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MODELING AND SIMULATION OF FINGERING PATTERN FORMATION

IN A COMBUSTION MODEL

LINA HU, CLAUDE-MICHEL BRAUNER, JIE SHEN, AND GREGORY I. SIVASHINSKY

Abstract. We consider a model of gas-solid combustion with free interface proposed by L.
Kagan and G.I. Sivashinsky. Our approach is twofold: (I) we eliminate the front and get to a
fully nonlinear system with boundary conditions; (II) we use a fourth-order pseudo-differential
equation for the front to achieve asymptotic regimes in rescaled variables. In both cases, we

implement a numerical algorithm based on spectral method and represent numerically the
evolution of the char. Fingering pattern formation occurs when the planar front is unstable. A
series of simulations is presented to demonstrate the evolution of sparse fingers (I) and chaotic

fingering (II).

1. Introduction

1.1. Physical background. Combustion is basically a process of fast oxidation accompanied
by substantial heat release. Combustion phenomena are very diverse in nature and may occur
in different regimes. One of them of a great practical importance, is when combustion assumes
a form of a self-sustained or driven reaction wave spreading subsonically or supersonically at a
well-defined speed.

Over the past forty years the theory of combustion waves, in both homogeneous and hetero-
geneous systems, reached rather a high level of conceptual coherence, and to date it is perhaps
one of the most elegant areas of classical phenomenology, presenting a graphic example of how
much natural phenomena could be deduced from a few fundamental principles. Some of the main
achievements are summarized in recent surveys [14, 32].

A major leap forward in development of the theory occurred in the late sixties with renewed at-
tention to the high activation energy limit introduced earlier by Zeldovich and Frank-Kamenetsky
in their classical theory of flame propagation [33]. It was then first realized that the flame struc-
ture consists basically of two layers: the narrow reaction zone where the role of convective trans-
port is relatively minor, and the preheat zone dominated by convective and molecular transport
but where the chemical reaction is comparatively weak and may be ignored. This crucial observa-
tion allowed, on one hand, effective evaluation of the flame velocity, and, on the other, reduction
of the pertinent reaction-diffusion-advection system to a free interface system where the reaction
rate term is replaced by a localized source of variable intensity. The free-interface formulation
greatly facilitated theoretical exploration of the curved and unsteady flames. Moreover, having
been derived for elementary one-step kinetics the resulting model appears to be relevant to a
much wider range of reactions.

Since deflagrative combustion is normally strongly subsonic one may often utilize a quasi-
isobaric limit with the instantaneous equalizing of the pressure throughout the volume. The
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flow-field obviously has a profound effect both on the flame structure and its dynamics. However,
for understanding many aspects of flame behavior the inverse effect, that is the influence of the
flame on the background flow-field, may often be ignored and the flow-field may be regarded
as prescribed. Formally this may be achieved by ignoring the burning gas thermal expansion,
i.e. assuming the gas density to be independent of temperature. Although in real life systems
the thermal expansion is never small, the constant-density models (or models where the density
variation is accounted for but treated as a small perturbation [28] ) proved to be highly successful
in interpreting even rather subtle and complex effects and far beyond the models’ nominal range
of validity. Note that at small density variations one may sometimes ignore the comparatively
weaker effect of the flame-generated vorticity, and enjoy all the technical advantages this entails.
In many physically relevant situations the structure of a curved flame may be regarded as quasi-
planar and quasi-steady. In these circumstances the problem sometimes allows for separation of
the longitudinal and transversal variables and thereby reduction of the effective dimensionality
of the system. As a result, instead of dealing with an often difficult free-interface problem one
ends up with an explicit equation for the flame interface advantageous both for physical analysis
and numerical simulations [29].

The aforementioned are the so-called rational approximations extractable from the first-
principle conservation laws by pushing certain parameters to their limits. Yet, simplifications
obtained by this strategy are sometimes still far below the tractability threshold. To get to the
core of the phenomenon one therefore has no choice but to turn to more risky ad hoc approxima-
tions, which cannot be obtained as distinguished limits, but which are nevertheless believed to
have a good enough contact with the first-principle formulation, and thus capable of capturing
the essence of the phenomenon being studied. Here one may mention the so-called sandwich
type models often allowing description of the essentially multi-dimensional processes by means
of the appropriately coupled one-dimensional models [2, 13, 19, 31]. An impressive fact about
combustion dynamics is that many of its fundamental aspects are quite robust against chemi-
cal and fluid-dynamical uncertainties and complexities and in this sense are perfectly suited for
mathematical modeling. This is one of the miracles of combustion dynamics and certainly a
blessing to the theorists whose analytical means are, as always, rather scanty. Apart from their
technological relevance, combustion waves constitute a truly fascinating dynamical system, dis-
playing an amazingly rich variety of phenomena such as non-uniqueness of possible propagation
regimes, their birth (ignition) and destruction (extinction), chaotic self-motion and fractal-like
growth, and various hysteretic transitions.

1.2. The smouldering model. In this paper, we are interested in the model of gas-solid com-
bustion proposed in [19]. It was motivated by experimental studies of Zik and Moses (see [34–36]),
where the authors observed a striking fingering pattern in flame spread over thin solid fuels (al-
though the physical process is actually flameless, we use the traditional term “flame” or “flame
front” for the moving reaction zone). Among other relevant references, see [17, 18,22].
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Figure 1.1. Instability of combustion front when VO2 decreases from (a) to (e).
Oxygen flows to the right and the combustion front to the left (Fig. 2 in [36],
courtesy of E. Moses).

The authors of [19] interpreted the fingering phenomenon in terms of the diffusive instability
similar to the one occurring in laminar flames of low-Lewis-number premixtures see, e.g. [15].
They derived a free-interface system for the scaled temperature θ, the excess enthalpy S, the
surface mass fraction of the solid product (char) Σ, and the moving front x = ξ(t, y):

Uθx = ∆θ, x < ξ(t, y), θ = 1, x ≥ ξ(t, y), (1.1)

θt + USx = ∆S − α∆θ, x ̸= ξ(t, y), (1.2)

Σ = 0, x ≤ ξ(t, y), Σt = 0, x > ξ(t, y), (1.3)

where α is a real number, see [19, p. 274]. Note that System (1.1)-(1.3) is rather unusual since
it is the temperature’s time derivative which appears in the enthalpy equation (1.2), in contrast
to the classical NEF system (see [24, 27]).

At the corrugated front x = ξ(t, y), [θ
]
= [S

]
= 0, whereas the following jump conditions

occur:
[
θn
]
= − exp(S),

[
Sn

]
= α

[
θn
]
,

Vn
[
Σ
]
= exp(S), (1.4)

where Vn = − ξt√
1 + (ξy)2

is the normal velocity.

Eventually, as x→ ±∞,

θ(t,−∞, y) = S(t,−∞, y) = Sx(t,+∞, y) = 0. (1.5)

Here U is the prescribed flow intensity with 0 < U < 1. As far as the variable y is concerned, it
belongs to some fixed interval (−ℓ/2, ℓ/2) with periodic boundary conditions. Hereafter in Part
II, we will take ℓ asymptotically large as in [5]. Thus, the parameters of the problem are α and
ℓ.

System (1.1)-(1.5) admits a planar solution traveling at constant velocity −V , where V =
−U lnU . In the coordinate x′ = x+ V t and omitting the prime, the Traveling Wave reads:

θ = exp(Ux), x ≤ 0, θ = 1, x ≥ 0, (1.6)

S = (α− lnU)Ux exp(Ux) + (lnU) exp(Ux), x ≤ 0, S = lnU, x ≥ 0, (1.7)

Σ = 0, x < 0, Σ = −(lnU)−1, x > 0. (1.8)

It transpires that the fingering pattern formation is related to the instability of the planar
front, whenever the parameter α is larger than the critical value

αc(ℓ, U) = 1 + lnU +
16π2

ℓ2U2
. (1.9)

As usual in Free Boundary Problems one fixes the moving front: we set

ξ(t, y) = −V t+ φ(t, y),

where φ is the perturbation of the planar front. In the coordinate x′ = x − ξ(t, y) and again
omitting the prime, System (1.1)-(1.3) reads:

Uθx = ∆φθ, x < 0, θ = 1, x ≥ 0, (1.10)

θt + (V − φt)θx + USx = ∆φS − α∆φθ, x ̸= 0, (1.11)
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Σ = 0, x < 0, Σt + (V − φt)Σx = 0, x > 0, (1.12)

where

∆φ = (1 + (φy)
2)Dxx +Dyy − φyyDx − 2φyDxy.

The front is now fixed at x = 0. The jump conditions at x = 0 read:
√
1 + (φy)2

[
θx
]
= − exp(S),

[
Sx

]
= α

[
θx
]
,

(V − φt)
[
Σ
]
=
√
1 + (φy)2 exp(S). (1.13)

1.3. Organization of the paper. The paper is divided into two parts, corresponding to two
supplementary approaches and different fingering regimes. Part I goes from Section 2 to Section
6, and Part II from Section 7 to Section 9.

First, in Section 2, we use the method of [9,20,21] to eliminate the front in System (1.10)-(1.13)
and get to a fully nonlinear problem (see [23]): the price to pay is the nonlocal and second-order
nonlinear terms fi, see below (2.7). The free-interface conditions are replaced by fixed boundary
conditions at x = 0. Although the new system looks more involved because of the nonlocal second
order terms, this method has appeared to be quite efficient also from a numerical viewpoint, see
e.g. [1] for the computation of two-dimensional bifurcated branches in a DDT model.

The linearized problem around the null solution is studied in Section 3 where we perform
a linear stability analysis (we refer to the forthcoming article [6] for the nonlinear stability).
Theorem 3.1 states that the threshold of linear stability occurs at αc, see (1.9). The main feature
of the proof is writing the linearized problem as the coupling of two subsystems, respectively for
v and (w, h). The elliptic equation for v presents abstract issues that we examine in the spirit
of [10]. We investigate the spectral properties of the linear operator in weighted spaces.

Section 4 is devoted to the numerical method for solving the linearized system. We implement
a backward-Euler scheme in time and discrete Fourier transform in the y direction to reduce
the system to a sequence of one-dimensional problems, then solve the one-dimensional system
by a Chebyshev collocation method. Beside the validation of the algorithm, an important issue
is the determination of a numerical approximation of the critical αc with high accuracy. The
(perturbation of the) char, a by-product of v, w and h, is computed via a transport equation.
The method extends nicely to the nonlinear system in Section 5. Section 6 is devoted to the
numerical results. We observe for α > αc the formation of a gamut of sparse fingers (as in Fig.
1.1(e)) which are pictured for ℓ = 2π and 0 < t < 100.

Moreover, we have been interested in identifying more intricate fingering regimes, including
chaotic fingers, as already observed asymptotically in [19], for very large ℓ and time. This is
the goal of Part II of the paper. Whereas Part I’s main feature was the elimination of the
(perturbation of the front) φ, the second part is based on the opposite idea of deriving a self-
consistent equation for φ which, in the spirit of the derivation of the Kuramoto-Sivashinsky
equation in [27] (see also [3,4,7,8]), may capture most of the dynamics and yields a reduction of
the effective dimensionality of the system.

In Section 7, we revisit the fourth-order pseudo-differential equation derived in [5] within the
framework of a simplified, quasi-steady version of (1.10)-(1.13):

d

dt
U
√
U2I − 4Dyy(φ) + 4φyyyy + (γ − 1)U2φyy = F ((φy)

2), (1.14)

with the notation γ = α − lnU , which eventually enables a simple computation of the char.
Clearly (1.14) is a generalization of the Kuramoto-Sivashinsky equation (see, e.g., [30]), however
it is fully nonlinear since the nonlinearity is also of the fourth-order. An asymptotic model is
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formulated by rescaling the dependent and independent variables, in line with [27]. As in [5], we
use a Fourier spectral method to solve numerically the latter problem, see Section 8.

Finally, a series of fingering pattern formation is presented in Section 9. A richer dynamics
appears for large time t and spatial coordinate y, up to a chaotic fingering. Our numerical
computations confirm the observations of [19] and the relevance of the model.

PART I

2. Elimination of the moving front

To decouple the system we argue as in [9], introducing the new unknowns v, w and σ defined
by:

θ(t, x, y) = θ(x) + φ(t, y)θx(x) + v(t, x, y), x < 0,−ℓ/2 < y < ℓ/2, (2.1a)

S(t, x, y) = S(x) + φ(t, y)Sx(x) + w(t, x, y), x < 0,−ℓ/2 < y < ℓ/2, (2.1b)

Σ(t, x, y) = Σ(x) + σ(t, x, y), x > 0,−ℓ/2 < y < ℓ/2. (2.1c)

Thanks to the jump conditions
[
θ
]
=
[
θ
]
= 0,

[
θx
]
= −U and since θ(0) = 1, the main feature

is that we can eliminate the front φ(t, y), getting:

φ(t, y) = −U−1v(t, 0, y). (2.2)

It is convenient to work with the system of independent variables (v, w, h, σ̃), where

h(t, x, y) = w(t,−x, y), σ̃(t, x, y) = σ(t,−x, y), x < 0,−ℓ/2 < y < ℓ/2.

Then, the interface conditions become new boundary conditions at x = 0, which read:



αv(t, 0, y) + h(t, 0, y)− w(t, 0, y) = 0, (2.3a)

αUv(t, 0, y)− U(lnU)v(t, 0, y)− hx(t, 0, y)− wx(t, 0, y) + αvx(t, 0, y) = 0, (2.3b)

Uv(t, 0, y)− vx(t, 0, y) = U − (1 + (U−1vy(t, 0, y))
2)−

1
2 exp(S(t, 0, y)). (2.3c)

We may write (2.3c) as:

vx(t, 0, y)− Uv(t, 0, y) = Uh(t, 0, y) + g,

where g = g(vy(t, 0, y), h(t, 0, y)) contains the higher order terms:

g = (1 + (U−1vy(t, 0, y))
2)−

1
2 exp(S(t, 0, y))− U − Uh(t, 0, y).

Finally, the condition at x = 0 for the (perturbation of the) char reads:

σ̃(t, 0, y) =
(1 + (φy)

2)
1
2Ueh(t,0,y) − U − φt

lnU

V − φt
, (2.4)

where φy(t, y) = −U−1vy(t, 0, y) and φt(t, y) = −U−1vt(t, 0, y).
Eventually, we get to a system for the unknowns v, w, h and σ̃ only. We denote:

f1(v) =(U−1vy(0))
2(θx − U−1v(0)θxx + vx)x

+ 2U−1vy(0)(−U−1vy(0)θx + vy)x

+ U−1vyy(0)(−U−1v(0)θx + v)x, (2.5)

f2(v, w) =(U−1vy(0))
2(S̄x − U−1v(0)S̄xx + wx)x

+ 2U−1vy(0)(−U−1vy(0)S̄x + wy)x

+ U−1vyy(0)(−U−1v(0)S̄x + w)x − αf1(v), (2.6)
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f3(v, h) =(U−1vy(0))
2hxx − 2U−1vy(0)hxy − U−1vyy(0)hx. (2.7)

The new system reads, for x < 0, −ℓ/2 < y < ℓ/2:




∆v − Uvx = −f1(v),
∆w − Uwx = α∆v + V vx + vt − f2(v, w)

+ U−1vt(t, 0, y)(−U−1v(t, 0, y)θ̄x + v)x,

∆h+ Uhx = −f3(v, h),

(2.8)





vx(0)− Uv(0) = Uh(0) + g(vy(0), h(0)),

h(0)− w(0) = −αv(0),
hx(0) + wx(0) = αvx(0) + αUv(0)− U(lnU)v(0),

(2.9)

together with the transport equation for σ̃:




σ̃t = (V + U−1vt(0))σ̃x,

σ̃(0) =
1

V

(
1 +

vt(0)

V U

)
−1

{(
1 +

1

U2
(vy(0))

2

) 1
2

Ueh(0) − U +
vt(0)

U lnU

}
.

(2.10)

All the independent variables are periodic in y variable, and, as x→ −∞:

v(t,−∞, y) = w(t,−∞, y) = hx(t,−∞, y) = 0. (2.11)

3. Linear stability analysis

In this section, we may omit the (perturbation of the) char which is a by-product of (v, w, h).
Clearly, the null solution is an equilibrium of System (2.8)-(2.9). We consider the linearized
system around the null solution which reads, whenever x < 0, −ℓ/2 < y < ℓ/2:





∆v − Uvx =0,

∆w − Uwx =α∆v + V vx + vt,

∆h+ Uhx =0,

(3.1)

together with the linearized boundary conditions at x = 0:




vx(0)− Uv(0) =Uh(0),

h(0)− w(0) =− αv(0),

hx(0) + wx(0) =αvx(0) + αUv(0)− U lnUv(0).

(3.2)

We will prove the following result of linear stability:

Theorem 3.1. Let:

αc(ℓ, U) = 1 + lnU +
16π2

ℓ2U2
. (3.3)

It holds:
(i) if α < αc, then the null solution is linearly asymptotically stable;
(ii) if α > αc, then it is linearly unstable.

We rewrite (3.1)(3.2) as the coupled system of the elliptic problem for v:
{
∆v − Uvx = 0,

vx(0)− Uv(0) = Uh(0),
(3.4)
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and of the subsystem for w and h:




∆w − Uwx = α∆v + V vx + vt,

∆h+ Uhx = 0,

h(0)− w(0) = −αv(0),
hx(0) + wx(0) = αvx(0) + αUv(0)− U(lnU)v(0).

(3.5)

The functions v, w and h and their derivatives, whenever they are defined and continuous, verify
the periodic boundary condition u(·,−ℓ/2) = u(·, ℓ/2).

3.1. Abstracts results for the elliptic equation. In a first step, we will focus on the subsys-
tem (3.4) and omit the time, which appears only as a parameter in this equation. In the domain
Ω = {(x, y) ∈ R2 : x < 0, y ∈ (−ℓ/2, ℓ/2)}, we define the linear operators:

L u(x, y) = ∆u(x, y)− Uux(x, y), x < 0,−ℓ/2 < y < ℓ/2,

Bu(y) = ux(0, y)− U u(0, y), −ℓ/2 < y < ℓ/2.

Since we are dealing with a stability problem, we define a weighed space, with weight q(x) =
exp(−Ux/2): for 0 < β < 1, let Cβ

q (Ω) = {u : (x, y) 7→ q(x)u(x, y) ∈ L∞(Ω) ∩ Cβ(Ω)}, and

Xβ =
{
u ∈ Cβ

q (Ω), u(·,−ℓ/2) = u(·, ℓ/2)
}
. (3.6)

In the space Xβ , the realization L of the operator L with homogeneous boundary conditions has
nice spectral properties. The results of [10, 11] hold with minor changes, see [6] for a thorough
investigation:

Lemma 3.2. For 0 < β < 1, let:

X2+β =
{
u ∈ C2+β

q (Ω), D(j)
y u(·,−ℓ/2) = D(j)

y u(·, ℓ/2), j ≤ 2
}
,

D(L) =
{
u ∈ X2+β , Bu = 0 at x = 0

}
,

L : D(L) → Xβ , Lu = L u = ∆u− Uux.

Then:
(i) L is a sectorial operator;
(ii) σ(L) = (−∞,−U2/4] ∪ {0}. Moreover, 0 is a single eigenvalue of L, the kernel of L being
spanned by the function θ̄ = exp(Ux);
(iii) the spectral projection P associated to the eigenvalue 0 is given by:

Pu =
U

ℓ

∫

Ω

u(x, y)dxdy θ̄, u ∈ Xβ . (3.7)

Since System (3.4) is non-homogenous, we need a lifting operator which can be constructed
as in [11, Lemma 4.1], see also [23, p. 10]: there exists a linear continuous operator N such that

N : {g ∈ C1+β([−ℓ/2, ℓ/2]), g(−ℓ/2) = g(ℓ/2)} → X2+β ,

(BNg)(y) = g(y), y ∈ [−ℓ/2, ℓ/2].
Let us consider a slightly more general version of (3.4):

L u = f, Bu = g, (3.8)

where f ∈ Xβ and g ∈ C1+β([−ℓ/2, ℓ/2]), g(−ℓ/2) = g(ℓ/2). We look for a solution of (3.8) in
the form u = z +Ng. It is easy to see that

z ∈ D(L), Lz = f − LNg, (3.9)
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and, since 0 is a simple eigenvalue of operator L, (3.9) is uniquely solvable if and only if P (f −
LNg) = 0. An elementary computation based on the explicit expression of the lifting operator
yields that the solvability condition simply reads:

∫

Ω

f(x, y) dxdy =

∫ ℓ/2

−ℓ/2

g(y) dy := Π(g). (3.10)

Returning to (3.4), we have proved that the solvability condition for (3.4) is:

Π(h(0)) = 0. (3.11)

Based on this observation, it is easy to see that Π(v) verifies for x < 0:

L0Π(v) = 0, B0Π(v) = 0, (3.12)

where L0u(x) = uxx(x)− Uux(x), x < 0, and B0u = ux(0)− Uu(0).
In the space X0 of functions u such that x 7→ u(x)q(x) is uniformly continuous and bounded

on R−, the realization L0 of L0 with domain D(L0) = {u ∈ X0, ux, uxx ∈ X0} is a sectorial
operator, see [12]. Moreover, 0 is a simple eigenvalue of L0, the kernel of L0 is generated by θ̄

and the associated spectral projection is P0f = U
∫ 0

−∞
f(x) dx.

Therefore, we infer from (3.12) that there exists a constant c such that Π(v) = cθ̄, which is
likely a function of the time t. However the model does not provide any information about this
constant. We argue as in [10, p. 258], observing that the fact that 0 is an eigenvalue is related to
the translation invariance of the original problem. The translation invariance provides us with
an additional degree of freedom, therefore we look for v such that Π(v) ∈ (I − P0)X0, in other
words we fix c = 0 and:

Π(v(x, ·)) = 0, x < 0. (3.13)

Finally, we observe that (3.13) yields P (v) = 0, hence v ∈ (I −P )Xβ . We will take advantage of
(3.13) in the numerical scheme, see Section 4.1.

3.2. Proof of Theorem 3.1. We label the eigenvalues of the realization of the operator Dyy in
L2(−ℓ/2, ℓ/2) with periodic boundary conditions: 0 = −λ0(ℓ) > −λ1(ℓ) = −λ2(ℓ) > . . . , with
λ1(ℓ) = 4π2/ℓ2, etc.

First, we apply the discrete Fourier transform to (3.4) and, since we look for v such that
Π(v) = 0, hereafter k ≥ 1. It comes:





v̂xx(t, x, k)− λkv̂(t, x, k)− Uv̂x(t, x, k) = 0, x < 0,

v̂x(·, 0, k)− Uv̂(·, 0, k) = Uĥ(·, 0, k),
v̂(·,−∞, k) = 0,

(3.14)

whose solution is clearly:

v̂(t, x, k) =
U

νk − U
ĥ(t, 0, k)eνkx, (3.15)

for any k = 1, 2, . . ., with the notation νk = U/2 + (1/2)
√
U2 + 4λk.
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Second, we solve System (3.5) via Fourier, assuming that (w, h) is a sufficiently smooth solu-
tion. We end up with the infinitely many equations for k ≥ 1:





ŵxx(t, x, k)− λkŵ(t, x, k)− Uŵx(t, x, k) = α
U

νk − U
(ν2k − λk)ĥ(t, 0, k)e

νkx

+V
Uνk
νk − U

ĥ(t, 0, k)eνkx +
U

νk − U
ĥt(t, 0, k)e

νkx, (3.16a)

ĥxx(t, x, k)− λkĥ(t, x, k) + Uĥx(t, x, k) = 0, (3.16b)

ĥ(t, 0, k)− ŵ(t, 0, k) = −α U

νk − U
ĥ(t, 0, k), (3.16c)

ĥx(t, 0, k) + ŵx(t, 0, k) = α
Uνk
νk − U

ĥ(t, 0, k) + αU
U

νk − U
ĥ(t, 0, k)

−U lnU
U

νk − U
ĥ(t, 0, k). (3.16d)

From (3.16b), it is easy to show that ĥ(t, x, k) = c(t, k)e(νk−U)x, that we plug in (3.16a), whose
solution is ŵ(t, x, k) = b(t, k)eνkx +Axeνkx, where

A =
1

2νk − U

(
α

U

νk − U
(ν2k − λk)ĥ(t, 0, k) +

U

νk − U
ĥt(t, 0, k) + V

Uνk
νk − U

ĥt(t, 0, k)

)
.

Finally we use the boundary conditions (3.16c)-(3.16d) for ŵ(t, x, k) and ĥ(t, x, k), to infer the

ODE for ĥ(t, 0, k):

ĥt(t, 0, k) = ωk(α)ĥ(t, 0, k), (3.17)

with

Uωk(α) = −(2νk − U)2(νk − U)− αU(ν2k − λk) + α(2νk − U)U2 − U2(lnU)(νk − U).

Lemma 3.3. ωk(α) = 0 at the critical value αc,k = 1 + lnU + 4λk/U
2, k ≥ 1.

Proof. ωk(α) = 0 is clearly equivalent to:

α(2νkU
2 − U3 − ν2kU + λkU) = 4ν3k − 8Uν2k + 5U2νk − U3 + U2(lnU)νk − U3 lnU.

Since 0 < U < 1, 2νkU
2 − U3 − ν2kU + λkU =

1

2
(U2

√
U2 + 4λk − U3) > 0, hence:

αc,k =
4λk

√
U2 + 4λk + U2

√
U2 + 4λk + U2(lnU)

√
U2 + 4λk − 4Uλk − U3(1 + lnU)

U2
√
U2 + 4λk − U3

=1 + lnU +
4λk
U2

.

□

To complete the proof of Theorem 3.1, we observe that the sequence αc,k is non-decreasing
and converges to zero as k → +∞. Therefore, ωk(α) < 0 if and only if α < αc,1 := αc, and
ωk(α) > 0 if and only if α > αc,1 := αc. Since λ1 = 4π2/ℓ2, αc = 1 + lnU + 16π2/ℓ2U2.

4. Numerical method for solving the linearized system

4.1. Description of the method. In view of (2.11), we may restrict the domain Ω to ΩL :=
{(x, y) ∈ R2 : x ∈ (−L, 0), y ∈ (−ℓ/2, ℓ/2)}, with L sufficiently large. Next, we transform the

domain ΩL to Ω̃L := {(x′, y′) ∈ R2 : x′ ∈ (−1, 1), y′ ∈ (0, 2π)}, by setting x′ = 2x/L + 1,
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y′ = 2πy/ℓ+π, and v(t, x, y) = v(t, (x′−1)L/2, (y′−π)ℓ/2π) := ṽ(t, x′, y′). Omitting the primes
and the tilde (the same applies to w and h), System (3.1)-(3.2) becomes:





(
2

L
)2vxx + (

2π

ℓ
)2vyy − U

2

L
vx =0,

(
2

L
)2wxx + (

2π

ℓ
)2wyy − U

2

L
wx =α(

2

L
)2vxx + α(

2π

ℓ
)2vyy + V

2

L
vx + vt,

(
2

L
)2hxx + (

2π

ℓ
)2hyy + U

2

L
hx =0,

(4.1)

with the set of boundary conditions:





2

L
vx(t, 1, y)− Uv(t, 1, y) =Uh(t, 1, y),

h(t, 1, y)− w(t, 1, y) =− αv(t, 1, y),

2

L
hx(t, 1, y) +

2

L
wx(t, 1, y) =

2

L
αvx(t, 1, y) + αUv(t, 1, y)− U lnUv(t, 1, y),

(4.2)

and

v(t,−1, y) = w(t,−1, y) =
2

L
hx(t,−1, y) = 0. (4.3)

First, we discretize the above system with a backward-Euler scheme in time:





(
2

L
)2vn+1

xx + (
2π

ℓ
)2vn+1

yy − U
2

L
vn+1
x =0,

(
2

L
)2wn+1

xx + (
2π

ℓ
)2wn+1

yy − U
2

L
wn+1

x =α(
2

L
)2vn+1

xx + α(
2π

ℓ
)2vn+1

yy + V
2

L
vn+1
x

+
vn+1 − vn

∆t
,

(
2

L
)2hn+1

xx + (
2π

ℓ
)2hn+1

yy + U
2

L
hn+1
x =0,

(4.4)





2

L
vn+1
x (1, y)− Uvn+1(1, y) =Uhn+1(1, y),

hn+1(1, y)− wn+1(1, y) =− αvn+1(1, y),

2

L
hn+1
x (1, y) +

2

L
wn+1

x (1, y) =
2

L
αvn+1

x (1, y) + αUvn+1(1, y)− U lnUvn+1(1, y),

(4.5)

vn+1(−1, y) = wn+1(−1, y) =
2

L
hn+1
x (−1, y) = 0. (4.6)

Second, we use the discrete Fourier transform in the y direction to reduce the above system to a
sequence of one-dimensional problems. More precisely, we plug in (4.4)-(4.6):

vn+1 =

k=N

2∑

k=−
N

2

v̂n+1
k (x)eiky, wn+1 =

k=N

2∑

k=−
N

2

ŵn+1
k (x)eiky, hn+1 =

k=N

2∑

k=−
N

2

ĥn+1
k (x)eiky,

see [26, Chapt. 2] for the slight difference in ordering the modes with respect to Section 3.2.
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Thanks to (3.13), the zeroth order modes are null. Then, for each k ̸= 0 we obtain:





∂xx
(
v̂n+1
k (x)

)
(
2

L
)2 − k2v̂n+1

k (x)(
2π

ℓ
)2 − U∂x

(
v̂n+1
k (x)

) 2
L

=0,

∂xx
(
ŵn+1

k (x)
)
(
2

L
)2 − k2ŵn+1

k (x)(
2π

ℓ
)2 − U∂x

(
ŵn+1

k (x)
) 2
L

=∂xx
(
v̂n+1
k (x)

)
(
2

L
)2α

−k2v̂n+1
k (x)(

2π

ℓ
)2α+ V ∂x

(
v̂n+1
k (x)

) 2
L

+
v̂n+1
k (x)− v̂nk (x)

∆t
,

∂xx
(
ĥn+1
k (x)

)
(
2

L
)2 − k2ĥn+1

k (x)(
2π

ℓ
)2 + U∂x

(
ĥn+1
k (x)

) 2
L

=0,

(4.7)

with




2

L
∂x
(
v̂n+1
k (x)

)
(1)− Uv̂n+1

k (1) =Uĥn+1
k (1),

ĥn+1
k (1)− ŵn+1

k (1) =− αv̂n+1
k (1),

2

L
∂x
(
ĥn+1
k (x)

)
(1) +

2

L
∂x
(
ŵn+1

k (x)
)
(1) =

2

L
α∂x

(
v̂n+1
k (x)

)
(1)

+ αUv̂n+1
k (1)− U lnUv̂n+1

k (1),

(4.8)

and

v̂n+1
k (−1) = ŵn+1

k (−1) =
2

L
∂x
(
ĥn+1
k (x)

)
(−1) = 0. (4.9)

We will solve the above one-dimensional system by mean of a Chebyshev collocation method
(see [25,26]). Let {lj(x)}Nj=0 be the Lagrange polynomials based on the Chebyshev-Gauss-Lobatto

points {xj}Nj=0 = {cos(πjN )}Nj=0. We denote the differentiation matrix of order m associated to

the {xj}Nj=0 by Dm = (d
(m)
ij )i,j=0,··· ,N , where d

(m)
ij = l

(m)
j (xi) and lj(xi) = δij , here δij is the

Kronecker Delta symbol. Setting:

v̂n+1
k (x) =

N∑

j=0

(
v̂n+1
k

)
j
lj(x), ŵn+1

k (x) =
N∑

j=0

(
ŵn+1

k

)
j
lj(x), ĥn+1

k (x) =
N∑

j=0

(
ĥn+1
k

)
j
lj(x),

and inserting the above quantities in (4.7)-(4.9), we find





N∑

j=0

(
(
2

L
)2d

(2)
ij − k2(

2π

ℓ
)2δij − U

2

L
d
(1)
ij

)(
v̂n+1
k

)
j
=0,

∆t
N∑

j=0

(
(
2

L
)2d

(2)
ij − k2(

2π

ℓ
)2δij − U

2

L
d
(1)
ij

)(
ŵn+1

k

)
j
=∆t

N∑

j=0

(
(
2

L
)2αd

(2)
ij − k2(

2π

ℓ
)2αδij

+ V
2

L
d
(1)
ij +

δij
∆t

)(
v̂n+1
k

)
j
−

N∑

j=0

δij
(
v̂nk
)
j
,

N∑

j=0

(
(
2

L
)2d

(2)
ij − k2(

2π

ℓ
)2δij + U

2

L
d
(1)
ij

)(
ĥn+1
k

)
j
=0,
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with the boundary conditions





N∑

j=0

2

L
d
(1)
0j

(
v̂n+1
k

)
j
− U

(
v̂n+1
k

)
0
=U
(
ĥn+1
k

)
0
,

(
ĥn+1
k

)
0
−
(
ŵn+1

k

)
0
=− α

(
v̂n+1
k

)
0
,

2

L

N∑

j=0

d
(1)
0j

(
ĥn+1
k

)
j
+

2

L

N∑

j=0

d
(1)
0j

(
ŵn+1

k

)
j
=
2

L
α

N∑

j=0

d
(1)
0j

(
v̂n+1
k

)
j
+ αU

(
v̂n+1
k

)
0

− U lnU
(
v̂n+1
k

)
0
,

and

(
v̂n+1
k

)
N

=
(
ŵn+1

k

)
N

=
2

L

N∑

j=0

d
(1)
Nj

(
ĥn+1
k

)
j
= 0.

We may write the above system in the following compact form:

AkXk = Bk

where

Bk
3(N+1)×1

=
(
0, 0, 0, 0,−(v̂nk )1, 0, 0,−(v̂nk )2, 0, · · · , 0,−(v̂nk )N−1, 0, 0, 0, 0

)T

Xk
3(N+1)×1

=
(
(v̂n+1

k )0, (ŵ
n+1
k )0, (ĥ

n+1
k )0, · · · , (v̂n+1

k )N , (ŵ
n+1
k )N , (ĥ

n+1
k )N

)T

and Ak is 3(N +1)× 3(N +1) matrix. Note in particular that Ak is the same at each time step,
so it can be pre-factorized and stored in LU form.

4.2. Algorithm validation. In this section, we let L = 10, U = 0.5, ℓ = 2π, α = αc, and
validate the algorithm with the exact solution of (4.1)-(4.2)-(4.3):

v =cos(t) cos(y)
(
(
UL

2
− 1

4
)x2 +

x

2
+

3

4
− UL

2

)
;

w =cos(t) cos(y)
(x2
4
(αUL− LU lnU − α− 1)

+
x

2
(1 + α) +

1

4
(3 + 3α+ LU lnU − αLU)

)
;

h =cos(t) cos(y)
(αUL

4
(x2 + 2x− 3) + 1

)
.

Since the exact solution are low-order polynomial in x, the error is dominated by time dis-
cretization as soon as N ≥ 8 (see Fig. 4.1 (a)).
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Figure 4.1. (a) Error vs. polynomial degree with dt = 0.0001, T = 1, and (b)
error vs. time step with N = 16, T = 1

On the other hand, we observe clearly from Fig. 4.1 (b) that our algorithm is first order
accuracy in time.

4.3. Numerical determination of the critical αc (linear case). While the critical αc is
determined explicitly in Theorem 3.1, it is useful, particularly when αc is not known explicitly,
to show that our numerical scheme is capable of approximating αc to high accuracy. To this
end, we use a bisection method to find a numerical approximation αcN of the critical value αc,
based on the following remark: if the solution goes to zero in time or the energy decreases, then
αc is on the right side of the parameter interval; if the solution blows up in time or the energy
increases, then αc is on the left side of the interval.

Table 4.1. L = 10, ℓ = 2π, N = 32, dt = 0.1

U αc αcN error = |αc − αcN |
0.8 7.0268564487e+000 7.0268563829e+000 6.5800000000e-008
0.5 1.6306852819e+001 1.6306852639e+001 1.8000000000e-007
0.2 9.9390562088e+001 9.9390561745e+001 3.4300000000e-007
e−1 2.9556224396e+001 2.9556224135e+001 2.6100000000e-007

Table 4.2. L = 10, U = 1, N = 32, dt = 0.1

ℓ αc αcN error = |αc − αcN |
2π 5.0000000000e+000 4.9999999706e+000 2.9400000000e-008
3π 2.7777777778e+000 2.7777711575e+000 6.6203000000e-006
4π 2.0000000000e+000 1.9999195019e+000 8.0498100000e-005
5π 1.6400000000e+000 1.6396664907e+000 3.3350930000e-004

We infer from the above two tables that our numerical method is able to approximate αc to
a high accuracy. Moreover, Tables 4.1-4.2 show that αcN depends upon the quantities U and L
in the same way as αc, see (3.3).

Next, we present some solution profiles in the three cases α < αc, α = αc and α > αc, to
exhibit the dynamics of v(t, 0, y) and the energy of v(t, x, y).
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Figure 4.2. v(t, 0, y) with ℓ = 2π, U = 1 in the cases α < αc, α = αc, α > αc.
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Figure 4.3. Energy of v with ℓ = 2π, U = 1 in the cases α < αc, α = αc, α > αc.

5. Solving the nonlinear system

We are concerned with the nonlinear systems for (v, w, h, σ̃) in ΩL = {−L < x < 0, −ℓ/2 <
y < ℓ/2}: 




∆v − Uvx = −f1(v),
∆w − Uwx = α∆v + V vx + vt − f2(v, w)

+ U−1vt(t, 0, y)(−U−1v(t, 0, y)θ̄x + v)x,

∆h+ Uhx = −f3(v, h),

(5.1)

together with the nonlinear boundary conditions at x = 0:




vx(0)− Uv(0) = Uh(0) + g(vy(0), h(0)),

h(0)− w(0) = −αv(0),
hx(0) + wx(0) = αvx(0) + αUv(0)− U(lnU)v(0),

(5.2)

and the transport equation:




σ̃t = (V + U−1vt(0))σ̃x,

σ̃(0) =
1

V

(
1 +

vt(0)

V U

)
−1

{(
1 +

1

U2
(vy(0))

2

) 1
2

Ueh(0) − U +
vt(0)

U lnU

}
.

(5.3)

By treating all the nonlinear terms explicitly, the above nonlinear system can be solved by
using essentially the same algorithm described in the previous section for the linearized system.
We look for v such that its zeroth mode is null according to (3.13), whereas the zeroth mode of
w and h are free in the nonlinear problem (see [6]).
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Set L = 10, U = 1, ℓ = 2π, α = αc. We now validate the algorithm with an exact solution

satisfying the boundary conditions (5.2) with g = 0, and in Ω̃L:

v =cos(t) cos(y)
(
(
UL

2
− 1

4
)x2 +

x

2
+

3

4
− UL

2

)
10−4;

w =cos(t) cos(y)
(x2
4
(αUL− LU lnU − α− 1)

+
x

2
(1 + α) +

1

4
(3 + 3α+ LU lnU − αLU)

)
10−4;

h =cos(t) cos(y)
(αUL

4
(x2 + 2x− 3) + 1

)
10−4.

Again, since the solutions are low-order polynomials in x, the errors are dominated by the
time discretization as soon as N ≥ 10, see Fig. 5.1.
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Figure 5.2. Error vs. time
step with N = 16, T = 1.

We observe also from Fig. 5.2 that the scheme is first-order accurate in time.

5.1. Determination of the critical αc (nonlinear case). Next, we use the bisection method
to determine numerically the critical αcN in the nonlinear case. Numerical results in Tables 5.1
and 5.2 show that, with only N = 32, our algorithm is able to approximate αc with a very good
accuracy.

Table 5.1. L = 10, ℓ = 2π, N = 32, dt = 0.1
U αc αcN error = |αc − αcN |
0.8 7.0268564487e+000 7.0268583875e+000 1.9388000000e-006
0.5 1.6306852819e+001 1.6306852650e+001 1.6900000000e-007
0.2 9.9390562088e+001 9.9392551959e+001 1.9898710000e-003
e−1 2.9556224396e+001 2.9556230949e+001 6.5530000000e-006
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Table 5.2. L = 10, U = 1, N = 32, dt = 0.1
ℓ αc αcN error = |αc − αcN |
2π 5.0000000000e+000 5.0000042870e+000 4.2870000000e-006
3π 2.7777777778e+000 2.7777777777e+000 1.0000000000e-010
4π 2.0000000000e+000 1.9999281988e+000 7.1801200000e-005
5π 1.6400000000e+000 1.6396754829e+000 3.2451710000e-004

Next, we plot some solution profiles in the three different cases α < αc, α = αc and α > αc,
to exhibit the dynamics of v(t, 0, y) and the energy of v(t, x, y).

0

5

10

15

20 −3

−2

−1

0

1

2

3−4−20
24

x 10
−4

y

α<α
c

t

v(
t,0

,y
)

0

5

10

15

20 −3

−2

−1

0

1

2

3−4−20
24

x 10
−4

y

α=α
c

t

v(
t,0

,y
)

0

5

10

15

20 −3

−2

−1

0

1

2

3−0.2
−0.1

0
0.1

y

α>α
c

t

v(
t,0

,y
)

Figure 5.3. v(t, 0, y) with ℓ = 2π, U = 1 in the cases α < αc, α = αc, α > αc.
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Figure 5.4. Energy of v with ℓ = 2π, U = 1 in the cases α < αc, α = αc, α > αc.

5.2. Computation of σ and Σ. Having computed (v, w, h), we can then solve σ̃ from (5.3).

We first transform the domain ΩL to Ω̃L := {(x′, y′), x′ ∈ (−1, 1), y′ ∈ (0, 2π)}. Omitting
the primes, and recalling φ(t, y) = −1/Uv(t, 1, y) in the rescaled coordinates, the transformed
function σ̃ satisfies:





σ̃t(t, x, y)− (V + U−1vt(1))σ̃x(t, x, y)
2
L = 0, x ∈ [−1, 1),

σ̃(t, 1, y) = 1
V

(
1 + vt(t,1,y)

UV

)
−1

{(
1 + 4π2

ℓ2U2 (vy(t, 1, y))
2

) 1
2

Ueh(t,1,y) − U + vt(t,1,y)
U lnU

}
, x = 1,

σ̃(0, x, y) = 0, t = 0,

(5.4)
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where v, w and h are solution of (5.1)-(5.2) in Ω̃L. Next, we use a similar algorithm as before to
solve the system (5.4). We discretize in time as follows:




σ̃n+1(x,y)−σ̃n(x,y)
∆t − V σ̃n

x (x, y)
2
L − 1

U
2
L

vn+1(1,y)−vn(1,y)
∆t σ̃n

x (x, y) = 0, x ∈ [−1, 1),

σ̃n+1(1, y) = 1
V

(
1 + vn+1(1,y)−vn(1,y)

UV∆t

)
−1

{(
1 + 4π2

ℓ2U2 (v
n+1
y (1, y))2

) 1
2

Ueh
n+1(1,y) − U + vn+1(1,y)−vn(1,y)

∆tU lnU

}
, x = 1,

σ̃0(x, y) = 0.
(5.5)

Once σ̃ is computed, we may calculate Σ as follows:

Σ(t, x, y) = Σ + σ̃(t,−x, y), Σ = −(lnU)−1, x > 0.

Then, we are in position to compute the temperature θ by mean of formulas (2.1a), (2.2) and
(1.6).

6. Figures (I)

In view of a better representation of the char Σ(t, x, y), of the values of the char at the front
Σ(t, 0, y) (physically it means immediately behind the front) and of the temperature θ, we return
to the original “physical” coordinates (x, y) in which the front is moving. However, for the
convenience of the reader, we focus on the front zone and therefore fix the Traveling Wave at the
origin. In other words, we do not represent the front itself but the perturbation φ(t, y) of the
planar front and its immediate neighboring.

For all the figures hereafter, initial data are:

v0 = cos(
2π

ℓ
y + π)

(
(
2

L
x+ 1)3 − (

2

L
x+ 1)2 − (

2

L
x+ 1) + 1

)
10−4,

w0 = cos(
2π

ℓ
y + π)

(
− 0.5L(

2

L
x+ 1)2 + 0.5L

)
10−4,

h0 = cos(
2π

ℓ
y + π)

(
0.25L(

2

L
x+ 1)2 + 0.5L(

2

L
x+ 1)− 0.75L

)
10−4,

where ℓ = 2π and L = 10. We have performed numerical experiments with different gamuts of
initial data without any significant difference in the fingering evolution after a brief transition
period.

We first present the evolution of sparse fingers over three spatial periods in Figs. 6.1-6.2,
respectively for U = 0.2 in Fig. 6.1 and U = 0.9 in Fig. 6.2.
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(a) t = 0 (b) t = 10 (c) t = 20

(d) t = 30 (e) t = 40 (f) t = 80

Figure 6.1. Two-dimensional evolution of the char Σ at different times t=0,
10, 20, 30, 40, 80 with ℓ = 2π, U = 0.2 and α = αc + 0.5. At t = 80, the char
pattern develops into sparse elongated fingers without tip-splitting. Propagation
from right to left. The color grading enlightens the levels of the solid product
distribution, the median level 0.6213 corresponding to the planar front.

(a) t = 0 (b) t = 10 (c) t = 20

(d) t = 30 (e) t = 40 (f) t = 50

Figure 6.2. As in Fig. 6.1, two-dimensional evolution of the char Σ at different
times t=0, 10, 20, 30, 40, with ℓ = 2π, U = 0.9 and α = αc+0.5. At t = 50, the
char develops into sparse elongated fingers without tip-splitting. The median
level 9.4912 corresponds to the planar front.
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Second, we illustrate in Fig. 6.3 the relation between the flame front, the temperature and
the char over three spatial periods at t = 200, for U = 0.2 and U = 0.9. Clearly, the fingering
pattern and the temperature profile depend on the structure of the flame front.
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(d) (e) (f)

Figure 6.3. Two-dimensional profile of the flame structure at t = 200. (a) and
(d): temperature, (b) and (e): flame front, (c) and (f): char pattern, respectively
for U = 0.2 (top) and 0.9 (bottom). Here ℓ = 2π, α = αc+0.5. The temperature
is represented in the “fresh” side x ≤ φ(t, y), whereas the char pattern lies in
the “burnt” side x ≥ φ(t, y). Near the flame front, the value of the temperature
approaches 1.

Next, Fig. 6.4 focuses on the fingers for different values of U , over two spatial periods. We
observe that the width of fingers increases as U becomes larger. For convenience, in this figure
the fingers are rotated upwards.

(a) U = 0.1 (b) U = 0.2 (c) U = 0.3
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(d) U = 0.5 (e) U = 0.7 (f) U = 0.9

Figure 6.4. Two-dimensional profiles of the char pattern for different values of
U within two periods at t = 200. Here ℓ = 2π, α = αc+0.5. The darkest part of
the charred area is viewed as the width of the finger: it increases as the scaled
flow velocity U becomes larger.

Finally, we represent the evolution of the char Σ(t, 0, y) at the flame front over two spatial
periods, for U = 0.2.

(a) t = 0 -20 (b) t = 0 - 40 (c) t = 0 - 60

(d) t = 0 -100 (e) t = 0 -150 (f) t = 0 -200

Figure 6.5. Evolution of the char pattern immediately behind the flame front
over two periods, represented in different time scales. Here ℓ = 2π, U = 0.2,
α = αc + 0.5. Propagation from bottom to top.
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PART II

In contrast to the previous part where we eliminated the (perturbation of) the front, this part
is based on a self-consistent equation for the (perturbation of) the front derived in [5]. In this
respect, we use a simplified, quasi-steady version of System (1.10)-(1.13), motivated from the
fact that not far from the instability threshold, the time derivatives exhibit a relatively small
effect: the dynamics appears to be essentially driven by the front. We perform a rescaling of
the dependent and independent variables, in the spirit of [27]. A rich dynamics appears for large
time t and spatial coordinate y, up to observing a chaotic fingering evolution.

7. The asymptotic model

7.1. Derivation of the front equation. We briefly recall some basic results of [5]: we consider
a simplified, quasi-steady version of the model, replacing (1.10)-(1.12) by

Uθx = ∆φθ, x < 0, θ = 1, x ≥ 0,

(V − φt)θx + USx = ∆φS − α∆φθ, x ̸= 0,

Σ = 0, x < 0, Σx = 0, x > 0,

with the interface conditions (1.13), namely:
√
1 + (φy)2

[
θx
]
= − exp(S),

[
Sx

]
= α

[
θx
]
,

(V − φt)
[
Σ
]
=
√
1 + (φy)2 exp(S). (7.1)

In this quasi-steady model, the dynamics appears to be essentially driven by the front which is
still an unknown of the problem. Next, we define the respective perturbations of temperature u,
enthalpy v and char σ:

θ = θ + u, S = S + v, Σ = Σ+ σ.

As in [5], in the equations satisfied by u, v and φ, we keep only linear and second-order terms
for φ, and first-order terms for u and v.

The final system for u and v reads:




Uux −∆u = (∆φ −∆)θ, x < 0,

V ux −∆(v − αu) + Uvx − φtθx = (∆φ −∆)(S − αθ), x ̸= 0,

u(0−) = [v] = 0,

Uv(0)− ux(0
−) = 1

2 (φy)
2U,

[vx] = −αux(0−).

(7.2)

Let us examine the (perturbation of the) char more carefully:

σ(t, x, y) = σ(t, 0, y), x > 0, −ℓ/2 < y < ℓ/2, (7.3)

(V − φt)σ(t, 0, y) = (1 + (φy)
2)

1
2Uev(t,0,y) − U + φtΣ. (7.4)

Keeping again only linear and second-order terms for φ, and first-order terms for v, it is not
difficult to find the relation:

V σ(0) = Uv(0)− φt

lnU
+
U

2
(φy)

2 − 1

lnU
v(0)φt +

(φt)
2

U(lnU)2
. (7.5)

To compute σ(0), hence σ, thanks to formula (7.5), the next step is to link v(0) with φ.
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Using the convenient notation γ = α− lnU , it follows from [5, Section 3.2] that φ verifies the
pseudo-differential fourth-order equation:

d

dt
U
√
U2I − 4Dyy(φ) = −4φyyyy − (γ − 1)U2φyy + F ((φy)

2), (7.6)

with

F =
1

4
(U2I − 4Dyy)

3
2 − 3

4
U(U2I − 4Dyy)− γU2

(√
U2I − 4Dyy − U

)
,

and periodic boundary conditions at y = ±ℓ/2. Actually, (7.6) is a fully nonlinear equation since
the nonlinear part F ((φy)

2) is of the same order as the linear operator. We refer to [5, Cor. 3.1]
for the nonlinear stability analysis of the null solution of (7.6). The threshold of stability occurs
at γc(ℓ) = 1 + 16π2/ℓ2U2, namely at αc, see (3.3).

Let us use the discrete Fourier transform as in Section 3.2. We setXk =
√
U2 + 4λk. According

to [5, Section 3.1]:

v̂(t, 0, k) =
2U

(Xk + U)Xk
φ̂t(t, k) +

(U −Xk)U
2γ

2X2
k

φ̂(t, k) +
4γU2Xk − 4γU3

2X2
k(Xk + U)

(̂φy)2(t, k),

which is equivalent to

1

2
X2

k(Xk + U)v̂(t, 0, k) =(XkU)φ̂t(t, k)− U2γλkφ̂(t, k)

+
1

4
(4γU2Xk − 4γU3)(̂φy)2(t, k), (7.7)

and in physical variable:

1

2
(U2I − 4Dyy)

(√
U2I − 4Dyy + U

)
v(0)

= U
√
U2I − 4Dyy φt + γU2φyy + γU2

(√
U2I − 4Dyy − U

)
(φ2

y), (7.8)

which determines v(0).

7.2. Rescaling. We define a small perturbation parameter ε > 0 by γ = 1 + ε, and rescale
dependent and independent variables accordingly:

t =
τ

ε2U2
, y =

η√
εU

, φ =
ε

U
ψ.

One links ε and the period ℓ, which will blow up as ε→ 0: for ℓ0 > 4π fixed, we take ℓ = ℓ0/
√
εU ,

hence γc(ℓ) → 1 as ε→ 0. After division by ε3 and U3 we get:

∂

∂τ

(√
I − 4εDηη

)
ψ = −4Dηηηηψ −Dηηψ

+
1

4

{
(I − 4εDηη)

3
2 − 3(I − 4εDηη)− 4(1 + ε)

(√
I − 4εDηη − I

)}
(Dηψ)

2. (7.9)

In the same way, we rescale v(t, 0, y) and σ(t, 0, y) as follows:

v(t, 0, y) = ε2v1(τ, 0, η), σ(t, 0, y) = ε2Uσ1(τ, 0, η),

therefore

V σ1(τ, 0, η) = v1(τ, 0, η) + ε

(
− ψτ

lnU
+

1

2
(ψη)

2

)
+ o(ε) (7.10)
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(we will forget the lower order terms hereafter). According to (7.8):

1

2

{
(I − 4εDηη)

(√
I − 4εDηη + I

)}
v1(0)

= ε
∂

∂τ

(√
I − 4εDηη

)
ψ + γDηηψ + ε

1

4

{
4(1 + ε)

(√
I − 4εDηη − I

)}
(Dηψ)

2. (7.11)

8. Numerical method for the asymptotic model

Let us briefly recall the method in [5] for solving (7.9). First, we set ζ = η/2ℓ̃0 + π (where

ℓ̃0 = ℓ0/4π) to reformulate (7.9) on the interval [0, 2π). Next, we define the bifurcation parameter

β = 4ℓ̃0 (see also [16]) and rescale the time by setting t′ = τ/β2. For simplicity we denote ε/β
by ϵ. Then, omitting the prime, (7.9) becomes:

∂

∂t

(√
I − 4ϵDζζ

)
ψ = −4Dζζζζψ − βDζζψ

+
β

4

{
(I − 4ϵDζζ)

3
2 − 3(I − 4ϵDζζ)− 4(1 + ε)

(√
I − 4ϵDζζ − I

)}
(Dζψ)

2. (8.1)

Similarly, we have

1

2
β2
{
(I − 4ϵDζζ)

(√
I − 4ϵDζζ + I

)}
v1(0) =ε

∂

∂t

(√
I − 4ϵDζζ

)
ψ + γβDζζψ

+ ε
β

4

{
4(1 + ε)

(√
I − 4ϵDζζ − I

)}
(Dζψ)

2,

(8.2)

and (7.10) yields:

V σ1(t, 0, ζ) = v1(t, 0, ζ) +
ε

2β
(ψζ)

2 − ε

β2

ψt

lnU
. (8.3)

Now we are in position to implement a numerical method to solve (8.1), (8.2) and (8.3). As
in [5], we use a Fourier spectral method to solve these periodic problems. After discretizing
(8.1) in time by a semi-implicit first order scheme which treats implicitly the linear terms and
explicitly the nonlinear terms, then taking the discrete Fourier transform, the discrete Fourier
coefficient of ψn+1 is determined by:

ψ̂n+1
k =

(
(1 + 4ϵk2)

1
2 + 4k4∆t− βk2∆t

)
−1

×
(
(1 + 4ϵk2)

1
2 ψ̂n

k (8.4)

+
β∆t

4

{
(1 + 4ϵk2)

3
2 − 3(1 + 4ϵk2)− 4(1 + ε)[(1 + 4ϵk2)

1
2 − 1]

}{
[(ψx)

n]2
}
k

)
,

together with the initial condition given by ψ(0, ·) = ψ0. Similarly, the discrete Fourier coefficient
of v1 at x = 0 is determined by:

1

2
β2
{
(1 + 4ϵk2)

(√
1 + 4ϵk2 + 1

)}
̂{v1(0)}

n+1

k = ε
(√

1 + 4ϵk2
) ψ̂n+1

k − ψ̂n
k

∆t

− (1 + ε)βk2ψ̂n+1
k + ε

β

4

{
4(1 + ε)

(√
1 + 4ϵk2 − 1

)}
{[(ψx)

n+1]2}k, (8.5)

where {(ψx)
2}k represents the k-th Fourier coefficient of (ψx)

2. It yields:
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̂{v1(0)}
n+1

k =
2

β2

(
(1 + 4ϵk2)(

√
1 + 4ϵk2 + 1)

)
−1

×
(
ε(
√
1 + 4ϵk2)

ψ̂n+1
k − ψ̂n

k

∆t

− (1 + ε)βk2ψ̂n+1
k + ε

β

4

{
4(1 + ε)

(√
1 + 4ϵk2 − 1

)}
{[(ψx)

n+1]2}k
)
, (8.6)

with the initial ̂{v1(0)}
0

k given by

̂{v1(0)}
0

k =
2

β2

(
(1 + 4ϵk2)(

√
1 + 4ϵk2 + 1)

)
−1

×
(

− (1 + ε)βk2ψ̂0
k + ε

β

4

{
4(1 + ε)

(√
1 + 4ϵk2 − 1

)}
{[(ψx)

0]2}k
)
.

Once ψ and v1(0) are computed and plugged into (8.3), we get:

σn+1
1 (0) =

1

V
vn+1
1 (0) +

ε

2βV
(ψn+1

ζ )2 − ε

β2V lnU

ψn+1 − ψn

∆t
.

Finally, we compute

Σ = Σ + σ = − 1

lnU
+ σ(0) = − 1

lnU
+ ε2Uσ1(0).

As far as the temperature is concerned in this part, we recall the results in [5, Section 3.1],
namely:

û(t, x, 0) = −U (̂φy)2(t, 0)xe
Ux, x ≤ 0,

û(t, x, k) = U(λk)
−1
(
U (̂φy)2(t, k) + λkφ̂(t, k)

) (
eUx − eνkx

)
, x ≤ 0, k ≥ 1.

According to the relation θ = θ̄ + u, we may recover θ immediately.

9. Figures (II)

As in Section 6, in view of a better representation of the char Σ(t, x, y), of the char at the
front Σ(t, 0, y) and of the temperature θ, we return to the original “physical” coordinates (x, y)
in which the front is moving. Also we only represent the perturbation φ(t, y) of the planar front
and its immediate neighboring.

The initial data are as follows:

(i) cos
(
U( ε

β )
1
2 y + π

)
in Figs. 9.1-9.3 and in Fig. 9.5;

(ii) cos
(
U(ε/β)

1
2 y + π

)(
1 + sin

(
U(ε/β)

1
2 y + π

))
in Fig. 9.4 and in Figs. 9.6-9.10.

We illustrate in Figs. 9.1-9.5 the sparse finger evolution in time for different values of β:
10, 30, 62 and 100 respectively in Figs. 9.1-9.3 and 9.5, and β = 62 in Fig. 9.4. Chaotic fingering
evolution in time is observed in Fig. 9.6 for β = 400. Inspection of these figures reveals that the
number of fingers depends upon the values of the bifurcation parameter β: larger β’s correspond
to a richer dynamics. Hereafter we use the notation: T0 = β2ε−2U−2.
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(a) t = 0 (b) t = 1.0e-02 T0 (c) t = 1.0e-01 T0

(d) t = 2.0e-01 T0 (e) t = 3.0e-01 T0 (f) t = 4.0e-01 T0

Figure 9.1. Two-dimensional evolution of the char Σ at different times with
initial datum (i). Here β = 10, U = 0.9, ε = 0.01. Following a transition period
(a) to (e), the char pattern develops into a single finger without tip-splitting (f).
Propagation from right to left. The median level 9.4912 of the color grading
corresponds to the planar front.

(a) t = 0 (b) t = 2.8e-02 T0 (c) t = 4.0e-02 T0

(d) t = 5.0e-02 T0 (e) t = 6.0e-02 T0 (f) t = 8.0e-02 T0

Figure 9.2. As Fig. 9.1, with larger β = 30. After a transition period (a) to
(e), the char pattern develops into two elongated fingers without tip-splitting
(f).
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(a) t = 0 (b) t = 1.4e-02 T0 (c) t = 1.8e-02 T0

(d) t = 2.0e-02 T0 (e) t = 3.0e-02 T0 (f) t = 4.0e-02 T0

Figure 9.3. As in Fig. 9.1, with larger β = 62. After a transition period (a)
to (e), the char pattern develops into three elongated fingers without tip-splitting
(f).

(a) t = 0 (b) t = 6.0e-03 T0 (c) t = 1.0e-02 T0

(d) t = 1.2e-02 T0 (e) t = 1.5e-02 T0 (f) t = 2.5e-02 T0

Figure 9.4. As in Fig. 9.3, with initial datum (ii). After a transition period (a)
to (e), the char pattern develops into three elongated fingers without tip-splitting
(f).
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(a) t = 0 (b) t = 9.0e-03 T0 (c) t = 1.3e-02 T0

(d) t = 1.5e-02 T0 (e) t = 1.6e-02 T0 (f) t = 1.9e-02 T0

Figure 9.5. Again as in Fig. 9.1, with larger β = 100. After a transition
period (a) to (e), the char pattern develops into four elongated fingers without
tip-splitting (f).

(a) t = 0 (b) t = 3.0e-04 T0 (c) t = 5.0e-04 T0

(d) t = 6.0e-04 T0 (e) t = 7.0e-04 T0 (f) t = 8.0e-04 T0
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(g) t = 5.0e-03 T0 (h) t = 1.0e-02 T0 (i) t = 5.0e-02 T0

Figure 9.6. Two-dimensional evolution of the char Σ at different times. Here
β = 400, U = 0.9, ε = 0.01. After a transition period (a) to (e), the char pattern
develops into chaotic fingering with tip-splitting (f). Compared with previous
figures, collage of chaotic fingering patterns shown in (g), (h) and (i) exhibits a
richer dynamics.

The following figures are the analogue of Fig. 6.3 of Part I: we illustrate the relation between
the flame front, the temperature and the char.
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Figure 9.7. Two-dimensional profile of the flame structure at t = 0.2T0. (a)
and (d): temperature, (b) and (e): flame front, (c) and (f): char pattern, re-
spectively for U = 0.2 (top) and 0.9 (bottom). Here β = 256 and ε = 0.01.
The temperature is represented in the “fresh” side x ≤ φ(t, y), whereas the char
pattern lies in the “burnt” side x ≥ φ(t, y).
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Figure 9.8. As in Fig. 9.7, two-dimensional profile of the flame structure at
t = 0.5T0. (a) and (d): temperature, (b) and (e): flame front, (c) and (f): char
pattern, respectively for U = 0.5 (top) and 0.9 (bottom).

Finally, in Fig. 9.9, we show the evolution of the char Σ(t, 0, y) at the front with β = 400, and
afterwards for different values of U in Fig. 9.10. It is interesting to remark that these figures are
very similar to Fig. 1.1(d), observed by Zik and Moses [36].

(a) (b) (c)

Figure 9.9. Char pattern at the flame front, for different time scales. Here
β = 400, U = 0.9, ε = 0.01. Propagation from bottom to top. Lighter colors
correspond to more advanced parts of the char at the flame front.
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(a) U = 0.2 (b) U = 0.5 (c) U = 0.9

Figure 9.10. Evolution of the char at the flame front for different values of U
and β = 400, ε = 0.01.
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