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Abstract

In optics the nonlinear Schrödinger equation (NLSE) whichmodelizes light-wave propagation in an optical fiber is the most widely
solved by the Symmetric Split-Step method. The practical efficiency of the Symmetric Split-Step method is highly dependent on the
computational grid points distribution along the fiber and therefore an efficient adaptive step-size control strategy is mandatory. A
lot of adaptive step-size methods designed to be used in conjunction with the Symmetric Split-Step method for solving the various
forms taken by the NLSE can be found in the literature dedicated to optics. These methods can be gathered together into 2 groups.
Broadly speaking, a first group of methods is based on the observation along the propagation length of the behavior of a given
optical quantity (e.g. the photons number) and the step-size at each computational step is set so as to guarantee that theknown
properties of the quantity are preserved. Most of the time these approaches are derived under specific assumptions and the step-size
selection criterion depends on the fiber parameters. The second group of methods makes use of some mathematical conceptsto
estimate the local error at each computational grid point and the step-size is set so as to maintain it lower than a prescribed tolerance.
This approach should be preferred due to its generality of use but suffers of a lack of understanding in the mathematical concepts of
numerical analysis it involves. The aim of this paper is to present an overview of local error estimate and adaptive step-size control
techniques for solving the NSLE by the Symmetric Split-Stepmethod with all the unavoidable mathematical rigor required for a
comprehensive understanding of the topic.

Keywords: Symmetric Split-Step method, adaptive step-size control,nonlinear Schrödinger equation, embedded Runge-Kutta
methods, Intercation Picture method, nonlinear optics

1. Introduction

The Nonlinear Schrödinger Equation (NLSE) describes a
wide class of physical phenomena among which propagation
of light in an optical fiber. Here, we are concerned by the fol-
lowing form of the NLSE referred as the Generalized Nonlinear
Schrödinger Equation (GNLSE) (see [1, 17])
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where the complex valued functionA represents the slowly
varying pulse envelope of a quasi-monochromatic optical wave
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at frequencyω0 in a local frame moving with the pulse at the
group velocityvg = c/ng whereng denotes the group index of
the fiber,z represents the position along the fiber,t the time
in the local frame andId stands for the identity operator. In
the situation considered here, the optical wave is assumed to be
an electric fieldE at frequencyω0 which is linearly polarized
along the vectorex transverse to the propagation’s directionez

defined by the fiber axis and expressed as a function of position
r = (x, y, z) and timeτ in the form

E(r, τ) = A(z, t) F(x, y)e−i(ω0 τ−k z) ex (2)

whereF(x, y) is the electric wave transverse representation also
called the modal distribution andk is the wavenumber. The re-
lation between the “local” timet in the retarded frame and the
absolute timeτ is t = τ − z/vg. The physical effects for wave
propagation in fibre taken into account in (1) are the follow-
ing. First, some linear effects are expressed through the linear
attenuation/gain coefficientα and the linear dispersion coeffi-
cientsβn, 2 ≤ n ≤ nmax. Some nonlinear effects are involved
through the nonlinear parameterγ. Moreover, first order par-
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tial derivation with respect to time takes into account the dis-
persion of the nonlinearity through the simplified optical shock
parameterτshock= 1/ω0. Instantaneous Kerr effect manifests
itself through the term (1− fR) |A|2. The delayed Raman con-
tribution in the time domain is taken into account through the
convolution product between the instantaneous power|A|2 and
the Raman time response functionhR. The constantfR repre-
sents the fractional contribution of the delayed Raman response
to nonlinear polarization.

The most widely used numerical method for solving the
NLSE or GNLSE in optics is the Symmetric Split-Step Fourier
(S3F) method, see e.g. [9, 10, 12, 19, 20], due to its particular
simplicity and efficiency for solving certain type of evolution
partial differential equation (PDE). The idea behind the S3F
method applied to the GNLSE (1) is to decompose over each
subinterval of a given subdivision of the fiber length the PDE
problem into a sequence of 3 simpler problems connected to
each other. One corresponding to a purely linear PDE problem
over the first half of the subinterval, the other over the whole
subinterval corresponding to a nonlinear ordinary differential
equation (ODE) problem with the time variable as a parameter
and last another purely linear PDE problem over the second half
of the subinterval, see e.g. [1]. Of course solving this sequence
of 3 nested problems is not equivalent to solving the GNLSE (1)
and an error, usually referred to as the ”splitting error”, is intro-
duced. However, the interest of this numerical approach is that
each of the 3 nested problems can be solved much more easily
than the GNLSE (1) itself and the approximated solution con-
verges to the solution of the GNLSE (1) when the discretization
step-size tends toward 0. The 2 linear PDE problems have an
explicit solution obtained by use of the Fourier Transform tool
whereas the nonlinear ODE problem is generally solved nu-
merically by standard methods for ODE such as Runge-Kutta
methods [6]. A second kind of approximation error is therefore
introduced by the use of a numerical scheme for solving the
ODE problem.

Of course, the practical efficiency of a numerical method
such as the S3F method applied to the GNLSE (1) highly de-
pends on the distribution of the discretization grid pointsalong
the fiber and the use of an adaptive step-size control strategy
is mandatory. The idea behind an adaptive step-size strategy is
to introduce the grid points during the progress of the compu-
tation taking into account the information available at thecur-
rent computation stage in order to determine the best suitedstep
size (and therefore the next grid point) so as to maintain a given
predefined accuracy of the approximation. Namely, if compu-
tations have to be achieved at a given accuracy, the size of the
steps have to be chosen small enough so as to attain the desired
accuracy but not smaller than required to avoid unnecessaryin-
crease of the computation time. Since it is not possible in prac-
tice to know the final global error, the step-size is determined
so that, at each computational step, a ”local error” (or any re-
lated quantity) is lower than a prescribed tolerance. A variety of
adaptive step-size strategies have been propound to be usedin
conjunction with the S3F method. We can distinguish 2 types
of approaches. The one based on physical concepts (or physical
intuition) where at each grid point the step-size is chosen so as

a ”local error” related quantity estimated from a physical quan-
tity matches the prescribed tolerance value. For instance,in the
so-called ”nonlinear phase rotation method” [19] the step-size
is chosen so that the phase change due to nonlinearity does not
exceed a certain limit. In the ”walk-off” method, the step-size
is chosen to be inversely proportional to the product of the ab-
solute value of the dispersion and the spectral bandwidth ofthe
signal and the method applies to low power, multichannel sys-
tems [19]. In [16, 18] a method termed the “uncertainty princi-
ple method” is propound where the determination of the step-
size is done from the values of a parameter derived from an
inequality which in quantum mechanics gives rise to the uncer-
tainty principle between two non commuting operators. In [5] it
is shown that when losses in the fiber are neglected the follow-
ing quantity, referred as the “optical photon number” (OPN), is
conserved

P(z) =
∫

R

neff Aeff

ω
|Â(z, ω)|2 dω

whereÂ denotes the Fourier transform of the slowly varying
pulse envelope of the electric fieldA, Aeff is known as the ef-
fective mode area,neff is the effective index of the fiber, and
integration hold over the entire spectrum of the optical wave
amplitude assumed to have a bandwidth less thanω0

3 . In [11] it
is made use of the conservation of the OPN to estimate a ”lo-
cal error” related quantity and to define an adaptive step-size
control strategy termed the Conservation Quantity Error (CQE)
method. The CQE method applies to low loss fibers.

An other approach for defining adaptive step-size strategies
consists in using mathematical concepts from the field of nu-
merical analysis. The ”local error” is then defined as the er-
ror made by using the numerical scheme when computing an
approximation of the solution at the current grid point under
the assumption that the value at the previous grid point was
exact. In [19] the authors propound to use the well known
step-doubling concept (often referred as Richardson extrapola-
tion) [21] to estimate the local error when solving the NLSE by
the S3F method. They termed their adaptive step-size strategy
the ”local error method” (LEM). The main advantage of such
a numerical analysis based approach is that since no assump-
tion on the physical quantities involved in the equation is made,
the step-size strategy applies to an arbitrary set of parameters
in the NLSE. Note that a comprehensive numerical comparison
of the LEM and other adaptive step-size methods such as the
”nonlinear phase rotation” method and the ”walk-off” method is
achieved in [19] on benchmark problems in optics. However a
drawback of the step-doubling method is a computational over-
cost of approximatively 50 % (when compared to the same S3F
method with the “optimal” grid points distribution given inad-
vance) and some attempts have been made to find alternative
method with the same degree of generality, see e.g. [14]. How-
ever the method proposed in this journal in [14] suffers from
misinterpretations in the mathematical concepts of numerical
analysis used to derive the algorithm and this convinces us of
the soundness of a clarification on the topic of local error esti-
mate and adaptive step-size control when solving the GNSLE
by the S3F method.
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The paper is organized as follows. Section 2 is devoted to an
overview of the S3F method and it is aimed at setting the frame-
work for the study of local error estimate approaches made in
section 3. We also discuss in section 3 some potential numer-
ical issues and inconsistency between the theory of adaptive
step-size control and practical results observed on numerical
simulation experiments. In section 4 we detail how an adaptive
step-size control strategy for the S3F method can be derived
from the knowledge of the local error. Finally, we conclude
in section 5 by a reference to an alternative method to the S3F
method, termed the ”Interaction Picture” (IP) method, thatof-
fers the same advantages than the S3F method in terms of ease
of implementation and computational cost together with some
nicer features for adaptive step-size purposes.

2. Overview of the Symmetric Split-Step method

2.1. Mathematical framework

Let L2(R,C) denotes the infinite-dimensional vector space
of all complex-valued ”square integrable” (also termed ”finite
energy”) functions which are defined on the real line and have

a finite energy norm‖ f ‖ =
(∫

R
| f (t)|2 dt

) 1
2
.We denote byF the

Fourier operator fromL2(R,C) toL2(R,C) defined by continu-
ous extension of the Fourier Transform definition for integrable
functions and computed for allf ∈ L

2(R,C) by an improper
integral as

∀ν ∈ R F ( f )(ν) = lim
T→+∞

∫ T

−T
f (t) e2iπνt dt.

Alternatively we use the notation̂f (ν) for the Fourier Trans-
form of f and we use the notationF −1 for the inverse Fourier
Transform.

For a fixed z ∈ [0, L] we denote byA(z) the first par-
tial function of the slowly varying pulse envelopeA in z, i.e.
A(z) : t ∈ R 7→ A(z, t). We also denote byD the linear operator
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and byN the nonlinear operator
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where⋆ stands for the convolution product. With these nota-
tions, the GNLSE (1) reads

∂

∂z
A(z) = DA(z) +N(A(z)) ∀z ∈ [0, L] (5)

whereL denotes the fiber length, and PDE (5) is solved together
with the initial conditionA(0) = a0 at the fiber entrancez = 0
wherea0 is a known source term.

It is worth mentioning that the standard nonlinear
Schrödinger equation corresponds tonmax = 2 in the defini-
tion (3) ofD and to the nonlinear operator

N0 : A(z) 7→ iγ A(z) |A(z)|2 (6)

which is formally retrieved from (4) in the special case when
we setfR = 0 and 1/ω0 = 0.

2.2. The splitting approximation scheme

In the S3F method applied to the GNLSE (5), the interval
[0, L] is divided intoK subintervals where the spatial grid points
are denotedzk, k ∈ {0, . . . ,K}, where 0= z0 < z1 < · · · <

zK−1 < zK = L. We denote byhk = zk+1 − zk the step-size
between grid pointszk andzk+1 and we setzk+ 1

2
= zk +

hk
2 . The

S3F method consists in solving over each subinterval [zk, zk+1]
for k ∈ {0, . . . ,K−1}, the following 3 nested problems with time
variablet as a parameter and the operatorsD andN defined as
in (3) and (4):



∂

∂z
U(z) = DU(z) ∀z ∈ [zk, zk+ 1

2
]

U(zk) = Ak−1(zk)
(7)

where Ak−1(zk) represents the approximated solution at grid
pointzk computed at stepk− 1;



∂

∂z
V(z) = N(V(z)) ∀z ∈ [zk, zk+1]

V(zk) = U(zk+ 1
2
)

(8)

whereU(zk+ 1
2
) represents the solution to problem (7) at half grid

pointzk+ 1
2
;



∂

∂z
W(z) = DW(z) ∀z ∈ [zk+ 1

2
, zk+1]

W(zk+ 1
2
) = V(zk+1)

(9)

whereV(zk+1) represents the solution to problem (8) at node
zk+1. An approximated solution to the GNLSE (5) at grid node
zk+1 is then given byAk(zk+1) = W(zk+1). The principle of the
Symmetric Split-Step scheme is depicted in figure 1. The main
interest of such a decomposition is that each one of the 3 prob-
lems (7), (8) and (9) can be solved much more easily than the
GNLSE (5) considered over the interval [zk, zk+1] and for hk

small enoughAk(zk+1) provides an approximation of the solu-
tion to the GNLSE at grid pointzk+1.

From a mathematical point of view, it is well known [8]
that the linear operatorD defined in (3) generates a continuous
group of bounded operators onL2(R,C), denoted (according
to its properties) by exp (zD) with z ∈ R. Moreover, the solu-
tion to the nonlinear problem (8) admits the following integral
representation form

∀z ∈ [zk, zk+1] V(z) = U(zk+ 1
2
) exp

(∫ z

zk

N(V(ζ)) dζ

)
.
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Figure 1: Principle of the Symmetric Split-Step scheme (computational stepk
is displayed in the dashed box).

This justifies why the approximated solution given by the S3F
method by solving the sequence of nested problems (7)–(8)–(9)
is the most often formally written as

Ak(zk+1) = exp(
hk

2
D) exp

(∫ zk+1

zk

N(V(ζ)) dζ

)
exp(

hk

2
D) Ak−1(zk).

The convergence of Split-Step methods applied to various
forms of the Schrödinger equation is widely documented in the
litterature, see e.g. [4, 15, 22] where the authors prove that the
global convergence order of the Symmetric Split-Step method
is 2. Namely, in the situation considered here, the following
result holds for the local error [2]. LetA denotes the solution
to equation (5) and for allk ∈ {0, . . . ,K − 1} let Ak(zk+1) de-
notes its approximation at grid pointzk+1 computed by solving
the three nested problems (7)–(8)–(9) with the initial condition
Ak1(zk) = A(zk) corresponding to the exact solution (because we
are concerned by the local error) assumed to be a sufficiently
smooth function. Then, forhk in a neighborhood of 0 we have
the following estimate:

A(zk+1) = Ak(zk+1) + O(h3
k) (10)

where we recall the significance of the big O notationO(h3
k):

there exists a positive numberC such that forhk in a neighbor-
hood of 0 the local error satisfies‖A(zk+1) − Ak(zk+1)‖ ≤ Ch3

k.
From a practical point of view, the quantity of interest is the
“global error”. The global error at grid pointzk+1 takes into
account the error accumulation from all the previousk+1 com-
putational steps and therefore from (10) we can deduce that
it behaves inO(h2) whereh = maxj=0,...,k hk. The Symmetric
Split-Step method is a 2nd order method.

The 2 linear PDE problems (7) and (9) admit an explicit solu-
tion obtained by use of the Fourier Transform [2]. The solution
to problem (7) at grid pointz

k+
1
2

reads

U(z
k+

1
2
) = F −1[ν 7→ Âk−1(zk, ν) ed̂(ν)

hk
2
]

whered̂ : ν 7→ i
∑nmax

n=2
βn

n! (2πν)
n and the solution to problem (9)

at grid pointzk+1 reads

W(zk+1) = F −1[ν 7→ V̂(zk+1, ν) ed̂(ν)
hk
2
]
.

When we are concerned by the standard nonlinear
Schrödinger equation where the nonlinear operatorN has the
form given byN0, there also exists an explicit solution to the
nonlinear ODE problem (8). In the general case whenα , 0,
the solution at grid pointzk+1 reads

V(zk+1) = U(zk+ 1
2
) exp

(
−
α

2
hk −

iγ
α
|U(zk+ 1

2
)|2(eαhk − 1)

)

and whenα = 0

V(zk+1) = U(zk+ 1
2
) exp

(
iγhk|U(zk+ 1

2
)|2

)
.

Even if the 3 problems (7)–(8)–(9) have explicit solutions when
the nonlinear Schrödinger equation is considered, it doesn’t sig-
nify for all that the nonlinear Schrödinger equation itself has
an explicit solution. However an approximated solution can
be computed by the S3F method and the approximation error
solely lies in the use of a Split-Step scheme. Unlike, in the
more general case when the GNSLE is considered, a numer-
ical approximation scheme (such as a Runge-Kutta scheme) is
mandatory for solving the nonlinear ODE problem (8) resulting
in an approximation error made up of the splitting error and the
ODE approximation error.

3. Local error estimate

In the field of numerical analysis, an error estimate refers to
an approximated value for the error on a numerically calculated
quantity. As mentioned in the introduction, the most general
way of designing an adaptive step-size control strategy consists
in estimating the ”local error” at each step of the S3F algorithm,
i.e. the error made in computing the approximated solution at a
given grid point assuming that the data from the previous grid
point was exact. At each grid point, the step-size is then com-
puted so that the local error is lower than a predefined value
(termed the tolerance). The value of the tolerance is set de-
pending on the need of accurate results, e.g. to 10−q with q
ranging from 3 to 9. Actually, it is the ”global error” (i.e. the
total error at a given grid point ensued from the error accumula-
tion from the initial grid point) that we wish to know about but
estimating the global error with accuracy is mathematically and
numerically out of reach and therefore we must content our-
selves with estimating the local error. Note that the globalerror
resulting from the error accumulation from the previous com-
putational steps can be several order of magnitude upper than
the tolerance for the local error.

The next 2 sections are devoted to an analysis of the local
error when a numerical scheme is used for solving the nonlinear
ODE problem (8) on the one hand and to an analysis of the
Split-Step local error on the other hand.

3.1. Local error when solving the nonlinear ODE problem by
a Runge-Kutta method

The most effective way for local error estimate when solv-
ing a nonlinear ODE problem is by using an embedded Runge-
Kutta method. Embedded Runge-Kutta (ERK) methods [6] are
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special Runge-Kutta (RK) methods designed to deliver 2 ap-
proximations of the solution of the ODE problem under con-
sideration corresponding to 2 RK schemes of different conver-
gence ordersp and p + 1. These 2 approximations of the so-
lution can be considered as an accurate approximated solution
(the one computed with the numerical scheme of higher order
p + 1) and a coarse approximated solution (the one computed
with the one of lower orderp). For efficiency, the 2 RK schemes
bear several computational stages in common in order to reduce
noticeably the computational cost of the local error estimation.

In [14] the author uses (without mentioning it explicitly) an
ERK method of order 1 and 2 (p = 1) where the first order
approximated solution inzk+1 is given by

V[1]
k+1 = U(zk+ 1

2
) + hk α1, α1 = N(U(zk+ 1

2
))

and the second order approximated solution is given by

V[2]
k+1 = U(zk+ 1

2
) + hk α2, α2 = N(U(zk+ 1

2
) + 1

2hk α1).

Because it represents a good compromise between accuracy
and computational cost, the fourth order Runge-Kutta (RK4)
scheme [6] is more commonly used in conjunction with the S3F
method and in [3] the authors propound an ERK method of or-
der 3 and 4 (p = 3) which preserves the ease of implementation
of the RK4 formula and provides a local error estimate at no ex-
tra computational cost. The 4th order RK method delivers the
approximated solution

V[4]
k+1 = U(zk+ 1

2
) +

hk

6
(α1 + 2α2 + 2α3 + α4)

whereα3 = N(U(zk+ 1
2
) + 1

2hkα2) andα4 = N(U(zk+ 1
2
) + hkα3)

and the 3rd order RK method provides the approximated solu-
tion

V[3]
k+1 = U(zk+ 1

2
) +

hk

30
(5α1 + 5α2 + 5α3 + 2α4 + 3α5)

whereα5 = N(V[4]
k+1). We refer to [3] for the implementation

details.
When solving problem (8) by the standard RK method of

order p, provided all the partial derivatives ofz 7→ N(V(z))
exist and are continuous up to the orderp+ 1, the local error is
known to behave asO(hp+1) [6]. Let us detail the way the local
error can be estimated by using an ERK method withp = 1
or p = 3 as considered above. By use of the Taylor expansion
formula, one can show that the local errors for each of the 2
methods are respectively given by [6]

ℓ
RK(p)
k+1 = V(zk+1) − V[p]

k+1 = ϕp(zk,V
[p]
k ) hp+1

k + O(hp+2
k ) (11)

ℓ
RK(p+1)
k+1 = V(zk+1) − V[p+1]

k+1 = ϕp+1(zk,V
[p+1]
k ) hp+2

k + O(hp+3
k )

whereϕp (resp.ϕp+1) is a function of theelementary differen-
tials of orderp (resp. p+ 1) of the functionz 7→ N(V(z)). By
difference of these 2 relations we obtain

V[p+1]
k+1 − V[p]

k+1 = ϕp(zk,V
[p]
k ) hp+1

k + O(hp+2
k ). (12)

From (11) and (12) we deduce that the local error for thep-th
order RK method at grid pointzk+1 can be approximated with
an error inO(hp+2

k ) by

∀t ∈ R ℓ
RK(p)
k+1 (t) ≈ V[p+1]

k+1 (t) − V[p]
k+1(t) (13)

and the energy norm of the local error by

LRK(p)
k+1 = ‖ℓ

RK(p)
k+1 ‖ ≈

(∫

R

∣∣∣∣V[p+1]
k+1 (t) − V[p]

k+1(t)
∣∣∣∣
2

dt

) 1
2

. (14)

It satisfiesLRK(p)
k+1 = O(hp+1

k ).

3.2. Split-Step local error estimation by step-doubling

As mentioned before, when the nonlinear Schrödinger equa-
tion is considered (i.e.N = N0) the nonlinear ODE problem (8)
admits an analytical solution and the local error in the S3F
method only amounts to the splitting error as given by (10). In
such a case, although an approach similar to the one performed
to estimate the local error when solving a nonlinear ODE by an
embedded Runge-Kutta method could be considered (involving
2 embedded Split-Step schemes of different orders), the usual
method for estimating the splitting local error is based on the
step-doubling technique. Actually, it is the adaptive step-size
control used in conjunction with the S3F method for solving
the NLSE presented in [19]. The idea behind the step doubling
method (also known as Richardson extrapolation method and
widely used for adaptive step-size control in quadrature meth-
ods for integral or ODE [21]) is the following. The local error
for the S3F method at grid pointzk+1 satisfies the following re-
lation [2]

ℓSS
k+1 = A(zk+1) − Ak(zk+1) = C h3

k + O(h4
k) (15)

whereC denotes a positive number independent ofhk. Let
uk+1 = Ak(zk+1) be the solution at grid pointzk+1 computed
by the Symmetric Split-Step scheme (7)–(8)–(9) from grid
point zk using one step of sizehk, and let ũk+1 be the so-
lution computed from grid pointzk using two half steps of
size hk/2, in both cases assuming the solutionAk−1(zk) at
grid pointzk to be exact (since we are interested in estimating
the local error). Additionally the following assumption ismade:

(H) the local error after 2 half steps is twice the local
error after one half step

(which consists in an approximation since the initial data for
the second half-step is actually the approximated solutioncom-
puted after the first half-step and not the exact one). Then,
from (15) we deduce that

A(zk+1) − uk+1 = C h3
k + O(h4

k) (16)

A(zk+1) − ũk+1 = 2C

(
hk

2

)3

+ O(h4
k) (17)

and therefore by difference between these 2 relations we get

ũk+1 − uk+1 =
3
4

C h3
k + O(h4

k). (18)
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Thus the local error related to the Split-Step scheme at grid
pointzk+1 can be approximated, with an error inO(h4

k), by

∀t ∈ R ℓSS
k+1(t) ≈ C h3

k ≈
4
3

(̃uk+1(t) − uk+1(t)). (19)

The energy norm of the local error at grid pointzk+1 is then
expressed as

LSS
k+1 = ‖ℓ

SS
k+1‖ ≈

4
3

(∫

R

|̃uk+1(t) − uk+1(t)|
2 dt

) 1
2

(20)

and from (15) we haveLSS
k+1 = O(h3

k).
We have to point out that relation (19) gives an approxima-

tion of the local error corresponding to the solutionuk+1 com-
puted by the Symmetric Split-Step scheme over the coarse grid
with step-sizehk. However the fine mesh grid solutioñuk+1 is
a better approximation and in practice it is kept as the approx-
imated solution and propagated along the fiber. This process
is referred in the literature as the “local extrapolation mode”.
Moreover, by difference of equation (16) and equation (17)
pre-multiplied by 4 we obtained under assumption (H) an
even more accurate approximation (referred in the literature as
Richardson extrapolation):A(zk+1) can be approximated with
an error inO(h4

k) (instead ofO(h3
k) as given by (17)) as

A(zk+1) ≈
1
3

(
4 ũk+1(t) − uk+1(t)

)
.

The over-cost of estimating the local error in this way is thecost
of the computation of the coarse mesh grid solution and this
cost is approximately half the cost of the computation of the
fine mesh grid solution since the step-size is twice larger. Thus,
estimating the local error using the step doubling approachis
liable of an extra computational cost of 50% more than the cost
of the computation of the approximated solution itself. In fact,
the additional cost is slightly less than 50% since some com-
putations are shared by each of the 2 methods, and needs to be
carried out only once.

3.3. Local error estimate for the GNLSE solved by the S3F
method

In the case when the GNLSE (1) is solved by the S3F method,
a dedicated numerical method such as a Runge-Kutta method
is to be used to solve the nonlinear ODE problem (8). As a
consequence, the local error consists in the error producedby
the Split-Step scheme and the error produced by the (p + 1)-
th order Runge-Kutta scheme (p = 1 or p = 3 for the 2 above
mentioned ERK methods). Since the 2 linear PDE problems (7)
and (9) are solved exactly by use of the Fourier Transform, the
local error behaves forhk in a neighborhood of 0 as

‖A(zk+1) − Ak(zk+1)‖ ≤ C h3
k + K hp+2

k (21)

whereC andK denote 2 positive numbers. The constant num-
berC depends on the elementary differentials of order 3 of the
mappingA(z) 7→ N(A(z)) whereasK depends on the elemen-
tary differentials of orderp + 1 of the mappingF : A(z) 7→

DA(z) + N(A(z)). Therefore the 2 constant numbersC andK
depend in a different way on the physical parameters involved
in the GNLSE (1) and it can happen that they have values dif-
ferent by several order of magnitude. Note that the local error
can not be estimated only for the nonlinear ODE problem (8)
as it is done in [14] and in no case whenp = 1 the whole nu-
merical approximation scheme can be 4th order accurate as the
author states. Whenp = 1, relation (21) shows that the global
convergence order of the S3F method is 2.

From a theoretical point of view, we deduce from (21) that
when p = 3 the S3F method with problem (8) solved by the
RK4 scheme (referred as the S3F-RK4 method in the sequel)
has global convergence order 2 since forhk in a neighborhood
of 0 we haveK h5

k = O(h3
k). Thus, the local error (21) can be

estimated by the step doubling approach just as detailed in sec-
tion 3.2. However in practice it can happen that under special
circumstances (i.e. for a special set of values for the physical
parameters involved in the GNLSE (1)) the value of the con-
stantC is much lower than the value ofK. In such a case, when
the convergence order of the S3F-RK4 method is explored on
numerical examples, depending on the values of the physical
parameters taken in the GNLSE, the experimental convergence
curve can behave as a function of the step-sizeh such ash4

instead ofh2. If so, the local error estimate presented in sec-
tion 3.2 is likely to provide wrong results since it was assumed
that the convergence order is 2. Actually, it is not difficult to
convince oneself that whenever the nonlinear effects predomi-
nate in the GNLSE (1) the convergence order observed experi-
mentally will be close to 4 andC << K whereas when it is the
linear effects that predominate the convergence order observed
experimentally will be close to 2 andK << C. (Note that when
dealing with the convergence behavior, the 2 constantsK andC
we are referring to may differ from the constants appearing in
the local error estimate (21) but we have maintained the same
notation for simplicity.)

In order to numerically illustrate the mathematical analysis
presented in this section we have solved the GNLSE by the
S3F-RK4 method on a test example chosen to match with a typ-
ical case of high speed data propagation through aL = 20 km
single mode fiber in optical telecommunication with a data’s
carrier frequency located in the C band of the infrared spectrum
( f0 = 193 Thz). The following set of fiber’s parameters were
used for the simulation:α =???, γ = 4.3 W−1km−1, fR = 0.245,
β2 = −19.83 ps2km−1, β3 = 0.031 ps3km−1 and βn = 0 for
n ≥ 4. An expression for the Raman time response function for
silica core fiber is given in [1]. The source terma0 = A(z = 0)
was represented as a first order Gaussian pulse:

a0 : t 7→
√

P0 e−
1
2 (t/T0)2

(22)

whereT0 is the pulse half-width at 1/e intensity point andP0

is the pulse peak power. Simulations were carried out for a
pulse-widthT0 = 6.8 ps and for three different peak power val-
ues: P0 = 5 mW, 25 mW and 50 mW. As explained in [1] the
dispersive lengthLD and non-linear lengthLNL defined as

LD =
T2

0

|β2|
and LNL =

1
γP0

(23)
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provide the length scales over which dispersive or non-linear
effects become important for pulse evolution. In the test exam-
ple considered here the dispersion lengthLD = 2.26 km was
kept constant and the non-linear lengthLNL was decreasing
from 46.5 km to 4.65 km whileP0 was increasing from 5 mW
to 50 mW. Thus when the pulse peak power was increasing the
nonlinear Kerr effect was becoming more important through
propagation. The convergence curves representing the global
error at the fiber end when using a constant step-size S3F-RK4
method for solving the GNLSE versus the step-size are depicted
in Figure 2.

Figure 2: Experimental convergence curve (logarithmic scale) for the S3F-RK4
method on the test example. The convergence order is rangingfrom 2 to 4
depending on the importance of Kerr nonlinearity.

In Figure 2, one can observe that for a 50 mW peak power
pulse (whereL � 4 LNL) the experimental convergence curve
drawn in a logarithmic scale has a slope coefficient close to 4.
In this specific case the nonlinear effects predominate in the
GNLSE and the error behavior is mainly governed for the step-
size range considered in the simulation by the error committed
when solving the nonlinear ODE problem by the 4th order RK
scheme. On the contrary, for a 5 mW peak power pulse (where
L � 1/2 LNL) the experimental convergence curve has a slope
coefficient close to 2. The linear dispersion effects predominate
in the GNLSE and the error behavior is mainly governed for
the step-size range considered in the simulation by the error in-
herent to the use of the Symmetric Split-Step scheme (the error
committed when solving the nonlinear ODE problem by the 4th
order RK scheme is much lower). The convergence curve cor-
responding to a 25 mW peak power pulse (whereL � LNL and
both linear dispersion and nonlinear effects have a comparable
strength) shows a very interesting phenomenon. The first part of
the convergence curve has a slope coefficient close to 4 whereas
it is close to 2 on the second part. This can be understood as fol-
lows. The value of the constantC involved in the expression of
the error related to the use of the Symmetric Split-Step scheme
is a little smaller than the value of the constantK involved in the
expression of the error of the RK scheme. As a consequence,
for the largest values of the step-sizeh in the range considered
in the simulation we haveK h4 > C h2 whereasK h4 < C h2

whenh becomes small enough, i.e. for the lowest values in the
range considered in the simulation.

To be comprehensive in the analysis of the results depicted

on Figure 2, one can notice the somehow erratic behavior of the
curves for the largest values of the step-size (upper left corner).
It can be explained by the large values of the global error for
such step-sizes which are not really compatible with an asymp-
totic behavior analysis. As well one can notice a distinguishing
behavior of the curves for the smallest values of the step-size
where the slope of the curves decreases. This can be explained
by the round-off error due to the finite precision (floating-point)
arithmetic used on the computer. Round-off error increases in
proportion to the total number of arithmetic operations (related
to the number of steps here). For the smallest values of the step-
size, it grows up to the point of being comparable in magnitude
to the error of the method and becomes apparent on the curves.

To conclude this section we would like to emphasis the fact
that the simulation results we obtained do not reveal any mathe-
matical contradiction on the convergence order of the S3F-RK4
method: it is 2 and not 4. The apparent contradiction can be
understood as follows. The theoretical behavior is proved for
a step-sizeh arbitrarily close from 0 (in other words the prop-
erty is true asymptoticly whenh tend to 0) whereas the experi-
mental curves are obtained certainly with small values ofh but
inevitably larger than a limit imposed by the performances of
the computer. WhenC is several order of magnitude lower
than K, it is not possible experimentally to reach values ofh
small enough so thatK h4 becomes much smaller thanC h2.
On the contrary, on the range of experimental possible values
for h we may haveC h2 much smaller thanK h4 and what it is
observed on Figure 2 forP0 = 50 mW is this latter behavior.

4. Step-size control

For step-size control, a tolerance “tol” is given as bound on
the local error estimate. A step-size control strategy [6] consists
in rejecting the current step-size if it gives an estimated local er-
ror higher than the specified tolerance and in accepting the solu-
tion computed with this step-size otherwise. There are 2 criteria
usually employed for step-size control purposes. The criterion
of error per step (EPS) selects the step sizehk at each step so
that the local error is lower than the tolerance tol whereas the
criterion of error per unit step (EPUS) selects the step sizehk

at each step so that the local error is lower than tol× hk. It is
clear that for sufficiently small tolerance value EPUS criterion
selects a smaller step-size than EPS criterion. When the current
step-size is rejected, a new smaller step-size has to be chosen
to recompute the solution over the current step. As well, when
the current step-size meets the tolerance requirement for the lo-
cal error it has to be scaled up for the next step computations.
In both case, the new step-size has to be estimated using the
available information on the previous step computations. On
the basis of the results set in the previous section, we assume
that there exists a positive real numberC such that the local
error has the form

Lk+1 = ‖ℓk+1‖ = C hq+1
k

where the value of the integerq ranges from 2 to 4 depending
on the situation. The optimal step-sizehopt is the one for which
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the local error estimateLk+1 is the closest to the prescribed tol-
erance tol,i.e. C hq+1

opt = tol. By eliminating the constantC from
these 2 relations we obtain that the optimal step-size is

hopt = hk
q+1

√
tol

Lk+1
.

For robustness the step-size control has to be designed in order
to respond as smoothly as possible with real or apparent abrupt
changes in behavior. This means that the step-size should not
vary from one step to the other by an excessive ratio. That is the
reason why it is imposed that the new step-size does not exceed
twice the current step-size above and half the current step-size
below. As well, in order to avoid situations where the specified
tolerance is ever exceeded resulting in rejecting too many steps,
a safety factor is sometimes introduced: ifhopt is the value of
the step-size estimated to give a predicted truncation error equal
to the tolerance, then the smaller value 0.9hopt for instance is
used instead. These considerations lead the following step-size
control formula

hnew = max

0.5 , min

2.0 , 0.9
q+1

√
tol
err


 hk (24)

where “tol” denotes the tolerance value specified by the useras
a bound on the local error and “err” denotes the estimation of
the local error for the current step. The 3 constants with values
0.9, 0.5 and 2.0 are somewhat arbitrary and have to be regarded
as design parameters.

5. Discussion and conclusion

When implementing a step-size control method, one must
be aware of the following issues. First, all the estimates for
the local error in the previous sections have been derived for a
step-sizehk in a neighborhood of 0 and they are used for step-
size control where the goal is to determine step-size as large
as possible to reduce the computational cost. It is one of the
reason why a good step-size control strategy must include safe-
guard so that the step-size does not increase in an inconsiderate
way. Additionally, local error estimate is based on relation (13)
(resp. (19)) corresponding to an approximation of the principal
part of the Taylor expansion (11) (resp. (16)) of the local error
for the Runge-Kutta scheme (resp. the Split-Step scheme). For
hk small enough, the principal term in the local error expansion
is usually large in comparison with the other terms involved
in the expansion, which justifies its use to set the step length.
However, one must be aware that under special circumstances
this can not be anymore the case and the other terms in the ex-
pression of the local error expansion can overwhelm the princi-
pal term. Here again this is likely to happen when the step-size
hk is not small enough.

As we have seen it, implementing a relevant step-size con-
trol strategy based on an estimation of the local error for the
S3F method when solving the GNLSE (1) is not so easy due to
the accumulation of 2 kind of approximation errors with dif-
ferent asymptotic behavior: the error arising from the Split-
Step scheme itself and the error coming from the Runge-Kutta

scheme used to solve the nonlinear ODE problem resulting
from the Split-Step approach. Recently, an alternative method
to the S3F method for solving the GNLSE (and other similar
evolution type PDE such as the Gross-Pitaevskii equation) has
been propound. The method is termed the ”Interaction Picture”
(IP) method. In a very similar way to the S3F method, the IP
method consists in decoupling the linear and non-linear terms in
the GNLSE in order to make resolution simpler and the approx-
imated solution is identically obtained by solving a sequence of
linear PDE problems and non-linear ODE problem in a given
sequential order. However, while in the S3F method the decou-
pling of the linear and non-linear terms is obtained at the cost of
an approximation (the splitting approximation), the IP method
can be considered as exact since it amounts from a mathemat-
ical point of view to a change of unknown. The IP method
has been developed in the 90’s by theBose-Einstein Conden-
sate Theory Groupof R. Ballagh from the Jack Dodd Centre at
the University of Otago for solving the Gross-Pitaevskii equa-
tion (GPE) in the context of Bose condensation. It was first de-
scribed in the Ph.D. thesis of B.M. Caradoc-Davies [7] for solv-
ing the GPE. Latter it has been applied for solving the GNLSE
in optics by J. Hult in [13] where an experimental comparison
of the IP method to Split-Step methods based on their numeri-
cal efficiency on benchmark problems in optics is presented. A
comprehensive mathematical analysis of the properties of the
IP method is presented in [2]. Since the IP method is based on
a change of unknown rather than on a splitting approximation
formula, implementing a step-size control strategy based on an
estimation of the local error is easier for the IP method thanfor
the S3F method. Indeed, the only approximation error results
from the use of a Runge-Kutta scheme to solve the nonlinear
ODE problem (which is slightly different to the nonlinear ODE
problem (8) in the S3F method). In [3] a costless step-size con-
trol strategy for the IP method based on the use of a 4th order
embedded Runge-Kutta method is propound. Indubitably the
IP method offers an elegant and efficient method for solving the
GNLSE and its vicinity with the S3F method makes its com-
puter implementation easy from a S3F program.
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