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Abstract High-quality volumetric parameterization of
computational domain plays an important role in three-

dimensional isogeometric analysis. Reparameterization

technique can improve the distribution of isoparametric

curves/surfaces without changing the geometry. In this

paper, using the reparameterization method, we inves-
tigate the high-quality construction of analysis-suitable

NURBS volumetric parameterization. Firstly, we intro-

duce the concept of volumetric reparameterization, and

propose an optimal Möbius transformation to improve
the quality of the isoparametric structure based on a

new uniformity metric. Secondly, from given bound-

ary NURBS surfaces, we present a two-stage scheme

to construct the analysis-suitable volumetric parame-

terization: in the first step, uniformity-improved repa-
rameterization is performed on the boundary surfaces

to achieve high-quality isoparametric structure with-

out changing the shape; in the second step, from a new

variational harmonic metric and the reparameterized
boundary surfaces, we construct the optimal inner con-

trol points and weights to achieve an analysis-suitable
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NURBS solid. Several examples with complicated ge-
ometry are presented to illustrate the effectiveness of

proposed methods.
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1 Introduction

The isogeometric analysis method proposed by Hughes
et al. [14] employs the same type of spline represen-

tation both for the geometry and for the physical so-

lutions. This unified data representation allows for a

seamless integration of the geometric design in numer-
ical analysis. Moreover, the higher-order continuity of

the (spline) basis function have advantageous over tra-

ditional C0 finite element formulations based on La-

grange polynomials which can be exploited in thin shell

analysis [19] or weakly non-local continuum models.
The reduced number of parameters needed to describe

the geometry is also of particular interest for shape and

topology optimization.

Since isogeometric analysis was firstly proposed by
Hughes et al. [14] in 2005, many researchers working

on computational mechanical and geometric modeling

were involved in this field. We can classify the current

work on isogeometric analysis into four categories: (1)

isogeometric application in multi-physical problems [3,
9,13]; (2) application of different spline models in isoge-

ometric analysis [4,5,10,21,15]; (3) improving the accu-

racy and efficiency of IGA framework by refinement op-

erations and parallel computing [2,6,8,28,29]; (4) con-
structing analysis-suitable parameterization of compu-

tational domain from given boundary [1,18,20,26,29,

30,33,34].
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The work presented this paper belongs to the fourth

category. Mesh generation from a given CAD object is

one of the most time-consuming step in a numerical

analysis based on finite elements [14]. In the isogeo-

metric analysis framework, the parameterization of the
computational domain corresponds to the mesh gener-

ation in finite element analysis and is the key of an

effective isogeometric analysis that was developed for

the main purpose of drastically shortening the model-
ing time in numerical analysis.

Constructing analysis-suitable parameterization from

a given CAD boundary representation remains one of

the most significant challenges in isogeometric analysis.

In [6,28], the authors study the parametrization of com-
putational domain in IGA, and show that the quality of

parameterization has great impact on analysis results

and efficiency. Pilgerstorfer and Jüttler show that in

isogeometric analysis the condition number of the stiff-

ness matrix, which is a key factor for the stability of
the linear system, depends strongly on the quality of do-

main parameterization [23]. Using volumetric harmonic

functions, Martin et al. [18] proposed a fitting method

for triangular mesh by B-spline parametric volumes.
Aigner et al. [1] proposed a variational approach to con-

struct NURBS parameterization of swept volumes. In

[12], a method is proposed to construct trivariate T-

spline volumetric parameterization for genus-zero solid

based on an adaptive tetrahedral meshing and mesh un-
tangling technique. Zhang et al. proposed a robust and

efficient approach to construct injective solid T-splines

for genus-zero geometry from a boundary triangula-

tion [33]. For mesh model with arbitrary topology, vol-
umetric parameterization methods are proposed from

the Morse theory [26] and Boolean operations [17].The

input data of above methods is a triangle mesh. For

the product modeling by CAD software, its boundary

is usually in spline form. For parameterization prob-
lem with spline boundary, Xu et al. proposed a con-

straint optimization framework to construct analysis-

suitable volume parameterization [30]. Spline volume

faring is proposed by Pettersen and Skytt to obtain
high-quality volume parameterization for isogeometric

applications [24]. The construction of conformal solid

T-spline from boundary T-spline representation is stud-

ied by using octree structure and boundary offset [34].

In [31], variational harmonic method is proposed to con-
struct analysis-suitable parameterization of computa-

tional domain from given CAD boundary information.

Wang and Qian proposed an efficient method by com-

bining divide-and-conquer, constraint aggregation and
the hierarchical optimization technique to obtain valid

trivariate B-spline solids from six boundary B-spline

surfaces [27].

An analysis-suitable parameterization of computa-

tional domain in isogeometric analysis should satisfy

three requirements: 1) it should have no self-intersections,

i.e, the mapping from the parametric domain to phys-

ical domain should be injective; 2) the iso-parametric
elements should be as uniform as possible; 3) the iso-

parametric structure should be as orthogonal as pos-

sible. Previous work mainly focus on the construction

of inner control points [33,34,30,31,27]. To our best
knowledge, the effect of the boundary parameteriza-

tion on the interior volumetric parameterization has

not been studied before. However, the quality of bound-

ary parameterization has great effect on the subsequent

volumetric parameterization results. Reparameteriza-
tion technique can improve the quality of boundary pa-

rameterization without changing the geometry. On the

other hand, the weights in NURBS solid can be also

considered as extra degree of freedom to obtain high-
quality volumetric parameterization. In this paper, us-

ing the reparameterization method, we investigate the

high-quality construction of analysis-suitable NURBS

volumetric parameterization. Our main contributions

are:

– Two kinds of new volumetric metrics are introduced.

A uniformity metric is developed from the geomet-

ric interpretation of the Jacobian and the concept of
variance in statistics science; a new harmonic met-

ric for volumetric smoothing is introduced from the

variational formulation of harmonic equation.

– Volumetric spline reparameterization is introduced,

and an optimal Möbius transformation is proposed
to improve the uniformity of isoparametric struc-

ture.

– By using uniformity-improved reparameterization of

NURBS surfaces and the proposed variational har-
monic metric, a two-stage scheme with multi-objective

functions is proposed to construct the optimal in-

ner control points and weights for analysis-suitable

NURBS volumetric parameterization.

The rest of the paper is structured as follows. Af-

ter a new uniformity metric is introduced, Section 2

describes the optimal Mobius volumetric reparameter-

ization method for analysis-suitable NURBS solids. For

volumetric parameterization problem from given bound-
aries, a two-stage framework with multi-objective func-

tion is proposed to construct the optimal analysis-suitable

NURBS solid in Section 3. Some examples and com-

parisons are also presented in corresponding sections to
illustrate the effectiveness of the proposed methods. Fi-

nally, we conclude this paper and outline future works

in Section 4.
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2 Volumetric reparameterization for

analysis-suitable NURBS solids

2.1 Problem statement

The problem studied in this section can be stated as

follows: given a trivariate NURBS solid, find an op-

timal Möbius parameter transformation such that the
isoparametric structure of reparameterized NURBS solid

is as uniform as possible.

In the following subsection, we will review the def-
inition of NURBS solids and introduce the Mobius vol-

umetric transformation.

2.2 NURBS solids and Mobius volumetric

transformation

A NURBS solid can be defined as follows,

S(u, v, w) =

n∑
i=0

m∑
j=0

l∑
k=0

λi,j,kC i,j,kN
p
i (u)N

q
j (v)N

ν
k (w)

n∑
i=0

m∑
j=0

l∑
k=0

λi,j,kN
p
i (u)N

q
j (v)N

ν
k (w)

in which C i,j,k are control points,λi,j,k are the weights,

N
p
i (u), N

q
j (v) and Nν

k (w) are B-spline basis function

with degree p,q and ν respectively defined on the knot

vectors

U = {0, · · · , 0, up+1, · · · , ul, 1, · · · , 1}

V = {0, · · · , 0, vq+1, · · · , vm, 1, · · · , 1}

and

W = {0, · · · , 0, wr+1, · · · , wn, 1, · · · , 1}

Definition 1 (Mobius volumetric transformation) Sup-

pose that α, β, γ ∈ [0, 1], the Mobius volumetric trans-

formation can be defined as

u =
(1 − α)ξ

α(1 − ξ) + (1− α)ξ
(1)

v =
(1− β)η

β(1− η) + (1 − β)η
(2)

w =
(1− γ)ζ

γ(1− ζ) + (1 − γ)ζ
(3)

After applying the Mobius transformation in (1)(2)(3)

on the NURBS solid S(u, v, w), we can obtain a new

parametric representation S̃(ξ, η, ζ) of the NURBS solid

with the same control points as follows [16],

S̃(ξ, η, ζ) = (x(ξ, η, ζ), y(ξ, η, ζ), z(ξ, η, ζ))

=

n∑
i=0

m∑
j=0

l∑
k=0

λ̃i,j,kC i,j,kN
p
i (ξ)N

q
j (η)N

ν
k (ζ)

n∑
i=0

m∑
j=0

l∑
k=0

λ̃i,j,kN
p
i (ξ)N

q
j (η)N

ν
k (ζ)

in which the new weights

λ̃i,j,k =
λi,j,k

p∏
r=1

Ki,r

q∏
s=1

Lj,s

ν∏
t=1

Mk,t

with

Ki,r = (1− α)(1 − ui+r) + αui+r, (4)

Lj,s = (1− β)(1− vj+s) + βvj+s, (5)

Mk,t = (1 − γ)(1− wk+t) + γwk+t. (6)

And the corresponding knot vectors are changed into

Ũ = {0, · · · , 0,︸ ︷︷ ︸
p+1

αup+1

(1− α)(1 − up+1) + αup+1

, · · · ,

αul

(1 − α)(1 − ul) + αul

, 1, · · · , 1︸ ︷︷ ︸
p+1

}

Ṽ = {0, · · · , 0,︸ ︷︷ ︸
q+1

βvq+1

(1− β)(1 − vq+1) + βvq+1

, · · · ,

βvm

(1− β)(1 − vm) + βvm
, 1, · · · , 1︸ ︷︷ ︸

q+1

}

and

W̃ = {0, · · · , 0,︸ ︷︷ ︸
ν+1

γwν+1

(1 − γ)(1− wν+1) + γwν+1

, · · · ,

γwn

(1− γ)(1− wn) + γwn

, 1, · · · , 1︸ ︷︷ ︸
ν+1

}.

2.3 Improving the uniformity of isoparametric

structure by volumetric reparameterization

In this subsection, we will propose a uniformity-improved

volumetric reparameterizationmethod based a new uni-

formity metric.
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2.3.1 Uniformity metric for NURBS solids

In order to achieve a volumetric parameterization with

uniform isoparametric structure, a new uniformity met-

ric is firstly proposed. The uniform isoparametric struc-

ture means that each isoparametric element has the

same volume value. In probability theory and statistics,
variance measures how far a set of numbers is spread

out. A variance of zero indicates that all the values are

identical. Hence, the uniformity of isoparametric struc-

ture means that the variane between the volume value
of each isoparametric element should be as small as pos-

sible. Suppose that Vi is the volume of i-th element, and

Vave is the average element volume in the NURBS solid

S̃(ξ, η, ζ), the discrete variance σdis can be defined as

σdis =
1

N

N∑

i=0

(Vi − Vave)
2 (7)

in which N is the number of sampling elements.

The Jacobian determinant can be considered as

a scaling factor that relates the volume change of the
parametric element to the physical element. Hence, the

variance of element volume in Eq. (7) can be replaced

by the variance of Jacobian determinant of the NURBS

solid S̃ (ξ, η, ζ) , which can be defined in the form the
continuous function as

σ =

∫
P

(det J̃− Jmean)
2 dP∫

P

dξdηdζ

(8)

in which Jmean is the average value of Jacobian deter-
minant at each sampling point on the NURBS solid.

Jmean can be computed as the ratio between the vol-

ume value of physical domain Vphysical and parametric

domain Vparametric,

Jmean =
Vphysical

Vparametric

=

∫

P

S̃ζ · (S̃ ξ × S̃η) dξdηdζ
∫

P

dξdηdζ

=

∫

P

det J̃ dξdηdζ

∫

P

dξdηdζ

in which P is the parametric domain with knot vectors

Ũ,Ṽ and W̃. J̃ is the Jacobian matrix of the NURBS

solid S̃(ξ, η, ζ) as follows,

J̃ =




xξ xη xζ

yξ yη yζ
zξ zη zζ


 (9)

Fig. 1 The uniformity metric illustrated by color-map.

As shown in [27,30], the uniformity is also related to

the second order derivative of the parameterization. By

combining the variance of Jacobian in (8), a new uni-

formity metric at (ξ, η, ζ) can be defined as follows,

µ(S̃) = (det J̃−Jmean)
2+ω(‖S̃ξξ‖

2+‖S̃ηη‖
2+‖S̃ζζ‖

2),

(10)

in which ω is a positive weight.

In order to show the effectiveness of the proposed
metric, we present an example in Figure 1. The uni-

formity metric is illustrated with color-map, which is

rendered according to the value of µ(S̃ ). The red part

has smallest value and the best uniformity, the blue part
has the biggest value and the worst uniformity. We can

find that the uniformity color-map is consistent with

the size change of the isoparametric element.

2.3.2 Optimal volumetric Mobius reparameterization

From the volumetric Möbius transformation and unifor-

mity metric presented in previous sections, the optimal

volumetric Möbius reparameterization problem can be

stated as: given the initial parameterization S(u, v, w)

of NURBS solid, find the optimal α, β, γ in the Möbius
volumetric transformation (4)(5)(6), such that the re-

sulted parameterization S̃ (ξ, η, ζ) minimizes the follow-

ing objective function

Funif(α, β, γ) =

∫

P

µ(S̃ ) dP (11)

in which µ(S̃ ) is defined in (10).

We solve this non-linear optimization problem with

the Levenberg-Marquardt method to obtain the values

of α, β and γ. The algorithm combines advantages of

the steepest descent method, in which minimization is
performed along the direction of the gradient, with the

Newton method, in which a quadratic model is used to

speed up the process of finding the minimum of a func-

tion. Hence, this algorithm obtained its operating sta-
bility from the steepest descent method, and adopted

its accelerated convergence in the minimum vicinity

from the Newton method.
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(a) NURBS solid (b) Control lattice

(c) Initial isoparametric surfaces in
u direction

(d) Final isoparametric surfaces in ξ
direction

(e) Initial isoparametric surfaces in
v direction

(f) Final isoparametric surfaces in η
direction

(g) Initial color-map of uniform
metric

(h) Final color-map of uniform
metric

Fig. 2 Volumetric Möbius reparameterization method for NURBS solid.
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2.4 Example and comparison

Figure 2 shows an example and corresponding compar-
ison result for volumetric Möbius reparameterization.

The given NURBS solid and the control lattice are

shown in Figure 2 (a) and 2 (b). Figure 2 (c) presents

the initial isoparametric surfaces in u direction of the

given NURBS volumetric parametrization. Figure 2 (d)
shows the final isoparametric surfaces in ξ direction

of the NURBS volumetric parametrization constructed

by the Möbius reparameterization method with α =

0.323, β = 0.494 and γ = 0.217. The comparison of
the isoparametric surfaces in v direction are also pre-

sented in Figure 2 (e) and 2 (f). We use the uniformity

colormap to show the uniformity of isoparametric struc-

ture in the volume parameterizations. The uniformity

colormap is computed according to the value of µ(S̃ )
defined in (10). From Fig.2(g) and Fig.2 (h) with the

same scale, we can find that the volumetric parameteri-

zation obtained by the optimal Möbius reparameteriza-

tion method gives more uniform iso-parametric struc-
ture than the initial given volume parameterization.

From the chain rule, we can directly prove that if

initial volumetric parameterization has self-intersections,

then Möbius reparameterization method can not re-

move the self-intersections. In the following section, we

will propose a two-stage scheme to construct high-quality
volumetric parameterization without self-intersections

by boundary reparameterization.

3 Constructing analysis-suitable NURBS solids

by boundary reparameterization

3.1 Main framework

Suppose that S is a simply connected bounded domain

in three dimensional space with Cartesian coordinates

(x; y; z)T , and is bounded by six NURBS surfaces. The

volume parameterization problem of three-dimensional
computational domain in isogeometric analysis can be

stated as: given six boundary NURBS surfaces, find

the optimal inner control points and weights such that

the resulting trivariate NURBS parametric volume is a

good computational domain for 3D isogeometric anal-
ysis.

The quality of boundary parameterization has great

effect on the subsequent volumetric parameterization of

computational domain. In this section, we will present a

two-stage scheme to construct analysis-suitable NURBS
solids: in the first step, boundary surface reparame-

terization is performed to improve the quality of the

boundary isoparametric structure; in the second step,

from the reparameterized boundary surfaces, we con-

struct the optimal inner control points and weights to

achieve an analysis-suitable NURBS solid.

3.2 boundary reparameterization

The boundary reparameterization in this part can be
viewed as the degenerated case of the volumetric repa-

rameterization in Section 2. For each given boundary

NURBS surface

R(u, v) =

n∑
i=0

m∑
j=0

λi,jC i,jN
p
i (u)N

q
j (v)

n∑
i=0

m∑
j=0

λi,jN
p
i (u)N

q
j (v),

The following Mobius transformation is performed on

R(u, v)

u =
(1− α)ξ

α(1− ξ) + (1 − α)ξ

v =
(1− β)η

β(1 − η) + (1− β)η

in which α, β ∈ [0, 1]. Then we can obtain a new para-
metric NURBS surface R̃(ξ, η) with the same geometry

as R(u, v). R̃(ξ, η) has the same control points but dif-

ferent weights with R(u, v). The new weights λ̃i,j,k can

be computed from the old weights λi,j,k as follows,

λ̃i,j,k =
λi,j,k

p∏
r=1

Ki,r

q∏
s=1

Lj,s

with Ki,r and Lj,s defined in (4) and (5).

Then we seek for the optimal parameter α and β,

such that the isoparametric net of resulting NURBS
surface R̃(ξ, η) is as uniform as possible. That is, find

the optimal α and β to minimize the following objective

function as shown in Section
∫

P

(det J̃− Javg)
2 +ω1(‖R̃ξξ‖

2 + ‖R̃ηη‖
2) dξdη, (12)

in which

Javg =

∫
P
det J dξdη∫
P

dξdη
,

and

J̃ =

(
xξ xη

yξ yη

)
.

Similar with the trivariate case, the Levenberg-

Marquardt method is used to solve this nonlinear opti-

mization problem.
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(a)

(b)

(c)

Fig. 3 Reparameterization example of a planar NURBS sur-
faces: (a) NURBS surface and control mesh; (b)initial isopara-
metric net on the surface; (c) final isoparametric net after
optimal Móbius reparameterization.

Figure 3 presents an example of boundary surface

reparameterization. Figure 3 (a) presents the given pla-

nar NURBS surface and its control mesh. Figure 3(b)

presents the initial isoparametric net on the surface; the
corresponding iso-parametric structure of the reparam-

eterized NURBS surface obtained by optimal Möbius

transformation is shown in Figure 3(c). Obviously, more

uniform iso-parametric structure can be achieved with-

out changing the boundary shape by optimal reparam-
eterization technique.

3.3 Initial construction of NURBS solids

After boundary reparameterization, we need to con-

struct the initial control points and weights for the
subsequent optimization process. In [30], the discrete

Coons method is proposed to construct B-spline volume

by linear combination of boundary control points. In

this approach, the compatible boundary surfaces with
the same degree, knot vectors and the number of con-

trol points are required. However, in practice, such re-

quirements are usually not satisfied. Hence, some pre-

processing operation must be performed for the given

opposite NURBS surfaces according to the following

operation procedure:

– make the given opposite NURBS surfaces have the
consistent parametric direction

– perform degree elevation to have the same degree

– perform knot insertion to have the same number of

control points

When all the opposite surfaces on the boundary are
compatible, the discrete coons method can be employed
to construct the NURBS volumes [28][11] . That is, the
interior control points C i,j,k and weights λi,j,k can be
constructed as linear combination of boundary control
points and weights. If we introduce the four-dimensional
notationP i,j,k = (C i,j,k, λi,j,k), the corresponding con-
struction formula can be written as

Pi,j,k = (1− i/l)P0,j,k + i/lP l,j,k + (1− j/m)P i,0,k

+j/mP i,m,k + (1− k/n)P i,j,0 + k/nP i,j,n

−[1 − i/l, i/l]

[

P0,0,k P0,m,k

P l,0,k Pl,m,k

] [

1 − j/m
j/m

]

−[1 − j/m, j/m]

[

Pi,0,0 Pi,0,n

Pi,m,0 Pi,m,n

] [

1 − k/n
k/n

]

−[1 − k/n, k/n]

[

P0,j,0 P l,j,0

P0,j,n P l,j,n

] [

1− i/l
i/l

]

+(1 − k/n)

[

[1− i/l, i/l]

[

P0,0,0 P0,m,0

Pl,0,0 P l,m,0

] [

1− j/m
j/m

]]

+k/n

[

[1− i/l, i/l]

[

P0,0,n P0,m,n

P l,0,n Pl,m,n

] [

1− j/m
j/m

]]

As shown in [30], the initial NURBS solid con-

structed by discrete Coons method may have self-intersections
and low quality. In the following we will propose a

method to construct the optimal inner control points

and weights to achieve an analysis-suitable NURBS solid

based on a new variational harmonic metric.

3.4 Construction of analysis-suitable NURBS solids

3.4.1 Variational harmonic metric

The proposed volumetric parameterization method is

based on the concept of harmonic mapping, which is

a one-to-one transformation for three-dimensional do-
mains. From the harmonic mapping theory, if f : S 7→

P is a harmonic mapping from S to P , then the inverse

mapping f−1 : P 7→ S should be bijective.

The mapping f : S 7→ P is called harmonic map-

ping, if f satisfies

∆ξ(x, y, z) = ξxx + ξyy + ξzz = 0 (13)

∆η(x, y, z) = ηxx + ηyy + ηzz = 0 (14)

∆ζ(x, y, z) = ζxx + ζyy + ζzz = 0 (15)
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Different from the method in [31], in this paper, a

new harmonic metric is proposed based on the varia-

tional formulation of the PDEs (13)(14)(15), which is

the classical Dirichlet integral as follows,

G =

∫

Ω

(∇ξ)2 + (∇η)2 + (∇ζ)2dxdydz (16)

The above function can be transformed from physical

domain to the parametric domain using Jacobian trans-
formation, which is denoted as variational harmonic

metric as follows,

Fharmonic =

∫

P

[ 1
3
(‖ Sξ ‖2 + ‖ Sη ‖2 + ‖ Sη ‖2)]

3

2

det J
dP

=

∫

P

[ 1
3
tr(JT J)]

3

2

det J
dξdηdζ (17)

in which J is the Jacobian matrix of S(ξ, η, ζ) as defined

in Eqn. (9).

3.4.2 Multi-objective optimization method for

volumetric parameterization

The orthogonality of iso-parametric structure is also

a key quality measure of analysis-suitable volumetric

parameterization in numerical simulation [35]. The or-
thogonality measure can be defined according to the

differential geometry property of parametric volumes

as follows ,

Forth =

∫

P

‖Sξ ·Sη‖
2+‖Sη ·Sζ‖

2+‖Sξ ·Sζ‖
2dP . (18)

By combining the metrics defined in (11)(17)(18),
a nonlinear optimization problem with multi-objective

functions is achieved as follows

min
C i,j,k,λi,j,k

(1− θ1− θ2)Fharmonic+ θ1Funif+ θ2Forth (19)

whereC i,j,k and λi,j,k are control points and weights as

design variables to be solved, θ1 and θ2 are weights for

the balance between the harmonic metric, uniformity

metric and orthogonality metric.

Since the problem in (19) is usually a large-scale
optimization problem, we adapt L-BFGS method to

obtain the optimal solution, which is a quasi-Newton

method for solving unconstrained nonlinear minimiza-

tion problems. In L-BFGS framework, the inverse Hes-
sian matrix of the objective function is approximated

by a sequence of gradient vectors from previous itera-

tions. For more details, the reader can refer to [22].

(a) Boundary
NURBS surfaces

(b) Boundary
NURBS curves

(c) Initial boundary
parameterization

(d) Optimized
boundary

parameterization

(e) Control lattice (f) Final
isoparametric

structure

Fig. 4 Volumetric parameterization of human body model.

3.5 Experimental results

Figure 4 shows an example for volumetric parameter-

ization of human body. The given boundary NURBS

surfaces and curves are shown in Figure 4 (a) and Fig-

ure 4 (b). Figure 4 (c) presents initial isoparametric

net on one of the given boundary NURBS sufaces. Fig-
ure 4 (d) shows the uniformity-improved isoparametric

net on the reparameterized boundary surface by opti-

mal Möbius transformation. The control lattice of the

final NURBS volumetric parameterization is shown in
Figure 4 (e). To illustrate the quality of the parame-

terization, the iso-parametric surfaces of the resulting

NURBS volume are presented in Figure 4 (f). More vol-
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(a) (b)

(c) (d)

Fig. 5 Volumetric parametrization of thumb model : (a)
boundary NURBS surfaces and control mesh; (b) boundary
NURBS curves; (c)resulting control lattice; (d) final isopara-
metric structure.

Table 1 Quantitative data in Figure 2, Figure 4 , Figure 5
and Figure 6. # deg.: degree of B-spline parameterization; #
con.: number of control points; # iter.: number of optimiza-
tion iterations.

Example # Deg. # Con. #Iter.

Figure 2 4 8×8×8 4
Figure 4 3 13×14×13 13
Figure 5 3 8×10×13 9
Figure 6 3 8×14×11 11

umetric parameterization examples with complex ge-
ometry are shown in Figure 5 and Figure 6.

Quantitative data of the examples presented in Fig-

ure 2, Figure 4, Figure 5 and Figure 6 are summarized

in Table 1. Overall, the volumetric parameterization

obtained by the proposed two-stage method has high-
quality, and is suitable for isogeometric applications.

4 Conclusion

The quality of boundary parameterization has great

effect on the subsequent volumetric parameterization

results. Reparameterization methods can improve the

quality of boundary parameterization without changing

the geometry. In this paper, NURBS volumetric repa-

rameterization is introduced into isogeometric analysis

by using optimal Möbius transformation, and then the

boundary surface reparameterization is performed as
a pre-processing before constructing the inner control

points and weights. Moreover, new uniformity metric

and variational harmonic metric are also proposed for

analysis-suitable volumetric parameterization. Experi-
mental results illustrate that based on the reparame-

terization methods, we can obtain high-quality NURBS

volumetric parameterization results, which are suitable

for subsequent isogeometric analysis.

In the future, we will study the piece-wise repa-
rameterization method for high-quality NURBS volu-

metric parameterization of computational domain [32].

The application of reparameterization technique in iso-

geometric solving on NURBS surfaces is also a part of
our future work.
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tenegro. A new approach to solid modeling with trivariate
T-spline based on mesh optimization. Computer Methods
in Applied Mechanics and Engineering, 200(2011) 3210-
3222.

13. H. Gomez, V.M. Calo, Y. Bazilevs, and T.J.R. Hughes.
Isogeometric analysis of the Cahn-Hilliard phase-field
model. Computer Methods in Applied Mechanics and En-
gineering, 197(2008) 4333-4352.

14. T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs. Isogeometric
analysis: CAD, finite elements, NURBS, exact geometry,

and mesh refinement. Computer Methods in Applied Me-
chanics and Engineering, 194(2005) 4135-4195.

15. Y. Jia, Y. Zhang, G. Xu, X. Zhuang, T. Rabczuk. Repro-
ducing kernel triangular B-spline-based FEM for solving
PDEs. Computer Methods in Applied Mechanics and En-
gineering, 267(2013) 342-358.

16. Lee, E. and Lucian, M. Möbius reparameterization of
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