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Estimates L r -L s for solutions of the ∂ equation in strictly pseudo convex domains in C n

We prove estimates for solutions of the ∂u = ω equation in a strictly pseudo convex domain Ω in C n . For instance if the (p, q) current ω has its coefficients in L r (Ω) with 1 ≤ r < 2(n + 1) then there is a solution u in L s (Ω) with

. We also have BM O and Lipschitz estimates for r ≥ 2(n + 1). These results were already done by S. Krantz [12] in the case of (0, 1) forms and just for the L r -L s part by L. Ma and S. Vassiliadou [14]for general (p, q) forms. To get the complete result we propose another approach, based on Carleson measures of order α introduced and studied in [4] and on the subordination lemma [5].

1 Introduction.

Let Ω be a bounded strictly pseudo convex domain with smooth C ∞ boundary. We shall denote these domains as s.p.c. domains in the sequel.

Ovrelid [START_REF] Ovrelid | Integral representation formulas and L p estimates for the ∂ equation[END_REF] proved that if we have a (p, q) current ω, ∂ closed in Ω and such that its coefficients are in L r (Ω) then there is a (p, q -1) current u solution of the equation ∂u = ω and with coefficients still in L r (Ω). Let us define a norm on these currents : ω ∈ L r (p,q) (Ω), ω = Then Ovrelid proved that u r < C ω r , where the constant C does not depend on ω.

In the case of r = ∞, this was done before by Lieb [START_REF] Lieb | Die cauchy-riemannschen differentialgleichungen auf streng pseudokonvexen gebieten. beschrnkte lsungen[END_REF] and Romanov and Henkin [START_REF] Romanov | Exact hölder estimates of the solutions of the δ-equation[END_REF] proved that still for r = ∞, there is a solution u in the space Lipschitz 1/2. In the book of Henkin and Leiterer [START_REF] Henkin | Theory of functions on complex manifolds[END_REF] we can find precise references for these topics.

The L p results were strongly improved by Krantz [START_REF] Krantz | Optimal Lipschitz and L p regularity for the equation ∂u = f on stongly pseudoconvex domains[END_REF] in the case of (0, 1) forms and the aim of this work is to generalise Krantz results to the case of (p, q) forms as a consequence of results on Carleson measures of order α.

A more general case was done by L. Ma and S. Vassiliadou [START_REF] Ma | L p estimates for Cauchy-Riemann operator on q-convex intersections in C n[END_REF] on q-convex intersections in C n , but only for the L r -L s part, the Lipschitz one is not treated in their work. (Thanks to the referee who signals me this nice paper.) 1 Moreover, in the case of bounded convex domains of finite type, these results are already known, done by K. Diederich, B. Fischer and J-E. Fornaess [START_REF] Diederich | Hölder estimates on convex domains of finite type[END_REF], A. Cumenge [START_REF] Cumenge | Sharp estimates for ∂ on convex domains of finite type[END_REF] and B. Fischer [START_REF] Fischer | L p estimates on convex domains of finite type[END_REF].

So in the case of strictly convex domains, theorem 1.2 can also be seen as a corollary of their results, but for general strictly pseudo convex domains this is not the case and of course their proofs are much more involved than this one.

I shall reproof the L r -L s part of this theorem and prove the BMO and Lipschitz one by another approach.

We already got this kind of results in [START_REF] Amar | Extension de formes ∂b fermées et solutions de l'équation ∂b u = f[END_REF] by use of Skoda's kernels [START_REF] Skoda | Valeurs au bord pour les solutions de l'opérateur d¨et caractérisation des zéros de la classe de Nevanlinna[END_REF] but we where dealing with boundary values instead of inside ones. Nevertheless using Skoda results we shall prove the following theorem, where A B means that there is a constant C > 0 independent of A and B such that A ≤ CB.

Theorem 1.1 Let Ω be a s.p.c. domain in C n then for 1 < r < 2n + 2 we have ∀ω ∈ L r (p,q) (Ω), ∂ω = 0, ∃u ∈ L s (p,q-1) (Ω) :

: ∂u = ω, u L s (Ω) ω L r (Ω) ,
for any s such that

1 s > 1 r - 1 2(n + 1)
.

We shall also generalise Krantz theorem [START_REF] Krantz | Optimal Lipschitz and L p regularity for the equation ∂u = f on stongly pseudoconvex domains[END_REF] to (p, q) forms :

Theorem 1.2
Let Ω be a s.p.c. domain in C n then for 1 < r < 2n + 2 we have

• ∀ω ∈ L r (p,q) (Ω), ∂ω = 0, ∃u ∈ L s (p,q-1) (Ω) :: ∂u = ω, u L s (Ω) ω L r (Ω) , with 1 s = 1 r - 1 2(n + 1)
.

• For r = 2n + 2 we have ∃u ∈ BMO (p,q) (Ω) :

: ∂u = ω, u BM O(Ω) ω L 2n+2 (Ω) .
If ω is a (p, 1) form we have also :

• for r = 1, ∃u ∈ L s,∞ (p,0) (Ω) :: ∂u = ω, u L s,∞ (Ω) ω L 1 (Ω) with 1 s = 1 - 1 2(n + 1)
.

• for r > 2n + 2, ∃u ∈ Γ β (p,0) (Ω) :: ∂u = ω, u Γ β (Ω) ω L r (Ω) ,
where β = 1 -2n + 2 r and Γ β is an anisotropic Lipschitz class of functions. Moreover the solution u is linear on the data ω.

The classes BMO(Ω) and Γ β (Ω) will be defined later. The space L s,∞ (p,0) (Ω) is the Lorentz space [START_REF] Bergh | Interpolation Spaces[END_REF]. This theorem is stronger than theorem 1.1 because here, in the case 1 ≤ r < 2(n + 1) we get the result for the end point s such that

1 s = 1 r - 1 2(n + 1)
.

Of course if u ∈ L s (p,q-1) (Ω) for s > r then u ∈ L r (p,q-1) (Ω) hence we also have an strong improvement to Ovrelid's theorem.

Because the class Lipschitz 1/2 is contained in Γ 1 (Ω) we see that we recover the Romanov-Henkin result when r = ∞ in the case of (p, 1) forms.

Even if they do not appear in the statement, the Carleson measures of order α, A. Bonami and I introduced in [START_REF] Amar | Mesure de Carleson d'ordre α et solution au bord de l'équation ∂[END_REF], are at the heart of this proof.

2 Proof of the first theorem.

Let Ω be a s.p.c. in C n , defined by the function ρ ∈ C ∞ (C n ), i.e. Ω := {z ∈ C n :: ρ(z) < 0} and ∀z ∈ ∂Ω, ∂ρ(z) = 0.

Let Ω ′ := {(z, w) ∈ C n ×C :: ρ ′ (z, w) := ρ(z) + |w| 2 < 0} and lift a current ω to Ω ′ this way :

ω ′ (z, w) := ω(z). Lemma 2.1 Let Ω be a s.p.c. domain in C n , with the above notations we have ω ∈ L r (p,q) (Ω) ⇒ ω ′ (z, w) ∈ L r (p,q) (∂Ω ′ ).
Proof. This is an instance of the subordination principle [START_REF] Amar | Suites d'interpolation pour les classes de Bergman de la boule et du polydisque de C n[END_REF], [START_REF] Amar | A subordination principle[END_REF]. Let f (z) ∈ L r (Ω) and set f ′ (z, w) := f (z) in Ω ′ , then, by the main lemma in [START_REF] Amar | A subordination principle[END_REF], p. 6,

f ′ r L r (∂Ω ′ ) := ∂Ω ′ |f ′ (z, w)| r dσ(z, w) = Ω |f (z)| r -ρ(z) + |gradρ(z)| 2 4 { |w| 2 =-ρ(z) d |w|}dm(z),
where d |w| is the normalized Lebesgue measure [START_REF] Amar | A subordination principle[END_REF] on the circle

|w| 2 = -ρ(z). Because Ω is compact, we have ∀z ∈ Ω, -ρ(z) + |gradρ(z)| 2 4 ≤ C(ρ) < ∞ hence we have f ′ r L r (∂Ω ′ ) ≤ C(ρ) Ω |f (z)| r dm(z) = C(ρ) f L r (Ω) .
It remains to apply this taking for f any coefficient of ω.

Proof of theorem 1.1. Since Ω is a s.p.c. domain so is Ω ′ by the subordination lemma [START_REF] Amar | A subordination principle[END_REF]. By use of lemma 2.1 we have that ω ′ ∈ L r (p,q) (∂Ω ′ ) and still ∂ω ′ = 0, hence we can apply Skoda's theorem 2 in [START_REF] Skoda | Valeurs au bord pour les solutions de l'opérateur d¨et caractérisation des zéros de la classe de Nevanlinna[END_REF] to get that there is a solution u ′ of ∂b u ′ = ω ′ such that

u ′ ∈ L s (p,q-1) (∂Ω ′ ) with 1 s > 1 r - 1 2(n + 1)
.

We have

u ′ (z, w) = I,J a ′ I,J (z, w)dz I ∧ dz J .
Because ω ′ does not depend on w we have that the coefficients of u ′ are holomorphic in w, hence we can set (recall that u ′ is defined on ∂Ω ′ ) ∀z ∈ Ω, a I,J (z) :=

|w| 2 =-ρ(z) a ′ I,J (z, w)d |w| and u(z) := I,J a I,J (z)dz I ∧ dz J ,
then exactly as in [START_REF] Amar | Extension de fonctions holomorphes et courants[END_REF] we still have ∂u = ω in Ω.

Moreover the subordination lemma [START_REF] Amar | A subordination principle[END_REF] gives again u ∈ L s (p,q-1) (Ω), because u ′ ∈ L s (p,q-1) (∂Ω ′ ).

3 Carleson measures of order α.

For Ω a s.p.c. domain in C n , let V 0 (Ω) be the space of bounded measures in Ω, and V 1 (Ω) the space of Carleson measures in Ω as defined for instance in [START_REF] Amar | Mesure de Carleson d'ordre α et solution au bord de l'équation ∂[END_REF]. We know that these spaces form a interpolating scale for the real method [START_REF] Amar | Mesure de Carleson d'ordre α et solution au bord de l'équation ∂[END_REF], and we set

V α (Ω) := (V 0 , V 1 ) (α,∞) ; W α (Ω) := (V 0 , V 1 ) (α,p) with p = 1 1 -α .
Recall that a (p, q) form ω is in W α (p,q) (Ω) (resp. V α (p,q) (Ω) ) if its coefficients and the coefficients of ω ∧ ∂ρ √ -ρ are measures in W α (Ω) (resp. V α (Ω) ) see [START_REF] Amar | Mesure de Carleson d'ordre α et solution au bord de l'équation ∂[END_REF] and [START_REF] Andersson | Estimates of solutions of the H p and BMOA corona problem[END_REF].

A (p, q) form is in L r (p,q) (Ω) if just its coefficients are in L r (Ω). Let Ω ′ := {(z, w) ∈ C n ×C :: ρ ′ (z, w) := ρ(z) + |w| 2 < 0} and lift a current ω to Ω ′ as before : ω ′ (z, w) := ω(z). Our first result links L r estimates to Carleson α ones.

Theorem 3.1 Let Ω be a s.p.c. domain in C n then we have ω ∈ L r (p,q) (Ω) ⇒ ω ′ (z, w) := ω(z) ∈ W α (p,q) (Ω ′ ) with α = 1 r ′ + 1 2(n + 1)
.

Proof.

Let U ′ := N j=1 Q ′ (ζ ′ j , h j ) ∩ ∂Ω ′ be an open set in ∂Ω ′ and T (U ′ ) = N j=1
Q ′ (ζ ′ j , h j ) be its associated "tent" set inside [START_REF] Amar | Mesure de Carleson d'ordre α et solution au bord de l'équation ∂[END_REF] ; in order to see that a measure dµ = f dm, with m the Lebesgue measure in C n , belongs to V α (Ω ′ ) we have to show, see [START_REF] Amar | Mesure de Carleson d'ordre α et solution au bord de l'équation ∂[END_REF],

T (U ′ ) |f (z ′ )| dm(z ′ ) ≤ C |U ′ | α where |U ′ | := σ(U ′ )
is the Lebesgue measure of U ′ on ∂Ω, and with a constant C independent of U ′ . Because we are dealing with (p, q) currents here, this means that we have to estimate

A := T (U ′ ) |ω(z)| -ρ ′ (z, w) dm(z, w) with ρ ′ (z, w) := ρ(z) + |w| 2 is equivalent to the distance of (z, w) ∈ Ω ′ to the boundary ∂Ω ′ . Back to A, A := T (U ′ ) |ω(z)| -ρ ′ (z, w) dm(z, w) ≤ N j=1 Q ′ j |ω(z)| -ρ ′ (z, w) dm(z, w). The Carleson window Q ′ j is equivalent to the product (Q ′ j ∩ ∂Ω ′ )×[h j ] ν j with [h j ] ν j the real segment of length h j supported by the real normal ν j to ∂Ω ′ at ζ ′ j . Set h := max j=1,...,N h j , we shall replace Q ′ j by Q ′′ j := (Q ′ j ∩ ∂Ω ′ )×[h] ν j .

So we have

A ≤ N j=1 Q ′ j |ω(z)| -ρ ′ (z, w) dm(z, w) ≤ N j=1 Q ′′ j |ω(z)| -ρ ′ (z, w) dm(z, w),
where now all the depths have the same value h. Hence by Fubini we have

A ≤ h 0 1 √ t { U ′ t |ω(z)| dσ(z, w)}dt with U ′ t := N j=1 Q ′′ j ∩ ∂Ω ′ t and ∂Ω ′ t := {(z, w) ∈ Ω ′ :: ρ(z) + |w| 2 = -t}.
We can estimate the inner integral by Hölder

U ′ t |ω(z)| dσ(z, w) ≤ U ′ t |ω(z)| r dσ(z, w) 1/r U ′ t dσ(z, w) 1/r ′ (3.1) but U ′ t |ω(z)| r dσ(z, w) ≤ ∂Ωt |ω(z)| r dσ(z, w) ≤ C(ρ) Ωt |ω(z)| r { |w| 2 =-ρ(z)-t d |w|}dm(z)
where d |w| is the normalized Lebesgue measure on the circle |w| 2 = -ρ(z) -t. Hence, with Ω t := {z ∈ Ω :: ρ(z) < -t},

U ′ t |ω(z)| r dσ(z, w) ≤ C(ρ) Ωt |ω(z)| r dm(z) = C(ρ) ω r L r (Ω) .
For the last factor of (3.1) we have

U ′ t dσ(z, w) = σ(U ′ t ) σ(U ′ ), so A ≤ h 0 1 √ t { U ′ t |ω(z)| dσ(z, w)}dt ω L r (Ω) (σ(U ′ )) 1/r ′ h 0 dt √ t = 1 2 ω L r (Ω) √ hσ(U ′ ) 1/r ′ . Recall that σ(Q ′ j ) ≃ h (n+1) j then we have √ h = max j h j max σ(Q ′ j ) 1/2(n+1) ≤ σ( N j=1 Q ′ j ∩ ∂Ω ′ ) 1/2(n+1)
, so finally we get

A := T (U ′ ) |ω(z)| √ -ρ ′ (z,w) dm(z, w) ω L r (Ω) σ(U ′ ) 1 r ′ + 1 2(n+1) . This means that |ω(z)| -ρ ′ (z, w) is a Carleson measure in Ω ′ of order α with α = 1 r ′ + 1 2(n + 1)
.

To get a usual Carleson measure, we need α = 1 hence 1

r ′ + 1 2(n + 1) = 1 ⇐⇒ r = 2(n + 1).
We have by theorem 1 in [START_REF] Amar | Mesure de Carleson d'ordre α et solution au bord de l'équation ∂[END_REF], written in our situation, that if µ ∈ V α (Ω ′ ) then P 0 * (µ) ∈ L r,∞ (∂Ω ′ ), where P 0 * (µ) is the "balayage" of µ by the Hardy Littlewood kernel P 0 t . Hence we have that the linear operator P 0 * sends V α 0 (Ω ′ ) to L r 0 ,∞ (∂Ω ′ ), and V α 1 (Ω ′ ) to L r 1 ,∞ (∂Ω ′ ) with, as usual,

α j = 1 - 1 r j . This means that f ∈ L r (Ω) ⇒ µ := f / -ρ ′ dm ∈ V α (Ω ′ ) ⇒ P 0 * (µ) ∈ L s,∞ (∂Ω ′ ) with control of the norms.
So we have a linear operator T such that, with r 0 < r 1 ,

T : L r 0 (Ω) → L s 0 ,∞ (∂Ω ′ ), with 1 s 0 = 1 r 0 - 1 2(n + 1)
; But this implies by theorem 2 in [START_REF] Amar | Mesure de Carleson d'ordre α et solution au bord de l'équation ∂[END_REF], that µ := f / -ρ ′ dm ∈ W α (Ω ′ ).

T : L r 1 (Ω) → L s 1 ,∞ (∂Ω ′ ), with 1 s 1 = 1 r 1 - 1 2(n +
4 The main result.

Let Ω be a domain in C n defined by the function ρ as above ; define Ω ′ ⊂ C n+1 the lifted domain : we shall define the anisotropic class Γ β (∂Ω ′ ) as in [START_REF] Amar | Mesure de Carleson d'ordre α et solution au bord de l'équation ∂[END_REF] ; we say that a vector field X on ∂Ω ′ is admissible if X is of class C k and at any point of ζ ∈ ∂Ω ′ , X(ζ) belongs to the complex tangent space of ∂Ω ′ at ζ.

We say that u ∈ Γ β (∂Ω ′ ) if u is bounded on ∂Ω ′ and u belongs to the usual Lipschitz Λ β/2 (∂Ω ′ ), where ∂Ω ′ is viewed as a real manifold, and on any integral curve of an admissible vector field, t ∈ [0, 1] → γ(t) ∈ ∂Ω ′ , the function u • γ belongs to Λ β (0, 1).

We can now define the class Γ β (Ω) : take a function u defined in Ω and lift it as u ′ (z, w)

:= u(z) in Ω ′ ; then u ∈ Γ β (Ω) if u ′ ∈ Γ β (∂Ω ′ ). We have that u ∈ Γ β (Ω) implies that u ∈ L ∞ (Ω) and u ∈ Λ β/2 (Ω) with a Lipschitz constant uniform in Ω.
The same way we define function u ∈ BMO(Ω) if u ′ ∈ BMO(∂Ω ′ ). We have that u ∈ BMO(Ω) implies that u ∈ r≥1 L r (Ω). Now we are in position to prove our main result. Theorem 4.1 Let Ω be a s.p.c. domain in C n then for 1 < r < 2n + 2 we have ∀ω ∈ L r (p,q) (Ω), ∂ω = 0, ∃u ∈ L s (p,q-1) (Ω) :

: ∂u = ω, u L s (Ω) ω L r (Ω) , with 1 s = 1 r - 1 2(n + 1)
.

For r = 2n + 2 we have ∃u ∈ BMO (p,q) (Ω) :

: ∂u = ω, u BM O(Ω) ω L 2n+2 (Ω) . If ω is a (p, 1) form we have also : for r = 1, we have ∃u ∈ L s,∞ (p,0) (Ω) :: ∂u = ω, u L s,∞ (Ω) ω L 1 (Ω) with 1 s = 1 - 1 2(n + 1) . for r > 2n + 2 we have ∃u ∈ Γ β (p,0) (Ω) :: ∂u = ω, u Γ β (Ω) ω L r (Ω) ,
where β = 1 -2(n + 1) r and Γ β is an anisotropic Lipschitz class of functions. Moreover the solution u is linear on the data ω.

Proof. By use of theorem 3.1 we have that ω

′ ∈ W α (p,q) (Ω ′ ) with α = 1 r ′ + 1 2(n + 1)
where Ω ′ is still s.p.c. [START_REF] Amar | A subordination principle[END_REF],

hence we can apply the theorem 7 in [START_REF] Amar | Mesure de Carleson d'ordre α et solution au bord de l'équation ∂[END_REF] if ω is a (p, 1) current or the generalisation to (p, q) current done in theorem 4.1 in [START_REF] Andersson | Estimates of solutions of the H p and BMOA corona problem[END_REF] to get that there is a solution u ′ of ∂b u ′ = ω ′ such that u ′ ∈ L s (p,q-1) (∂Ω ′ ) with

1 s = 1 -α = 1 r - 1 2(n + 1)
.

Because ω ′ does not depend on w we have that the coefficients of u ′ are holomorphic in w hence with u ′ (z, w) = I,J a ′ I,J (z, w)dz I ∧ dz J we can set (recall that u ′ is defined on ∂Ω ′ ) ∀z ∈ Ω, a I,J (z) :=

|w| 2 =-ρ(z)
a ′ I,J (z, w)d |w| and we set also u(z) := I,J a I,J (z, w)dz I ∧ dz J , then exactly as in [START_REF] Amar | Extension de fonctions holomorphes et courants[END_REF] we still have ∂u = ω in Ω. Moreover the subordination lemma [START_REF] Amar | A subordination principle[END_REF], gives us u ∈ L s (p,q-1) (Ω). The last two results came directly from [START_REF] Amar | Mesure de Carleson d'ordre α et solution au bord de l'équation ∂[END_REF], theorem 7 and theorem 8 with the fact that we apply them in Ω ′ ⊂ C n+1 so we have from theorem 8 that β = 2(n + 1)(α -1). and not only for

1 s > 1 r - 1 2(n + 1)
.

  |I|=p,|J|=q ω I,J dz I ∧ dz J ⇒ ω r r

Remark 4 . 2

 42 In the range 1 < r < 2n + 2 theorem 1.2 is stronger than theorem 1.1 because we get