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Abstract

High-quality volumetric parameterization of computational do-
main plays an important role in three-dimensional isogeometric
analysis. Reparameterization technique can improve the distri-
bution of isoparametric curves/surfaces without changing the
geometry. In this paper, using the reparameterization method,
we investigate the high-quality construction of analysis-suitable
NURBS volumetric parameterization. Firstly, we introduce the
concept of volumetric reparameterization, and propose an opti-
mal Möbius transformations to improve the quality of isopara-
metric structure based on a new uniformity metric. Secondly,
from given boundary NURBS surfaces, we present a two-stage
scheme to construct the analysis-suitable volumetric parame-
terization: in the first step, uniformity-improved reparameteri-
zation is performed on the boundary surfaces to achieve high-
quality isoparametric structure without changing the shape; in
the second step, from a new variational harmonic metric and the
reparameterized boundary surfaces, we construct the optimal
inner control points and weights to achieve an analysis-suitable
NURBS solid. Several examples with complicated geometry are
presented to illustrate the effectiveness of proposed methods.

1 Introduction

The isogeometric analysis method proposed by Hughes et
al. [14] employs the same type of spline representation
both for the geometry and for the physical solutions. Based
this unified data representation, it provides the possibil-
ity of seamless integration between geometric design and
numerical analysis. Since high-order basis function is in-
volved in this framework, compared with the traditional
finite element analysis with the same degree of freedom,
isogeometric approach can achieve a better accuracy espe-
cially for shell problems with the requirement of high-order
continuity. Moreover, the number of parameters needed to
describe the geometry is reduced, which is of particular
interest for analysis-aware shape optimization.

In finite element analysis, mesh generation generates
a discretized geometry as a computational domain from a
given CAD object; it is a key and the most time-consuming
step. In the isogeometric analysis framework, the parame-
terization of the computational domain, is also an impor-
tant issue, which corresponds to the mesh generation in
finite element analysis. In the first book on isogeometric
analysis [7], it is pointed out that constructing analysis-
suitable parameterization from given CAD boundary rep-
resentation is one of the most significant challenges to-
wards isogeometric analysis. In [6, 30], the authors study
the parametrization of computational domain in IGA, and
show that the quality of parameterization has great impact
on analysis results and efficiency. Pilgerstorfer and Jüttler
show that in isogeometric analysis the condition number of
the stiffness matrix , which is a key factor for the stability
of the linear system, depends strongly on the quality of
domain parameterization [23].

(a)

(b)

Figure 1: Reparameterization example without changing the
shape: (a) Sampling points on a NURBS curve with non-
arc-length parameterization; (b) Sampling points on the same
NURBS curve after arc-length reparameterization.

Based on above investigation, an analysis-suitable pa-
rameterization of computational domain in isogeometric
analysis should satisfy three requirements: 1) it should
have no self-intersections, i.e, the mapping from the para-
metric domain to physical domain should be injective;
2) the iso-parametric elements should be as uniform as
possible; 3) the iso-parametric structure should be as or-
thogonal as possible. Several methods, such as constraint
optimization method, variational harmonic method and
gradient-based optimization method are poposed to con-
struct analysis-suitable planar and volumetric parameter-
ization from given CAD boundary in [35, 36, 32, 33, 27].
Previous work mainly focus on the construction of inner
control points. As far as we know, the effect of the bound-
ary parameterization on the interior volumetric parameter-
ization has not been studied before. The quality of bound-
ary parameterization has great effect on the subsequent
volumetric parameterization results. Reparameterization
technique can improve the quality of boundary parame-
terization without changing the geometry. As shown in
Figure 1, a curve with arc-length parameterization can be
obtained by reparameterization techniques. On the other
hand, the weights in NURBS solid can be also considered as
extra degree of freedom to obtain high-quality volumetric
parameterization. In this paper, using the reparameteriza-
tion method, we investigate the high-quality construction
of analysis-suitable NURBS volumetric parameterization.
Our main contributions are:

• Two kinds of new volumetric metrics are introduced.
A uniformity metric is proposed from the geometric
interpretation of the Jacobian and the concept of vari-
ance in statistics science; a new harmonic metric for
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volumetric smoothing is introduced from the varia-
tional formulation of harmonic equation.

• Volumetric spline reparameterization is introduced,
and an optimal Möbius transformation is proposed
to improve the uniformity of isoparametric structure.

• By using uniformity-improved reparameterization
of NURBS surfaces and the proposed variational
harmonic metric, a two-stage scheme with multi-
objective functions is proposed to construct the op-
timal inner control points and weights for analysis-
suitable NURBS volumetric parameterization.

The rest of the paper is organized as follows. Section
2 reviews the related work on volumetric parameterization
in isogeometric analysis. After a new uniformity metric is
introduced, Section 3 describes the optimal Mobius vol-
umetric reparameterization method for analysis-suitable
NURBS solids. For volumetric parameterization prob-
lem from given boundaries, a two-stage framework with
multi-objective function is proposed to construct the opti-
mal analysis-suitable NURBS solid in Section 4. Some ex-
amples and comparisons are also presented in correspond-
ing sections to illustrate the effectiveness of the proposed
methods. Finally, we conclude this paper and outline fu-
ture works in Section 5.

2 Related work

In this section, some related works on parameterization
of computational domain in isogeometric analysis will be
reviewed.

Since isogeometric analysis was firstly proposed by
Hughes et al. [14] in 2005, many researchers working on
computational mechanical and geometric modeling were
involved in this field. We can classify the current work on
isogeometric analysis into four categories: (1) isogeometric
application in multi-physical problems [3, 9, 13]; (2) appli-
cation of different spline models in isogeometric analysis
[4, 5, 10, 21, 15]; (3) improving the accuracy and efficiency
of IGA framework by refinement operations and paral-
lel computing [2, 6, 8, 30, 31]; (4) constructing analysis-
suitable parameterization of computational domain from
given boundary [1, 19, 20, 26, 31, 32, 35, 36].

The work presented this paper belongs to the forth
topic. Volumetric parameterization of triangle mesh mod-
els has been investigated in [17, 29, 28] from the viewpoint
of graphics applications. From the viewpoint of isogeo-
metric applications, the parameterization of computational
domain plays an important role as mesh generation in fi-
nite element analysis. Using volumetric harmonic func-
tions, Martin et al. [19] proposed a fitting method for
triangular mesh by B-spline parametric volumes. Aigner
et al. [1] proposed a variational approach to construct
NURBS parameterization of swept volumes. The concept
of analysis-aware modeling is proposed by Cohen et al.
[6], and the influence of parameterization of computational
domains is demonstrated by several examples. In [12], a
method is proposed to construct trivariate T-spline volu-
metric parameterization for genus-zero solid based on an
adaptive tetrahedral meshing and mesh untangling tech-
nique. Zhang et al. proposed a robust and efficient ap-
proach to construct injective solid T-splines for genus-zero
geometry from a boundary triangulation [35]. For mesh
model with arbitrary topology, volumetric parameteriza-
tion methods are proposed from the Morse theory [26] and
Boolean operations [18]. The input data of above pro-
posed methods is triangle mesh. For the product modeling
by CAD software, its boundary is usually in spline form.
For parameterization problem with spline boundary, Xu

et al. proposed a constraint optimization framework to
construct analysis-suitable volume parameterization [32].
Spline volume faring is proposed by Pettersen and Skytt
to obtain high-quality volume parameterization for isogeo-
metric applications [24]. The construction of conformal
solid T-spline from boundary T-spline representation is
studied by using octree structure and boundary offset [36].
Variational harmonic method is proposed in [33] to con-
struct analysis-suitable parameterization of computational
domain from given CAD boundary information. Wang and
Qian proposed an efficient method by combining divide-
and-conquer, constraint aggregation and the hierarchical
optimization technique to obtain valid trivariate B-spline
solids from six boundary B-spline surfaces [27]. In this
paper, by reparameterization technique, we introduce the
optimal volumetric Mobius transformation, and propose a
two-stage scheme to construct analysis-suitable NURBS
volumetric parameterization based on uniform-improved
boundary reparameterization method.

3 Volumetric reparameterization for analysis-

suitable NURBS solids

3.1 Problem statement

The problem studied in this section can be stated as fol-
lows: given a trivariate NURBS solid, find an optimal Mo-
bius parameter transformation such that the isoparametric
structure of reparameterized NURBS solid is as uniform as
possible.

In the following subsection, we will review the defini-
tion of NURBS solids and introduce the Mobius volumetric
transformation.

3.2 NURBS solids and Mobius volumetric transformation

A NURBS solid can be defined as follows,

S(u, v, w) =

n∑
i=0

m∑
j=0

l∑
k=0

λi,j,kC i,j,kN
p
i (u)N

q
j (v)N

ν
k (w)

n∑
i=0

m∑
j=0

l∑
k=0

λi,j,kN
p
i (u)N

q
j (v)N

ν
k (w)

in which C i,j,k are control points,λi,j,k are the weights,
N

p
i (u), N

q
j (v) and Nν

k (w) are B-spline basis function with
degree p,q and ν respectively defined on the knot vectors

U = {0, · · · , 0, up+1, · · · , ul, 1, · · · , 1}

V = {0, · · · , 0, vq+1, · · · , vm, 1, · · · , 1}

and

W = {0, · · · , 0, wr+1, · · · , wn, 1, · · · , 1}

Definition 1. (Mobius volumetric transformation)
Suppose that α, β, γ ∈ [0, 1], the Mobius volumetric
transformation can be defined as

u =
(1− α)ξ

α(1− ξ) + (1− α)ξ
(1)

v =
(1− β)η

β(1− η) + (1− β)η
(2)

w =
(1− γ)ζ

γ(1− ζ) + (1− γ)ζ
(3)

After applying the Mobius transformation in (1)(2)(3)
on the NURBS solid S(u, v, w), we can obtain a new para-

metric representation S̃(ξ, η, ζ) of the NURBS solid with

2



the same control points as follows [16],

S̃(ξ, η, ζ) = (x(ξ, η, ζ), y(ξ, η, ζ), z(ξ, η, ζ))

=

n∑
i=0

m∑
j=0

l∑
k=0

λ̃i,j,kC i,j,kN
p
i (ξ)N

q
j (η)N

ν
k (ζ)

n∑
i=0

m∑
j=0

l∑
k=0

λ̃i,j,kN
p
i (ξ)N

q
j (η)N

ν
k (ζ)

in which the new weights

λ̃i,j,k =
λi,j,k

p∏
r=1

Ki,r

q∏
s=1

Lj,s

ν∏
t=1

Mk,t

with
Ki,r = (1− α)(1− ui+r) + αui+r, (4)

Lj,s = (1− β)(1− vj+s) + βvj+s, (5)

Mk,t = (1− γ)(1− wk+t) + γwk+t. (6)

And the corresponding knot vectors are changed into

Ũ = {0, · · · , 0,︸ ︷︷ ︸
p+1

αup+1

(1− α)(1− up+1) + αup+1

, · · · ,

αul

(1− α)(1− ul) + αul

, 1, · · · , 1︸ ︷︷ ︸
p+1

}

Ṽ = {0, · · · , 0,︸ ︷︷ ︸
q+1

βvq+1

(1− β)(1− vq+1) + βvq+1

, · · · ,

βvm

(1− β)(1− vm) + βvm
, 1, · · · , 1︸ ︷︷ ︸

q+1

}

and

W̃ = {0, · · · , 0,︸ ︷︷ ︸
ν+1

γwν+1

(1− γ)(1− wν+1) + γwν+1

, · · · ,

γwn

(1− γ)(1− wn) + γwn

, 1, · · · , 1︸ ︷︷ ︸
ν+1

}.

3.3 Improve the uniformity of isoparametric structure by
volumetric reparameterization

In this subsection, we will propose a uniformity-improved
volumetric reparameterization method based a new unifor-
mity metric.

3.3.1 Uniformity metric for NURBS solids

In order to achieve a volumetric parameterization with
uniform isoparametric structure, a new uniformity met-
ric is firstly proposed. The uniform isoparametric struc-
ture means that each isoparametric element has the same
volume value. In probability theory and statistics, vari-
ance measures how far a set of numbers is spread out. A
variance of zero indicates that all the values are identical.
Hence, the uniformity of isoparametric structure means
that the variane between the volume value of each isopara-
metric element should be as small as possible. Suppose
that the Vi is the volume of i-th element, and Vave is the

average element volume in the NURBS solid S̃(ξ, η, ζ), the
discrete variance σdis can be defined as follows,

σdis =
1

N

N∑

i=0

(Vi − Vave)
2 (7)

Figure 2: The uniformity metric illustrated by color-map.

in which N is the number of sampling elements.
From the geometric interpretation of Jacobian , the

Jacobian determinant can be considered as a scaling factor
that relates the volume change of the parametric element
to the physical element. Hence, the variance of element
volume in Eq. (7) can be replaced by the variance of Jaco-

bian determinant of the NURBS solid S̃(ξ, η, ζ) , which can
be defined in the form the continuous function as follows,

σ =

∫
P

(det J̃ − Jmean)
2 dP∫

P

dξdηdζ

(8)

in which Jmean is the average value of Jacobian determi-
nant at each sampling point on the NURBS solid. Based
on the geometric meaning of Jacobian, Jmean can be com-
puted as the ratio between the volume value of physical
domain Vphysical and parametric domain Vparametric,

Jmean =
Vphysical

Vparametric

=

∫

P

S̃ζ · (S̃ξ × S̃η) dξdηdζ
∫

P

dξdηdζ

=

∫

P

det J̃ dξdηdζ

∫

P

dξdηdζ

in which P is the parametric domain with knot vectors

Ũ,Ṽ and W̃. J̃ is the Jacobian matrix of the NURBS

solid S̃(ξ, η, ζ) as follows,

J̃ =




xξ xη xζ

yξ yη yζ
zξ zη zζ


 (9)

As shown in [27, 32], the uniformity is also related to
the second order derivative of the parameterization. By
combining the variance of Jacobian in (8), a new unifor-
mity metric at (ξ, η, ζ) can be defined as follows,

µ(S̃) = (det J̃− Jmean)
2 +ω(‖S̃ξξ‖

2 + ‖S̃ηη‖
2 + ‖S̃ζζ‖

2),
(10)

in which ω is a positive weight.
In order to show the effectiveness of the proposed met-

ric, we present an example in Figure 2. The uniformity
metric is illustrated with color-map, which is rendered ac-

cording to the value of µ(S̃). The red part has smallest
value and the best uniformity, the blue part has the biggest
value and the worst uniformity. We can find that the uni-
formity color-map is consistent with the size change of the
isoparametric element.
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(a) NURBS solid (b) Control lattice

(c) Initial isoparametric surfaces in
u direction

(d) Final isoparametric surfaces in
ξ direction

(e) Initial isoparametric surfaces in
v direction

(f) Final isoparametric surfaces in
η direction

(g) Initial color-map of uniform
metric

(h) Final color-map of uniform
metric

Figure 3: Volumetric Möbius reparameterization method for NURBS solid.
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3.3.2 Optimal volumetric Mobius reparameterization

From the volumetric Möbius transformation and unifor-
mity metric presented in previous sections, the optimal vol-
umetric Möbius reparameterization problem can be stated
as: given the initial parameterization S(u, v, w) of NURBS
solid, find the optimal α, β, γ in the Möbius volumetric
transformation (3)(4)(5), such that the resulted parame-

terization S̃(ξ, η, ζ) minimizes the following objective func-
tion

Funif(α, β, γ) =

∫

P

µ(S̃) dP (11)

in which µ(S̃) is defined in (10).
For solving the above non-linear optimization problem

with three variables α, β and γ, we use the Levenberg-
Marquardt Method. The algorithm combines advantages
of the steepest descent method, in which minimization is
performed along the direction of the gradient, with the
Newton method, in which a quadratic model is used to
speed up the process of finding the minimum of a func-
tion. Hence, this algorithm obtained its operating sta-
bility from the steepest descent method, and adopted its
accelerated convergence in the minimum vicinity from the
Newton method.

3.4 Example and comparison

Figure 3 shows an example and corresponding compari-
son result for volumetric Möbius reparameterization. The
given NURBS solid and the control lattice are shown in
Figure 3 (a) and 3 (b). Figure 3 (c) presents the initial
isoparametric surfaces in u direction of the given NURBS
volumetric parametrization. Figure 3 (d) shows the final
isoparametric surfaces in ξ direction of the NURBS vol-
umetric parametrization constructed by the Möbius repa-
rameterization method with α = 0.323, β = 0.494 and
γ = 0.217. The comparison of the isoparametric surfaces
in v direction are also presented in Figure 3 (e) and 3 (f).
We use the uniformity colormap to show the uniformity of
isoparametric structure in the volume parameterizations.
The uniformity colormap is computed according to the

value of µ(S̃) defined in (10). From Fig.3(g) and Fig.3
(h) with the same scale, we can find that the volumetric
parameterization obtained by the optimal Möbius repa-
rameterization method gives more uniform iso-parametric
structure than the initial given volume parameterization.

From the chain rule, we can directly prove that if the
initial volumetric parameterization has self-intersections,
then Möbius reparameterization method can not remove
the self-intersections. In the following section, we will pro-
pose a two-stage scheme to construct high-quality volumet-
ric parameterization without self-intersections by bound-
ary reparameterization.

4 Constructing analysis-suitable NURBS solids by

boundary reparameterization

4.1 Main framework

Suppose that S is a simply connected bounded domain
in three dimensional space with Cartesian coordinates
(x; y; z)T , and is bounded by six NURBS surfaces. The vol-
ume parameterization problem of three-dimensional com-
putational domain in isogeometric analysis can be stated
as: given six boundary NURBS surfaces, find the optimal
inner control points and weights such that the resulting
trivariate NURBS parametric volume is a good computa-
tional domain for 3D isogeometric analysis.

The quality of boundary parameterization has great
effect on the subsequent volumetric parameterization of

computational domain. In this section, we will present
a two-stage scheme to construct analysis-suitable NURBS
solids: in the first step, boundary surface reparameteriza-
tion is performed to improve the quality of the boundary
isoparametric structure; in the second step, from the repa-
rameterized boundary surfaces, we construct the optimal
inner control points and weights to achieve an analysis-
suitable NURBS solid.

4.2 boundary reparameterization

The boundary reparameterization in this part can be
viewed as the degenerated case of the volumetric reparam-
eterization in Section 3. For each given boundary NURBS
surface

R(u, v) =

n∑
i=0

m∑
j=0

λi,jC i,jN
p
i (u)N

q
j (v)

n∑
i=0

m∑
j=0

λi,jN
p
i (u)N

q
j (v),

The following Mobius transformation is performed on
R(u, v)

u =
(1− α)ξ

α(1− ξ) + (1− α)ξ

v =
(1− β)η

β(1− η) + (1− β)η

in which α, β ∈ [0, 1]. Then we can obtain a new para-

metric NURBS surface R̃(ξ, η) with the same geometry as

R(u, v). R̃(ξ, η) has the same control points but differ-

ent weights with R(u, v). The new weights λ̃i,j,k can be
computed from the old weights λi,j,k as follows,

λ̃i,j,k =
λi,j,k

p∏
r=1

Ki,r

q∏
s=1

Lj,s

with Ki,r and Lj,s defined in (4) and (5).
Then we seek for the optimal parameter α and β,

such that the isoparametric net of resulting NURBS sur-

face R̃(ξ, η) is as uniform as possible. That is, find the
optimal α and β to minimize the following objective func-
tion as shown in Section
∫

P

(det J̃ − Javg)
2 + ω1(‖R̃ξξ‖

2 + ‖R̃ηη‖
2) dξdη, (12)

in which

Javg =

∫
P

det J dξdη∫
P

dξdη
,

and

J̃ =

(
xξ xη

yξ yη

)
.

Similar with the trivariate case, the Levenberg-
Marquardt method is used to solve this nonlinear opti-
mization problem.

Figure 4 presents an example of boundary surface
reparameterization. Figure 4 (a) presents the given pla-
nar NURBS surface and its control mesh. Figure 4(b)
presents the initial isoparametric net on the surface; the
corresponding iso-parametric structure of the reparameter-
ized NURBS surface obtained by optimal Möbius transfor-
mation is shown in Figure 4(c). Obviously, more uniform
iso-parametric structure can be achieved without changing
the boundary shape by optimal reparameterization tech-
nique.
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(a)

(b)

(c)

Figure 4: Reparameterization example of a planar NURBS sur-
faces: (a) NURBS surface and control mesh; (b)initial isopara-
metric net on the surface; (c) final isoparametric net after opti-
mal Móbius reparameterization.

4.3 Initial construction of NURBS solids

After boundary reparameterization, we need construct the
initial control points and weights for the subsequent op-
timization process. In [32], the discrete Coons method is
proposed to construct B-spline volume by linear combi-
nation of boundary control points. In this approach, the
compatible boundary surfaces with the same degree, knot
vectors and the number of control points are required.
However, in practice, such requirements are usually not
satisfied. Hence, some pre-processing operation must be
performed for the given opposite NURBS surfaces accord-
ing to the following operation procedure:

• make the given opposite NURBS surfaces have the
consistent parametric direction

• perform degree elevation to have the same degree

• perform knot insertion to have the same number of
control points

When all the opposite surfaces on the boundary are com-
patible, the discrete coons method can be employed to
construct the NURBS volumes [30][11] . That is, the in-
terior control points C i,j,k and weights λi,j,k can be con-
structed as linear combination of boundary control points
and weights. If we introduce the four-dimensional nota-
tion P i,j,k = (C i,j,k, λi,j,k), the corresponding construc-

tion formula can be written as

Pi,j,k = (1− i/l)P0,j,k + i/lP l,j,k + (1− j/m)Pi,0,k

+j/mPi,m,k + (1− k/n)Pi,j,0 + k/nPi,j,n

−[1− i/l, i/l]

[

P0,0,k P0,m,k

P l,0,k P l,m,k

] [

1− j/m
j/m

]

−[1− j/m, j/m]

[

Pi,0,0 Pi,0,n

Pi,m,0 Pi,m,n

] [

1− k/n
k/n

]

−[1− k/n, k/n]

[

P0,j,0 P l,j,0

P0,j,n P l,j,n

] [

1− i/l
i/l

]

+(1− k/n)

[

[1− i/l, i/l]

[

P0,0,0 P0,m,0

P l,0,0 P l,m,0

] [

1− j/m
j/m

]]

+k/n

[

[1− i/l, i/l]

[

P0,0,n P0,m,n

P l,0,n P l,m,n

] [

1− j/m
j/m

]]

As shown in [32], the initial NURBS solid constructed
by discrete Coons method may have self-intersections and
low quality. In the following we will propose a method to
construct the optimal inner control points and weights to
achieve an analysis-suitable NURBS solid based on a new
variational harmonic metric.

4.4 Construction of analysis-suitable NURBS solids

4.4.1 Variational harmonic metric

The proposed volumetric parameterization method is
based on the concept of harmonic mapping, which is a
one-to-one transformation for three-dimensional domains.
From the harmonic mapping theory, if f : S 7→ P is a
harmonic mapping from S to P, then the inverse mapping
f−1 : P 7→ S should be bijective.

The mapping f : S 7→ P is called harmonic mapping,
if f satisfies

∆ξ(x, y, z) = ξxx + ξyy + ξzz = 0

∆η(x, y, z) = ηxx + ηyy + ηzz = 0

∆ζ(x, y, z) = ζxx + ζyy + ζzz = 0

Different from the method in [33], in this paper, a
new harmonic metric is proposed based on the variational
formulation of the PDEs (13)(13)(13), which is the classical
Dirichlet integral as follows,

G =

∫

Ω

(∇ξ)2 + (∇η)2 + (∇ζ)2dxdydz (13)

The above function can be transformed from physical do-
main to the parametric domain using Jacobian transfor-
mation, which is denoted as variational harmonic metric
as follows,

Fharmonic =

∫

P

[ 1
3
(‖ Sξ ‖2 + ‖ Sη ‖2 + ‖ Sη ‖2)]

3

2

det J
dP

=

∫

P

[ 1
3
tr(JT

J)]
3

2

det J
dξdηdζ (14)

in which J is the Jacobian matrix of S(ξ, η, ζ) as defined
in Eqn. (9).

4.4.2 Multi-objective optimization method for volumetric
parameterization

The orthogonality of iso-parametric structure is also a key
quality measure of analysis-suitable volumetric parameter-
ization in numerical simulation [37]. The orthogonality
measure can be defined according to the differential geom-
etry property of parametric volumes as follows ,

Forth =

∫

P

‖Sξ · Sη‖
2 + ‖Sη · Sζ‖

2 + ‖Sξ · Sζ‖
2
dP. (15)
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(a) Boundary
NURBS surfaces

(b) Boundary
NURBS curves

(c) Initial boundary
parameterization

(d) Optimized
boundary

parameterization

(e) Control lattice (f) Final
isoparametric

structure

Figure 5: Volumetric parameterization of human body model.

By combining the metrics defined in (11)(14)(15), a
nonlinear optimization problem with multi-objective func-
tions is achieved as follows

min
C i,j,k,λi,j,k

(1− θ1 − θ2)Fharmonic + θ1Funif + θ2Forth (16)

where C i,j,k and λi,j,k are control points and weights as
design variables to be solved, θ1 and θ2 are weights for the
balance between the harmonic metric, uniformity metric
and orthogonality metric.

Since the problem in (16) is usually a large-scale opti-
mization problem, we adapt L-BFGS method to obtain the
optimal solution, which is a quasi-Newton method for solv-
ing unconstrained nonlinear minimization problems. In
L-BFGS framework, the inverse Hessian matrix of the ob-
jective function is approximated by a sequence of gradi-
ent vectors from previous iterations. For more details, the
reader can refer to [22].

4.5 Experimental results

Figure 5 shows an example for volumetric parameterization
of human body. The given boundary NURBS surfaces and

(a) (b)

(c) (d)

Figure 6: Volumetric parametrization of thumb model : (a)
boundary NURBS surfaces and control mesh; (b) boundary
NURBS curves; (c)resulting control lattice; (d) final isopara-
metric structure.

Table 1: Quantitative data in Figure 3, Figure 5 , Figure 6
and Figure 7. # deg.: degree of B-spline parameterization; #
con.: number of control points; # iter.: number of optimization
iterations.

Example # Deg. # Con. #Iter.

Figure 3 4 8×8×8 4
Figure 5 3 13×14×13 13
Figure 6 3 8×10×13 9
Figure 7 3 8×14×11 11

curves are shown in Figure 5 (a) and Figure 5 (b). Fig-
ure 5 (c) presents initial isoparametric net on one of the
given boundary NURBS sufaces. Figure 5 (d) shows the
uniformity-improved isoparametric net on the reparame-
terized boundary surface by optimal Möbius transforma-
tion. The control lattice of the final NURBS volumetric
parameterization is shown in Figure 5 (e). To illustrate
the quality of the parameterization, the iso-parametric sur-
faces of the resulting NURBS volume are presented in Fig-
ure 5 (f). More volumetric parameterization examples with
complex geometry are shown in Figure 6 and Figure 7.

Quantitative data of the examples presented in Figure
3, Figure 5 Figure 6 and Figure 7 are summarized in Table
1. Overall, the volumetric parameterization obtained by
the proposed two-stage method has high-quality, and is
suitable for isogeometric applications.
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(a) Boundary NURBS surfaces (b) Initial boundary
parameterization

(c) Optimized boundary
parameterization

(d) Control lattice (e) Final isoparametric structure
(top view)

Figure 7: Volumetric parameterization of head model.

5 Conclusion

The quality of boundary parameterization has great ef-
fect on the subsequent volumetric parameterization results.
Reparameterization methods can improve the quality of
boundary parameterization without changing the geom-
etry. In this paper, NURBS volumetric reparameteriza-
tion is introduced into isogeometric analysis by using op-
timal Möbius transformation, and then the boundary sur-
face reparameterization is performed as a pre-processing
before constructing the inner control points and weights.
Moreover, new uniformity metric and variational harmonic
metric are also proposed for analysis-suitable volumet-
ric parameterization. Experimental results illustrate that
based on the reparameterization methods, we can obtain
high-quality NURBS volumetric parameterization results,
which are suitable for subsequent isogeometric analysis.

In the future, we will study the piece-wise reparame-
terization method for high-quality NURBS volumetric pa-
rameterization of computational domain [34]. The applica-
tion of reparameterization technique in isogeometric solv-
ing on NURBS surfaces is also a part of our future work.
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