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Estimates Lr − Ls for solutions of the ∂̄ equation in strictly

pseudo convex domains in Cn.

Eric Amar

Abstract

We prove some new estimates for solutions of the ∂̄u = ω equation in a strictly pseudo
convex domain Ω in C

n. For instance if the (p, q) current ω has its coefficients in Lr(Ω) with

1 ≤ r < 2(n+1) then there is a solution u in Ls(Ω) with
1

s
=

1

r
− 1

2(n+ 1)
. These results are

based on Carleson measures of order α introduced and studied in [4] and on the subordination
lemma [5].

1 Introduction.

Let Ω be a bounded strictly pseudo convex domain with smooth C∞ boundary. We shall denote
these domains as s.p.c. domains in the sequel.

Ovrelid [10] proved that if we have a (p, q) current ω, ∂̄ closed in Ω and such that its coefficients
are in Lr(Ω) then there is a (p, q−1) current u solution of the equation ∂̄u = ω and with coefficients
still in Lr(Ω). Let us define a norm on these currents :

ω ∈ Lr
(p,q)(Ω), ω =

∑

|I|=p,|J |=q

ωI,Jdz
I ∧ dz̄J ⇒ ‖ω‖rr :=

∑

|I|=p,|J |=q

‖ωI,J‖rr.

Then Ovrelid proved that ‖u‖r < C‖ω‖r, where the constant C does not depend on ω.
In the case of r = ∞, this was done before by Lieb [9] and Romanov and Henkin [11] proved

that still for r = ∞, there is a solution u in the space Lipschitz 1/2. In the book of Henkin and
Leiterer [8] we can find precise references for these topics.

The aim of this work is to improve the Lr estimates of Ovrelid in the direction of Romanov
and Henkin but with a different approach.

We already got this kind of results in [2] by use of Skoda’s kernels [12] but we where dealing
with boundary values instead of inside ones. Nevertheless using Skoda results we shall prove the
following theorem, where A . B means that there is a constant C > 0 independent of A and B
such that A ≤ CB.
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Theorem 1.1 Let Ω be a s.p.c. domain in Cn then for 1 < r < 2n+ 2 we have

∀ω ∈ Lr
(p,q)(Ω), ∂̄ω = 0, ∃u ∈ Ls

(p,q−1)(Ω) :: ∂̄u = ω, ‖u‖Ls(Ω) . ‖ω‖Lr(Ω),

for any s such that
1

s
>

1

r
− 1

2(n + 1)
.

We shall also show :

Theorem 1.2 Let Ω be a s.p.c. domain in Cn then for 1 < r < 2n+ 2 we have

• ∀ω ∈ Lr
(p,q)(Ω), ∂̄ω = 0, ∃u ∈ Ls

(p,q−1)(Ω) :: ∂̄u = ω, ‖u‖Ls(Ω) . ‖ω‖Lr(Ω),

with
1

s
=

1

r
− 1

2(n+ 1)
.

• For r = 2n+ 2 we have

∃u ∈ BMO(p,q)(Ω) :: ∂̄u = ω, ‖u‖BMO(Ω) . ‖ω‖L2n+2(Ω).
If ω is a (p, 1) form we have also :

• for r = 1,
∃u ∈ Ls,∞

(p,0)(Ω) :: ∂̄u = ω, ‖u‖Ls,∞(Ω) . ‖ω‖L1(Ω)

with
1

s
= 1− 1

2(n+ 1)
.

• for r > 2n+ 2,
∃u ∈ Γβ

(p,0)(Ω) :: ∂̄u = ω, ‖u‖Γβ(Ω) . ‖ω‖Lr(Ω),

where β = 1− 2n+ 2

r
and Γβ is an anisotropic Lipschitz class of functions.

Moreover the solution u is linear on the data ω.

The classes BMO(Ω) and Γβ(Ω) will be defined later. The space Ls,∞
(p,0)(Ω) is the Lorentz space [7].

This theorem is stronger than theorem 1.1 because here, in the case 1 ≤ r < 2(n+ 1) we get the

result for the end point s such that
1

s
=

1

r
− 1

2(n+ 1)
.

Of course if u ∈ Ls
(p,q−1)(Ω) for s > r then u ∈ Lr

(p,q−1)(Ω) hence we also have an strong improvement
to Ovrelid’s theorem.

Because the class Lipschitz 1/2 is contained in Γ1(Ω) we see that we recover the Romanov-
Henkin result when r = ∞ in the case of (p, 1) forms.

Even if they do not appear in the statement, the Carleson measures of order α, A. Bonami and
I introduced in [4], are at the heart of the proof.

2 Proof of the first theorem.

Let Ω be a s.p.c. in Cn, defined by the function ρ ∈ C∞(Cn), i.e. Ω := {z ∈ Cn :: ρ(z) < 0} and
∀z ∈ ∂Ω, ∂ρ(z) 6= 0.

Let Ω′ := {(z, w) ∈ Cn×C :: ρ′(z, w) := ρ(z) + |w|2 < 0} and lift a current ω to Ω′ this way :
ω′(z, w) := ω(z).

Lemma 2.1 Let Ω be a s.p.c. domain in Cn, with the above notations we have

ω ∈ Lr
(p,q)(Ω) ⇒ ω′(z, w) ∈ Lr

(p,q)(∂Ω
′).
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Proof.
This is an instance of the subordination principle [1], [5]. Let f(z) ∈ Lr(Ω) and set f ′(z, w) := f(z)
in Ω′, then, by the main lemma in [5], p. 6,

‖f ′‖rLr(∂Ω′) :=

∫

∂Ω′

|f ′(z, w)|r dσ(z, w) =
∫

Ω

|f(z)|r
√

−ρ(z) +
|gradρ(z)|2

4
{
∫

|w|2=−ρ(z)

d |w|}dm(z),

where d |w| is the normalized Lebesgue measure [5] on the circle |w|2 = −ρ(z). Because Ω̄ is

compact, we have ∀z ∈ Ω̄,

√

−ρ(z) +
|gradρ(z)|2

4
≤ C(ρ) < ∞ hence we have

‖f ′‖rLr(∂Ω′) ≤ C(ρ)

∫

Ω

|f(z)|r dm(z) = C(ρ)‖f‖Lr(Ω).

It remains to apply this taking for f any coefficient of ω. �

Proof of theorem 1.1.
Since Ω is a s.p.c. domain so is Ω′ by the subordination lemma [5]. By use of lemma 2.1 we have
that ω′ ∈ Lr

(p,q)(∂Ω
′) and still ∂̄ω′ = 0, hence we can apply Skoda’s theorem 2 in [12] to get that

there is a solution u′ of ∂̄bu
′ = ω′ such that

u′ ∈ Ls
(p,q−1)(∂Ω

′) with
1

s
>

1

r
− 1

2(n + 1)
.

We have
u′(z, w) =

∑

I,J

a′I,J(z, w)dz
I ∧ dz̄J .

Because ω′ does not depend on w we have that the coefficients of u′ are holomorphic in w, hence
we can set (recall that u′ is defined on ∂Ω′ )

∀z ∈ Ω, aI,J(z) :=

∫

|w|2=−ρ(z)

a′I,J(z, w)d |w|
and

u(z) :=
∑

I,J

aI,J(z)dz
I ∧ dz̄J ,

then exactly as in [3] we still have
∂̄u = ω in Ω.

Moreover the subordination lemma [5] gives again u ∈ Ls
(p,q−1)(Ω), because u′ ∈ Ls

(p,q−1)(∂Ω
′). �

3 Carleson measures of order α.

For Ω a s.p.c. domain in Cn, let V 0(Ω) be the space of bounded measures in Ω, and V 1(Ω) the
space of Carleson measures in Ω as defined for instance in [4]. We know that these spaces form a
interpolating scale for the real method [4], and we set

V α(Ω) := (V 0, V 1)(α,∞) ; W α(Ω) := (V 0, V 1)(α,p) with p =
1

1− α
.

Recall that a (p, q) form ω is in W α
(p,q)(Ω) (resp. V α

(p,q)(Ω) ) if its coefficients and the coefficients of

ω ∧ ∂̄ρ√−ρ
are measures in W α(Ω) (resp. V α(Ω) ) see [4] and [6].

A (p, q) form is in Lr
(p,q)(Ω) if just its coefficients are in Lr(Ω).
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Let Ω′ := {(z, w) ∈ Cn×C :: ρ′(z, w) := ρ(z) + |w|2 < 0} and lift a current ω to Ω′ as before :
ω′(z, w) := ω(z).
Our first result links Lr estimates to Carleson α ones.

Theorem 3.1 Let Ω be a s.p.c. domain in Cn then we have

ω ∈ Lr
(p,q)(Ω) ⇒ ω′(z, w) := ω(z) ∈ W α

(p,q)(Ω
′)

with α =
1

r′
+

1

2(n+ 1)
.

Proof.

Let U ′ :=
N
⋃

j=1

Q′(ζ ′j , hj) ∩ ∂Ω′ be an open set in ∂Ω′ and T (U ′) =
N
⋃

j=1

Q′(ζ ′j, hj) be its associated

”tent” set inside [4] ; in order to see that a measure dµ = fdm, with m the Lebesgue measure in
Cn, belongs to V α(Ω′) we have to show, see [4],

∫

T (U ′)
|f(z′)| dm(z′) ≤ C |U ′|α

where |U ′| := σ(U ′) is the Lebesgue measure of U ′ on ∂Ω, and with a constant C independent of
U ′.
Because we are dealing with (p, q) currents here, this means that we have to estimate

A :=

∫

T (U ′)

|ω(z)|
√

−ρ′(z, w)
dm(z, w)

with ρ′(z, w) := ρ(z) + |w|2 is equivalent to the distance of (z, w) ∈ Ω′ to the boundary ∂Ω′.
Back to A,

A :=

∫

T (U ′)

|ω(z)|
√

−ρ′(z, w)
dm(z, w) ≤

N
∑

j=1

∫

Q′

j

|ω(z)|
√

−ρ′(z, w)
dm(z, w).

The Carleson window Q′
j is equivalent to the product (Q′

j ∩∂Ω′)×[hj ]νj with [hj ]νj the real segment
of length hj supported by the real normal νj to ∂Ω′ at ζ ′j. Set h := max

j=1,...,N
hj , we shall replace Q′

j

by Q′′
j := (Q′

j ∩ ∂Ω′)×[h]νj .
So we have

A ≤
N
∑

j=1

∫

Q′

j

|ω(z)|
√

−ρ′(z, w)
dm(z, w) ≤

N
∑

j=1

∫

Q′′

j

|ω(z)|
√

−ρ′(z, w)
dm(z, w),

where now all the depths have the same value h. Hence by Fubini we have

A ≤
∫ h

0

1√
t
{
∫

U ′

t

|ω(z)| dσ(z, w)}dt

with U ′
t :=

N
⋃

j=1

Q′′
j ∩ ∂Ω′

t
and ∂Ω′

t := {(z, w) ∈ Ω′ :: ρ(z) + |w|2 = −t}.

We can estimate the inner integral by Hölder

∫

U ′

t

|ω(z)| dσ(z, w) ≤
(

∫

U ′

t

|ω(z)|r dσ(z, w)
)1/r(

∫

U ′

t

dσ(z, w)

)1/r′

(3.1)

but
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∫

U ′

t

|ω(z)|r dσ(z, w) ≤
∫

∂Ωt

|ω(z)|r dσ(z, w) ≤ C(ρ)

∫

Ωt

|ω(z)|r {
∫

|w|2=−ρ(z)−t

d |w|}dm(z)

where d |w| is the normalized Lebesgue measure on the circle |w|2 = −ρ(z) − t. Hence, with
Ωt := {z ∈ Ω :: ρ(z) < −t},

∫

U ′

t

|ω(z)|r dσ(z, w) ≤ C(ρ)

∫

Ωt

|ω(z)|r dm(z) = C(ρ)‖ω‖rLr(Ω).

For the last factor of (3.1) we have
∫

U ′

t
dσ(z, w) = σ(U ′

t) . σ(U ′),
so

A ≤
∫ h

0

1√
t
{
∫

U ′

t

|ω(z)| dσ(z, w)}dt . ‖ω‖Lr(Ω)(σ(U
′))1/r

′

∫ h

0

dt√
t
=

1

2
‖ω‖Lr(Ω)

√
hσ(U ′)1/r

′

.

Recall that σ(Q′
j) ≃ h

(n+1)
j then we have√

h =
√

maxj hj . max σ(Q′
j)

1/2(n+1) ≤ σ(
⋃N

j=1Q
′
j ∩ ∂Ω′)1/2(n+1),

so finally we get

A :=
∫

T (U ′)
|ω(z)|√
−ρ′(z,w)

dm(z, w) . ‖ω‖Lr(Ω)σ(U
′)

1
r′
+ 1

2(n+1) .

This means that
|ω(z)|

√

−ρ′(z, w)
is a Carleson measure in Ω′ of order α with

α =
1

r′
+

1

2(n+ 1)
.

To get a usual Carleson measure, we need α = 1 hence
1

r′
+

1

2(n+ 1)
= 1 ⇐⇒ r = 2(n+ 1).

We have by theorem 1 in [4], written in our situation, that if µ ∈ V α(Ω′) then P 0∗(µ) ∈
Lr,∞(∂Ω′), where P 0∗(µ) is the ”balayage” of µ by the Hardy Littlewood kernel P 0

t . Hence we have
that the linear operator P 0∗ sends V α0(Ω′) to Lr0,∞(∂Ω′), and V α1(Ω′) to Lr1,∞(∂Ω′) with, as usual,

αj = 1− 1

rj
. This means that

f ∈ Lr(Ω) ⇒ µ := f/
√

−ρ′dm ∈ V α(Ω′) ⇒ P 0∗(µ) ∈ Ls,∞(∂Ω′)
with control of the norms.
So we have a linear operator T such that, with r0 < r1,

T : Lr0(Ω) → Ls0,∞(∂Ω′), with
1

s0
=

1

r0
− 1

2(n+ 1)
;

T : Lr1(Ω) → Ls1,∞(∂Ω′), with
1

s1
=

1

r1
− 1

2(n+ 1)
;

hence we can apply Marcinkiewich interpolation theorem between these two values of r ∈]1, 2(n+1)[
i.e.

T : Lr(Ω) → Ls(∂Ω′), with
1

s
=

1

r
− 1

2(n+ 1)
and r ≤ s

which is needed to apply Marcinkiewich theorem, with control of norms.
But this implies by theorem 2 in [4], that µ := f/

√

−ρ′dm ∈ W α(Ω′). �
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4 The main result.

Let Ω be a domain in Cn defined by the function ρ as above ; define Ω′ ⊂ Cn+1 the lifted
domain : we shall define the anisotropic class Γβ(∂Ω′) as in [4] ; we say that a vector field X on ∂Ω′

is admissible if X is of class Ck and at any point of ζ ∈ ∂Ω′, X(ζ) belongs to the complex tangent
space of ∂Ω′ at ζ.

We say that u ∈ Γβ(∂Ω′) if u is bounded on ∂Ω′ and u belongs to the usual Lipschitz Λβ/2(∂Ω′),
where ∂Ω′ is viewed as a real manifold, and on any integral curve of an admissible vector field,
t ∈ [0, 1] → γ(t) ∈ ∂Ω′, the function u ◦ γ belongs to Λβ(0, 1).

We can now define the class Γβ(Ω) : take a function u defined in Ω and lift it as u′(z, w) := u(z)
in Ω′ ; then u ∈ Γβ(Ω) if u′ ∈ Γβ(∂Ω′). We have that u ∈ Γβ(Ω) implies that u ∈ L∞(Ω) and
u ∈ Λβ/2(Ω) with a Lipschitz constant uniform in Ω.

The same way we define function u ∈ BMO(Ω) if u′ ∈ BMO(∂Ω′). We have that u ∈ BMO(Ω)

implies that u ∈
⋂

r≥1

Lr(Ω).

Now we are in position to prove our main result.

Theorem 4.1 Let Ω be a s.p.c. domain in Cn then for 1 < r < 2n+ 2 we have

∀ω ∈ Lr
(p,q)(Ω), ∂̄ω = 0, ∃u ∈ Ls

(p,q−1)(Ω) :: ∂̄u = ω, ‖u‖Ls(Ω) . ‖ω‖Lr(Ω),

with
1

s
=

1

r
− 1

2(n+ 1)
.

For r = 2n+ 2 we have

∃u ∈ BMO(p,q)(Ω) :: ∂̄u = ω, ‖u‖BMO(Ω) . ‖ω‖L2n+2(Ω).
If ω is a (p, 1) form we have also :

for r = 1, we have

∃u ∈ Ls,∞
(p,0)(Ω) :: ∂̄u = ω, ‖u‖Ls,∞(Ω) . ‖ω‖L1(Ω)

with
1

s
= 1− 1

2(n+ 1)
.

for r > 2n+ 2 we have

∃u ∈ Γβ
(p,0)(Ω) :: ∂̄u = ω, ‖u‖Γβ(Ω) . ‖ω‖Lr(Ω),

where β = 1− 2(n+ 1)

r
and Γβ is an anisotropic Lipschitz class of functions.

Moreover the solution u is linear on the data ω.

Proof.

By use of theorem 3.1 we have that ω′ ∈ W α
(p,q)(Ω

′) with α =
1

r′
+

1

2(n+ 1)
where Ω′ is still s.p.c. [5],

hence we can apply the theorem 7 in [4] if ω is a (p, 1) current or the generalisation to (p, q) current
done in theorem 4.1 in [6] to get that there is a solution u′ of ∂̄bu

′ = ω′ such that

u′ ∈ Ls
(p,q−1)(∂Ω

′) with
1

s
= 1− α =

1

r
− 1

2(n+ 1)
.

Because ω′ does not depend on w we have that the coefficients of u′ are holomorphic in w hence
with

u′(z, w) =
∑

I,J

a′I,J(z, w)dz
I ∧ dz̄J

we can set (recall that u′ is defined on ∂Ω′ )
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∀z ∈ Ω, aI,J(z) :=

∫

|w|2=−ρ(z)

a′I,J(z, w)d |w|
and we set also

u(z) :=
∑

I,J

aI,J(z, w)dz
I ∧ dz̄J ,

then exactly as in [3] we still have
∂̄u = ω in Ω.

Moreover the subordination lemma [5], gives us u ∈ Ls
(p,q−1)(Ω).

The last two results came directly from [4], theorem 7 and theorem 8 with the fact that we apply
them in Ω′ ⊂ C

n+1 so we have from theorem 8 that β = 2(n+ 1)(α− 1). �

Remark 4.2 In the range 1 < r < 2n+ 2 theorem 1.2 is stronger than theorem 1.1 because we get

the result with
1

s
=

1

r
− 1

2(n+ 1)
and not only for

1

s
>

1

r
− 1

2(n + 1)
.
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