

d the energy norm of the local error by

1
2

and the second order approximated solution is given by

h
VEr]l =UGq1) + Ek (@1 + 202 + 203 + 4)

whereas = N(U(g. ) + Shez) andas = N(U (7, 1) + heas) Gody = AZes1) — Au(zer) = C R+ O(h) (15)

:(r)]g the 3rd order RK method provides the approximated soluv-vherec denotes a positive number independentiaf Let

U1 = Ax(z1) be the solution at grid poirty,; computed
hy by the Symmetric Split-Step scheme (7)-(8)—(9) from grid
Vieh = Uzey) + 30 (Sa1 + 5@z + Sas + 2a4 + 3as) point z using one step of sizéy, and letTg,; be the so-
lution computed from grid poing using two half steps of
whereas = N(VE). We refer to [3] for the implementation size hy/2, in both cases assuming the solutip(z) at
details. grid pointz to be exact (since we are interested in estimating
When solving problem (8) by the standard RK method ofthe local error). Additionally the following assumptiomede:
order p, provided all the partial derivatives af — N(V(2)
exist and are continuous up to the orger 1, the local error is
known to behave a@(hP*') [6]. Let us detail the way the local
error can be estimated by using an ERK method vpth 1
or p = 3 as considered above. By use of the Taylor expansioQwhich consists in an approximation since the initial data f
formula, one can show that the local errors for each of the Zhe second half-step is actually the approximated solution-

(H) the local error after 2 half steps is twice the local
error after one half step

methods are respectively given by [6] puted after the first half-step and not the exact one). Then,
RK(D) . (o vl o2 from (15) we deduce that
beer = V(&) = Vigy = ez V) ey +0(h ™) (11) A C1e 4 Ot 16
P = V(ze1) = VP = gp1 (2 VP P2 1 O(hP*) (1) = U = C I J; 2 J (16)
—_ _ _k it
whereg,, (resp. ¢p.1) is a function of theelementary dferen- A1) ~ U = 2C ( 2) +0(hy) (17)
tials of orderp (resp. p + 1) of the functionz — N(V(2). By .
difference of these 2 relations we obtain and therefore by diierence between these 2 relations we get
— 3
VP VI = (2 VIPY R (). (12) Ut = Us1 = 7 C R +Oo(hy). (18)



Thus the local error related to the Split-Step scheme at gridA(2) + N(A(2)). Therefore the 2 constant numb&sandK

pointz.1 can be approximated, with an errorcnﬁh‘k‘), by depend in a dierent way on the physical parameters involved
in the GNLSE (1) and it can happen that they have values dif-
4 .
VteR 55~ CH ~ = (Teir(t) — Urar (D). 19 ferent by several order of magnitude. Note that the localrerr
k() e 3 (ke (1) = U2 (0) (19) can not be estimated only for the nonlinear ODE problem (8)

as it is done in [14] and in no case whpr= 1 the whole nu-
merical approximation scheme can be 4th order accurateeas th
author states. Whep = 1, relation (21) shows that the global
4 1 convergence order of the S3F method is 2.

LSS = 16231 ~ 3 ( f [Tk 1(t) — Uks2 (D) dt) (20) From a theoretical point of view, we deduce from (21) that

R whenp = 3 the S3F method with problem (8) solved by the
RK4 scheme (referred as the S3F-RK4 method in the sequel)
. : . . _has global convergence order 2 sincelipin a neighborhood
We have to point out that relation (19) gives an approxima- .- oL ovek hE - O(h‘E). Thus, the local error (21) can be

tion of the local error corresponding to the solutian; com- . . . L
puted by the Symmetric Splif—Step sgcheme over thelcoarde grgst|mated by the step doubling approach just as detaileetin s

with step-sizeh.. However the fine mesh grid solutiaq,  is hon 3.2. However in practice it can happen that under specia

a better approximation and in practice it is kept as the appro circumstances (i.e. for a special set of values for the gaysi

. : . : arameters involved in the GNLSE (1)) the value of the con-
imated solution and propagated along the fiber. This proce .

. : . p . , stantC is much lower than the value &f. In such a case, when
is referred in the literature as the “local extrapolationded

. . the convergence order of the S3F-RK4 method is explored on
Moreover, by diference of equation (16) and equation (17) . . .
o . . numerical examples, depending on the values of the physical
pre-multiplied by 4 we obtained under assumptiof)(an ) .
N : . parameters taken in the GNLSE, the experimental conveegenc
even more accurate approximation (referred in the liteesis . . 4
. X . . curve can behave as a function of the step-sizich ash
Richardson extrapolation)A(z.1) can be approximated with

. n r 3 . instead ofh?. If so, the local error estimate presented in sec-
an error in0(hy) (instead olO(hy) as given by (17)) as tion 3.2 is likely to provide wrong results since it was asedm

1 that the convergence order is 2. Actually, it is nafidult to
Alzas1) ~ 5 (AU () = Uira(1)). convince oneself that whenever the nonline@ieets predomi-
nate in the GNLSE (1) the convergence order observed experi-
The over-cost of estimating the local error in this way isthst ~ mentally will be close to 4 an@ << K whereas when it is the
of the computation of the coarse mesh grid solution and thiinear dfects that predominate the convergence order observed
cost is approximately half the cost of the computation of theexperimentally will be close to 2 aril << C. (Note that when
fine mesh grid solution since the step-size is twice largeusT  dealing with the convergence behavior, the 2 constiérsadC
estimating the local error using the step doubling apprasich we are referring to may ffer from the constants appearing in
liable of an extra computational cost of 50% more than thé coshe local error estimate (21) but we have maintained the same
of the computation of the approximated solution itself. dotf  notation for simplicity.)
the additional cost is slightly less than 50% since some com- In order to numerically illustrate the mathematical anislys
putations are shared by each of the 2 methods, and needs to pp@sented in this section we have solved the GNLSE by the
carried out only once. S3F-RK4 method on a test example chosen to match with a typ-
ical case of high speed data propagation through-220 km
3.3. Local error estimate for the GNLSE solved by the S3Fingle mode fiber in optical telecommunication with a data’s
method carrier frequency located in the C band of the infrared spect

In the case when the GNLSE (1) is solved by the S3F method,fo = 193Thz). The following set of fiber's plarameters were

a dedicated numerical method such as a Runge-Kutta methétfed for the simulationr =777y = 4.3W11|<m‘ , fr = 0.245,
is to be used to solve the nonlinear ODE problem (8). As #2 = —19.83 p§km‘ » B3 = 0.031 p§!<m‘ andg, = 0 for
consequence, the local error consists in the error prodoged N = 4: An expression for the Raman time response function for
the Split-Step scheme and the error produced by fhe 1)- silica core fiber is givenin [1]. The source team = A(z = 0)
th order Runge-Kutta schemp & 1 or p = 3 for the 2 above  WaS represented as a first order Gaussian pulse:
mentioned ERK methods). Since the 2 linear PDE problems (7) 2t \/P_oe‘%“/TO)z
and (9) are solved exactly by use of the Fourier Transform, th '
local error behaves fd in a neighborhood of 0 as whereT is the pulse half-width at/& intensity point andPg

5 042 is the pulse peak power. Simulations were carried out for a

1Az 1) — Ac(Zs2)ll < C g+ Kby (21)  pulse-widthT, = 6.8 ps and for three éierent peak power val-

ues: Py = 5mW, 25 mW and 50 mW. As explained in [1] the
‘dispersive lengti.p and non-linear lengthy, defined as

The energy norm of the local error at grid poit; is then
expressed as

and from (15) we havegs, = O(h?).

(22)

whereC andK denote 2 positive numbers. The constant num
berC depends on the elementanyfdrentials of order 3 of the
mappingA(2) — N(A(2) whereaK depends on the elemen-

1
tary differentials of ordep + 1 of the mappingF : A2 — and Ly =—- (23)

2
lp = 2
SN ¥Po



provide the length scales over which dispersive or noraline on Figure 2, one can notice the somehow erratic behavioeof th
effects become important for pulse evolution. In the test exameurves for the largest values of the step-size (upper lefter).
ple considered here the dispersion length = 2.26 km was It can be explained by the large values of the global error for
kept constant and the non-linear lendth. was decreasing such step-sizes which are not really compatible with an @asym
from 465 km to 465 km while Pg was increasing from 5mW totic behavior analysis. As well one can notice a distinkjing
to 50 mW. Thus when the pulse peak power was increasing thizehavior of the curves for the smallest values of the step-si
nonlinear Kerr &ect was becoming more important through where the slope of the curves decreases. This can be exgplaine
propagation. The convergence curves representing thealglobby the round-& error due to the finite precision (floating-point)
error at the fiber end when using a constant step-size S3F-RKafithmetic used on the computer. Roundl-@rror increases in
method for solving the GNLSE versus the step-size are dagict proportion to the total number of arithmetic operationsated
in Figure 2. to the number of steps here). For the smallest values oféipe st
size, it grows up to the point of being comparable in magmtud
to the error of the method and becomes apparent on the curves.
To conclude this section we would like to emphasis the fact
1 that the simulation results we obtained do not reveal anjeaat
matical contradiction on the convergence order of the SEB-R
1 method: it is 2 and not 4. The apparent contradiction can be
understood as follows. The theoretical behavior is prowed f
a step-sizén arbitrarily close from 0 (in other words the prop-
erty is true asymptoticly whentend to 0) whereas the experi-
1 mental curves are obtained certainly with small valuels bt

Normalized global error (a.u.)

P=50 mW

inevitably larger than a limit imposed by the performancks o
I ; 10 T the computer. Whei€ is several order of magnitude lower
Step size (km) thanK, it is not possible experimentally to reach valueshof

e 2 Exberimenta ocarimidedar the S3E-RKA small enough so that h* becomes much smaller thah?.
e 2 e ComeTOEIce i (ogmirieir £ S On the conurary, on the range of experimental possible galue
depending on the importance of Kerr nonlinearity. for h we may haveC i much smaller thai h* and what it is
observed on Figure 2 fd?y = 50 mW is this latter behavior.
In Figure 2, one can observe that for a 50 mW peak power
pulse (wherd. = 4Ly, ) the experimental convergence curve
drawn in a logarithmic scale has a slope fti@ént close to 4.

In this specific case the nonlineaffects predominate in the g, step-size control, a tolerance “tol" is given as bound on
GNLSE and the error behavior is mainly governed for the stepshe |ocal error estimate. A step-size control strategy isists
size range considered_ in the simulation by the error corenhitt rejecting the current step-size if it gives an estimatedl er-
when solving the nonlinear ODE problem by the 4th order RK; o higher than the specified tolerance and in acceptingtioe s
scheme. On the contrary, for a 5mW peak power pulse (Wherg,n computed with this step-size otherwise. There aret@riai

L = 1/2Ly.) the experimental convergence curve has a slopgsyally employed for step-size control purposes. Therasite
_coeﬂ‘iuent close to 2. The linear dlspergloﬁﬁ&!:Fs predominate ¢ error per step (EPS) selects the step $izat each step so

in the GNLSE and the error behavior is mainly governed forya the local error is lower than the tolerance tol wheréas t
the step-size range considered in the simulation by the B0 ¢ yiterion of error per unit step (EPUS) selects the step hize
herent to the use of the Symmetric Split-Step scheme (toe err 5¢ each step so that the local error is lower tharxtbk. It is
committed when solving the nonlinear ODE problem by the 4th;jeay that for sfficiently small tolerance value EPUS criterion
order RK scheme is much lower). The convergence Curve colgg|ects a smaller step-size than EPS criterion. When thergur
responding to a 25 mW peak power pulse (where Ly and  gep size is rejected, a new smaller step-size has to berchos
both linear dispersion and nonlinedfeets have a comparable (, recompute the solution over the current step. As well,whe
strength) shows a very interesting phenomenon. The firsbpar ihe cyrrent step-size meets the tolerance requiremertddot

the convergence curve has a slopefioent close to 4 whereas . error it has to be scaled up for the next step computations
itis close to 2 on the second par.t. This can be understo_od—as fan both case, the new step-size has to be estimated using the
lows. The value of the consta@tinvolved in the expression of o\ silable information on the previous step computations. O

the error related to the use of the Symmetric Split-Steprseéhe ¢ pasis of the results set in the previous section, we assum
is a little smaller than the value of the constiritivolved inthe 1,4t there exists a positive real numi@rsuch that the local

expression of the error of the RK scheme. As a consequencg or has the form
for the largest values of the step-sizén the range considered

4. Step-size control

in the simulation we hav& h* > C I? whereask h* < CH Lk = [l = C R
whenh becomes small enough, i.e. for the lowest values in the
range considered in the simulation. where the value of the integgrranges from 2 to 4 depending

To be comprehensive in the analysis of the results depictedn the situation. The optimal step-siagy is the one for which
7



5. Discussion and conclusion
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