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Abstract: We introduce in this paper the class of dynamical 2-complexes. These complexes
allow in particular to obtain a topological representation of any free group automorphism.
A dynamical 2-complex can be roughly defined as a special polyhedron (see [17]), or stan-
dard 2-complex (see [5]), equipped with an orientation on its 1-cells satisfying two simple
combinatorial properties. These orientations allow to define non-singular semi-flows on the
complex. The relationship with the free group automorphisms is done via a cohomological
criterion to foliate the complex by compact graphs.

Introduction

At the origin of this work, there was the question of how to associate a notion
of dynamics (symbolic or combinatorial) to a finitely presented-group. Since any
such group is the fundamental group of a finite 2-complex, I was first interested in
introducing a dynamic on a finite 2-complex. A wide class of 2-complexes carrying
some kind of dynamic is obtained via the suspension, or mapping-torus construction.
This construction consists, when given a continuous map f of a topological space
X, of taking the cartesian product X x [0, 1] quotiented by the equivalence relation
(z,1) ~ (f(z),0). When applied to a continuous map v of a graph I, this gives
rise to a 2-complex, whose fundamental group admits a presentation of the form
< Ty, Tyttt = Py (x;) >, where m(T') =< z1,- -+, 2, > and Yy m (T') —
m1(T") is an endomorphism induced by . Such groups are called mapping-torus, or
suspension groups. The dynamic on these suspended 2-complexes appears under the
form of a non-singular semi-flow, whose orbits are unions of intervals {z} x [0, 1],
x € I, glued together by the map .

Non-singular semi-flows seemed then to be quite natural dynamical objects for my
purpose. Indeed, in addition of the above remark, several classes of 2-dimensional
complexes carrying non-singular semi-flows had already been studied. These were
the templates of Williams (see [25] or [4] for instance) and the dynamic branched
surfaces of Christy (see [6, 8]). Both have their roots in the notion of branched
surface introduced by Williams in [24]. However, on one hand, the fundamental
groups of templates are only free groups. On the other hand, because their semi-
flows come from hyperbolic flows, these authors always assume the existence of a



differentiable structure on the complexes. But most of the 2-complexes constructed
via the suspension operation do not admit such a smooth structure in an obvious
way. Thus, it is far from clear that the class of dynamic branched surfaces allow to
obtain all the mapping-torus groups. The main feature of the dynamical 2-complexes
introduced in this paper is to substitute to the above condition of smoothness, not
natural from an algebraic point of view, easy combinatorial properties which allow
the definition of a non-singular semi-flow. In section 5.1, the reader will find a more
complete discussion about the relationship between dynamical 2-complexes and the
different kinds of 2-complexes presenting some dynamical aspect.

The 2-complexes considered here have their origins in a particular class of complexes
introduced by Casler, Ikeda or Matveev (see [5, 16, 17]), called standard complexes,
closed fake surfaces or special polyhedra. The difference between a standard complex
and a closed fake surface is essentially the assumption, for a standard complex, to
admit an embedding in some compact 3-manifold. A standard complex is a special
2-polyhedron whose complement of the set of singular points is a union of disjoint
2-cells, a singular point being a point where the complex is not a surface. This
kind of 2-complexes was introduced by Casler for the study of compact 3-manifolds
with boundary. He proved in particular that any such manifold is the “thickening”
of a standard complex. Later, any finitely generated group was proved to be the
fundamental group of a closed fake surface (see [26]).

Definitions and basic results about dynamical 2-complexes are stated in section 1.2.
Roughly speaking, a dynamical 2-complex is combinatorially a special polyhedron,
whose complement of the singular set is a union of discs, annuli and Moebius-bands,
and which is moreover equipped with an orientation on its singular 1-cells, satisfying
two simple combinatorial properties. This orientation allows to define a non-singular
semi-flow by giving, in some sense, its direction (see section 4).

The dynamical 2-complexes stand then at the cross-roads of different branches of
mathematics such as combinatorial group theory or 3-dimensional topology. Since
the introduction of the dynamic on these complexes only depends of their combina-
torics, a natural question is to understand what are the relationships between the
combinatorics of the complex, the properties of the dynamical systems (K, o;), the
fundamental group of the complex and the topology of the underlying manifold, if
any. In particular, from what precedes, two immediate questions in mind are on
one hand to know whether or not all the mapping-torus groups are the fundamental
group of some dynamical 2-complex, and on the other hand to have a criterion to
decide if a given dynamical 2-complex is the suspension of a graph-map.

Since a long time, the suspension, classicaly applied to a homeomorphism h of a
compact manifold M™, has been of central interest as well in topology than in dy-
namical systems. From a topological point of view, the (n + 1)-manifolds M™*!
obtained in this way share the property to admit a non-singular, transversely ori-
entable codimension 1-foliation with compact leaves homeomorphic to M™. In other
words, there exists a locally trivial fibration over the circle, with fiber M™, and with
monodromy the isotopy-class of h. From a dynamical point of view, this is equivalent
to the existence of a non-singular flow (¢¢),.g on M "+l admitting a cross-section
homeomorphic to M™, with return-map the homeomorphism h. Many authors have
been interested in caracterizing flows admitting cross-sections or manifolds admit-
ting foliations with compact leaves (see for instance [10] or [23]).

In section 3, we study a similar situation in our CW-complex context. We first adapt
the notion of foliation to our complexes (see section 2.2). We then give a necessary
and sufficient criterion, of both combinatorial and cohomological nature, for the



complex considered to admit a transversely orientable foliation by compact graphs
which have all the same Euler characteristic. This Euler characteristic condition is
substituted to the requirement that all the leaves are homeomorphic, which would
be a too strong restriction. We so caracterize, by a finite and effective criterion
depending only on the combinatorics of the complex (see remark 5.4) the existence
on a given flat 2-complex of a dynamical system (K, o) which is the “suspension”
of a dynamical system (K’,h) where K’ is a graph and h a continuous map of K’
(the return-map of the semi-flow o, on K'). We show that, when considering regular
foliations, some semi-flow (0¢),.g+ transverse to the leaves of the foliation induces
an automorphism on the fundamental group of a leaf K’. Moreover, this automor-
phism appears as a composition of Whitehead moves.

One states below weak versions of our main results.

Theorem 0.1 A dynamical 2-complex K admits a transversely orientable reqular
foliation F by compact graphs which have all the same Euler characteristic, if and
only if K admits a positive cocycle u € C1(K;Z). The complex K is then homo-
topically equivalent to the suspension of a continuous map v of a trivalent graph T,
which decomposes in Whitehead mowves. In particular, the fundamental group of K
is the suspension of an automorphism of the free group F,, m1(T') = F,,.

Theorem 0.2 For any continuous map ¥ of a trivalent graph, which admits a
decomposition in Whitehead-mowves, there is a dynamical 2-complex homotopically
equivalent to the suspension of ¥, and which admits a positive cocycle. In particu-
lar, any group which is the mapping-torus of some free group automorphism is the
fundamental group of some such dynamical 2-complez.

The proof of this last theorem is constructive. Theorem 0.1 above can be considered
as an analog, in our CW-complex setting, of the already mentioned result of Tischler
on the existence of foliations with compact leaves on manifolds (see [23]). Further
analogy with the manifold-context, and more precisely with the Thurston norm on
the homology of 3-manifolds (see [21]), can be found in the fact that the whole set
of non-negative cocycles form a cone (see remark 5.4), in the same way that the set
of cohomology classes in H'(M?3;Z) form cones over some faces of a well-defined
convex polyhedron. This last analogy perhaps deserves to be examined in detail.

As a corollary of theorem 0.2, one has the following result:

Theorem 0.3 Any free group automorphism is represented by a positive cocycle of
some dynamical 2-complex (see proposition 3.9 and corollary 3.10).

One so obtains a class of topological 2-dimensional objects which represents all the
free group automorphisms (see also [14] for the case of injective, non-surjective free
group endomorphisms). In a paper in preparation, we give another proof by means
of a different construction. We obtain there in particular a combinatorial construc-
tion for the suspension of any pseudo-Anosov homeomorphism of a compact surface
with boundary. Finally, an other paper is to come, in which one considers more
closely the problem of finding sections to semi-flows on dynamical 2-complexes.
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1 Flat and dynamical 2-complexes

1.1 Preliminaries

We introduce here the various objects and concepts used in the next sections. The
main point is the definition of a dynamical 2-complez (see definition 1.2).
If U is an open or closed subset of a topological space X, the boundary of U is the

set U— [}, where U (resp. ﬁ) denotes the closure (resp. the interior) of U in X. A
path (resp. loop) in X is a locally injective continuous map from the interval (resp.
circle) to X.

We assume that the reader is familiar with basic notions about CW-complezes (see
for instance [18]). All our complexes are piecewise-linear and, unless otherwise
stated, connected, finite and compact.

The 0-cells (resp. 1-cells) of a CW-complex are called the vertices (resp. edges) of
the complex. If e is an oriented edge, then e is said to be an incoming edge at its
terminal verter t(e) and an outgoing edge at its initial vertex i(e). Observe that an
oriented edge e can be both incoming and outgoing at a same vertex, if this edge is
a loop.

A graph is a 1-dimensional CW-complex. A path or loop in a graph I is positive
(resp. negative) if it is oriented such that its orientation agrees (resp. disagrees) at
any point with the orientation of the edges that it intersects.

The j-skeleton KU) of a n-dimensional CW-complex K (0 < j < n) is the union
of all the cells in K whose dimension is less or equal to j. Clearly K™ = K. The
boundary of a n-dimensional CW-complex K is the closure in K of the union of all
the (n — 1)-cells of K which are contained in the closure of exactly one open n-cell.

The points which do not belong to the boundary of K form the interior I% of K.
We will denote by Con(X) the cone over a space X, that is the space X x [0, 1],
where X x {1} is identified to a single point. Finally, we denote by A® the closed
3-dimensional simplex.

Let I" be a graph and let ¢:I' — I' be a continuous map. We denote by Suspy(I')
the 2-complex I' x [0, 1] /((x, 1) ~ (¢(x),0)). This 2-complex is called the suspension,
or mapping-torus, of the map v of I'.

If F,, =<z, -+, x, > is the fundamental group of I', the fundamental group of the
mapping-torus Suspy (I') admits a presentation of the form < 1, -+, zy,1 ; trit =
Yu(x;),i = 1,---,n >, where ¢y:m(I') = m((I') is an endomorphism induced by
¢ on m1(I'). One says that the group m (Suspy(K)) is the suspension, or mapping-
torus, of the endomorphism O of m(K). In the case where 4 is an automorphism,
m1(Suspy (")) is the semi-direct product of F,, with Z over 1.

1.2 Basic definitions

We first recall the notion of standard complex introduced by Casler (see [5] and also
[17, 1, 20, 26]), and we introduce the derived notion of flat 2-complez.



Following [17], we call special 2-polyhedron a piecewise-linear 2-complex satisfying
the following property: For any point z € K, there is a neighborhood N(z) of z
in K, a neighborhood N(y) of a point y in the interior of Con((dA%)(M), and a
homeomorphism h,: N(z) — N(y) such that h,(xz) = y. If one allows the point
y to belong to the boundary of Con((dA3)(M), one obtains a notion of special 2-
polyhedron with boundary. The points & which are in the boundary of K are those
such that h,(z) is in the boundary of Con((dA3)(1)). Unless otherwise stated, the
complexes considered have no boundary.

Let K be a special 2-polyhedron, possibly with boundary. The singular graph K S(iIT)lg
is the closure in K of the set of points  whose image under h, belongs to a 1-cell
of the interior of Con((dA3)(1). The set of crossings K i?%g is the set of points z of

K such that h,(z) is the base of Con((dA%)(1). We set K = K. The connected

sing
components of KS(ZLJD - Ks(gg, 0 < m < 1, are called the (m + 1)-components of
the complex (the 0-components are the crossings).
With this terminology, a standard 2-complex, as defined by Casler, is a special 2-
polyhedron whose all 2-components are 2-cells. We will call flat 2-complex a special

2-polyhedron whose 2-components are either 2-cells, annuli or Moebius-bands.

Figure 1: Non-singular and singular points in trivalent graphs and flat 2-complexes
In the following lemma, we gather some easy observations on flat 2-complexes.
Lemma 1.1 Let K be a flat 2-complex, possibly with boundary.

1. Let ¢ be any point in K, distinct from a crossing. A neighborhood of x in
K is homeomorphic to a cartesian product of a triod with the interval if x is
singular, and to a cartesian product of two intervals otherwise (see figure 1).

2. There are 4 germs of l-components in K incident to each crossing and 6
germs of 2-components. There are 3 germs of 2-components incident to each
1-component of K. Any germ of 2-component at a crossing v contains exactly
two germs of 1-components of K at v. Any pair of germs of 1-components at
v s contained in exactly one germ of 2-component.

3. In particular, the singular graph of a flat 2-complex is a, possibly not connected,
compact 4-valent graph, i.e. with 4 edges incident to each crossing.

Important: Let K be any flat 2-complex. Then K admits a canonical structure of
CW-complex defined as follows: The vertices are the crossings of the complez, to-
gether with a set of valency 2-vertices, one for each connected component of KS(il,)lg
which is a loop without any crossing. The edges are the 1-components of the com-
plex, together with a set of valency 2 edges, one in each 2-component which is not



a disc. We will always assume that our flat 2-complexes K are equipped with this
canonical structure of CW-complez, and their singular graph K Lgil,)lg with the induced
structure. In particular, the edges of Kgr)bg are the 1-components of K. This causes
no loss of generality for our purpose.

Let K be a flat 2-complex, together with an orientation on the edges of the singular
graph. Let C' be any 2-component or 2-cell of K. We will say that C' contains an

attractor (resp. a repellor) in its boundary if there is a crossing v of K and a germ

9v(C) of C at v such that the two germs of edges of Kg)tg at v contained in g¢,(C)
(see lemma 1.1, item (2)) are incoming (resp. outgoing) at v. We will say that the
crossing v above is or gives rise to an attractor (resp. a repellor) for C (and for the
given orientation). Observe that a same crossing v can give rise to k > 1 attractors

or repellors in the boundary of a same component or cell C.

All the tools needed for the definition of a dynamical 2-complex have been given.

Definition 1.2 A flat dynamical 2-complez is a flat 2-complex K together with an
orientation on the edges of the singular graph K S,)lg satisfying the following two
properties:

ey

1. Each crossing of K is the initial crossing of exactly 2 edges of K sing®
2. Any 2-component which is a 2-cell has exactly one attractor and one repellor
for this orientation in its boundary. The other components have no attractor

and no repellor in their boundary.

A standard dynamical 2-complez is a flat dynamical 2-complex which is also a stan-
dard 2-complex.

The following lemma is easily deduced from the definition of a dynamical 2-complex.

Lemma 1.3 Let K be a flat dynamical 2-complex. Then the boundary circles of

the annuli and Moebius-band components are positive loops in K S(gzg.
1

where p and q are two positive

The boundary
circle of a disc component D decomposes as pq~
paths in K (1) of initial point the repellor of D and of terminal point its attractor.

sing

SO

Figure 2: 2-components in a dynamical 2-complex

q

Remark 1.4 By definition of a flat dynamical 2-complex, the boundary circles of
the annulus and Moebius-band components inherit an orientation from the orienta-
tion of the edges of the singular graph. If these orientations of the two boundary
circles of a same annulus component agree, then this annulus component is called a
coherent annulus component. Otherwise, it is an incoherent annulus component.



A crossing in a flat 2-complex which is the terminal crossing of exactly j edges,
0 < j < 4, will be called a type j-crossing. In a flat dynamical 2-complex, by
definition, there are only type 2-crossings.

Remark 1.5 Let K be a flat 2-complex and let v be a type j-crossing. Then v gives
rise to 1 attractor and 1 repellor in the set of the boundaries of the 2-components
if 7 = 2, 0 attractor (resp. repellor) if j < 2 (resp. j > 2) and 3 repellors (resp.
attractors) if j = 1 (resp. j = 3) or 6 repellors (resp. attractors) if j = 0 (resp.
j =4). This comes from lemma 1.1, item (2).

It is not true that any flat 2-complex admits an orientation which makes it a dy-
namical 2-complex. The following proposition gives a property satisfied by any flat
dynamical 2-complex.

Proposition 1.6 The Euler characteristic of a flat dynamical 2-complex is zero.

Proof of proposition 1.6: Let K be a flat dynamical 2-complex. Let X; be the num-
ber of crossings of K, X2 the number of 1-components whose closure in K contains
a crossing and X3 the number of disc components. Then, the Euler characteristic
X(K) is equal to X7 — X2+ X3. By lemma 1.1, the singular graph is 4-valent. Thus,
X9 = 2% X;. Therefore x(K) = X3 — X;. Furthermore, by item (1) of definition 1.2
and remark 1.5, each crossing of K gives rise to exactly one attractor and one re-
pellor in the set of boundaries of disc components. Item (2) of definition 1.2 implies
then that X; = X3. This completes the proof of proposition 1.6. <

2 Cocycles, embeddings and foliations

2.1 Homology of flat complexes

We assume that the reader is familiar with the homology of CW-complexes (see for
instance [18]). We just recall and introduce here some notions which will be needed
later.

Let us first remind that the singular graph K S)Lg of a complex K is always assumed
to be equipped with a structure of CW-complex whose O-cells are the crossings of
K, together with a set of valency 2-vertices in the loops containing no crossing, and
whose 1-cells are the 1-components of K. Furthermore, these edges and vertices of
K g)bg are the only edges and vertices of K contained in K s(l-lr)Lg.
Let K be a flat 2-complex. An integer cocycle will denote a cocycle in C*(K; Z), that
is a finite collection of integer weights on the edges of the complex whose algebraic
sum along the boundary circles of the 2-cells of K is zero.

The following definitions are stated for any flat 2-complex, but they will be con-
sidered only in the case of dynamical 2-complexes. Let us recall that, in this case,
the edges of the singular graph of the complex are equipped with a well-defined

orientation (see definition 1.2).

Definition 2.1 Let K be a flat 2-complex, together with an orientation on the
edges of its singular graph.

1. A non-negative cocycle in C1(K;Z) is an integer cocycle u such that u(e) > 0

holds for any edge e in the singular graph K (1)

sing and there is at least one such
edge e with u(e) > 0.



2. A positive cocycle is a non-negative cocycle which is positive on all the positive

: (1)

embedded loops in Kging:

The §,-mowves defined below consist of removing 1 from the value of an integer cocycle

u on each incoming edge at some crossing v of a flat 2-complex K, and adding 1 to
its value on the outgoing one. More precisely:

Definition 2.2 Let K be a flat 2-complex. Let u € C1(K;Z) be a cocycle and let
v be any crossing of K.

A §,-move is the map §,: C1(K;Z) — C(K;Z) defined by:

(6y(w))(ei) = u(e;) — 1 for all the incoming, non-outgoing 1-cells e; of K at v,
(0u(w))(f;) = u(f;) + 1, for all the outgoing, non-incoming 1-cells f; of K at v,
(6u(w))(z) = u(z) for all the other 1-cells z in K1),

Remark 2.3 The image of a cocycle by a d,-move is a cocycle. Furthermore, two
integer cocycles v’ and u of a flat 2-complex K which are obtained one from the
other by a finite sequence of §,-moves are cohomologous.

Definition 2.4 With the assumptions and notations of definition 2.2,
A non-negative §,-move on a non-negative cocycle u is a §,-move on w such that
dy(u) is non-negative.

Remark 2.5 We call non-negative (resp. positive) a cohomology class c € H(K;Z)
such that ¢(I) > 0 (resp. ¢(I) > 0) holds for any positive embedded loop [ in KW

sng’
Any non-negative integer cocycle defines a non-negative cohomology class. Tlfe
converse is true, that is: Let K be a flat dynamical 2-complex. Any non-negative
cohomology class in H'(K;Z) is represented by a non-negative cocycle in C1(K;Z).
Since this is not essential here, and the proof is rather long and combinatorial, we
postpone this proof to another paper to come, where this result appears to be of

greater importance.

2.2 Embeddings and Foliations

We will say that a graph I'; embedded in a flat 2-complex K is c-transverse to an
embedded graph I'y if, for any x in I'; N T'e, for any small neighborhood N(z) of z
in K, for any isotopy j; (resp. j2), t € [0,1], of I'; (resp. of I'7) in K with support
in N(z), jt(T'1) N j2(I'y) is non-empty. If I'; and Iy are not c-transverse at some
point z € T'; NT'y, they are c-tangent (at x).

By definition of a flat 2-complex K, for any 2-component C' of K, there is a compact
surface with boundary S¢, and a continuous attaching-map hc: Sc — C, which is
a homeomorphism from its interior onto C' and which sends its boundary to the
boundary of C' in K. In particular, S¢ is either a disc, an annulus or a Moebius-
band according to the homeomorphism type of C.

Definition 2.6 A regular foliation F of a flat 2-complex K is a decomposition of K
in disjointly embedded, possibly non finite, graphs, called the leaves of F, satisfying
the following properties:

1. If C is any annulus or Moebius-band component, then h61 (FNC) is a non-
singular foliation of S¢ by intervals transverse to the boundary.



2. If C is any disc component, then hal (FNC) is a foliation of S¢ with exactly
two leaves reduced to two points in the boundary of S¢, and which is transverse
to the boundary of S¢ outside these two points. Furthermore:

(a) The images of these two points under h¢ are one or two crossings of K.

(b) The foliation hy'(F N C) is a non-singular foliation by lines of S.

Let us consider any leaf of a regular foliation of a flat 2-complex K. This leaf is the
image in K under a particular kind of embedding of a possibly non-finite graph. This
kind of embeddings of a graph will be called r-embeddings. If the graph contains a
crossing of the complex, then the r-embedding is called degenerate. The following
lemma is a direct consequence of this definition, and caracterizes the r-embeddings.

Figure 3: A r-embedding

Lemma 2.7 Let ' be a graph which is r-embedded in a flat 2-complex K.

1. The crossings of I' belong to the singular graph K S(ilr)bg. Any intersection point
of I with an open 1-component of K is a crossing of I

2. FEach crossing x of I' interior to an edge e of KS(;)LQ has exactly three incident

germs of edges of I', one in each germ of 2-component of K incident to e.

3. Ifv is a crossing of K contained in I', and if Nr(v) denotes a neighborhood of
v in ', then Np(v) — v has at most siz connected components, at most one in
each germ of 2-component of K at v.

Conversely, any graph embedded in K and satisfying the properties above is the image
of a r-embedding. In particular, a graph which is r-embedded in K is c-transverse

to the singular graph of K.

Let K be a flat 2-complex. We need in the sequel of the papers the notions of being
2-sided, transversely orientable and transversely oriented for a graph r-embedded
in K, or, with respect to the two last notions, for a regular foliation of K. All
the definitions are adapted in a more or less straightforward way from the same
usual definitions for surfaces embedded in compact 3-manifolds, and non-singular
foliations of such manifolds, and moreover agree with the intuition. For the sake of
brievety, we thus leave these small adaptations to the reader. However, it may be
worthwhile being aware of remark 2.8 below.

Remark 2.8 Let K be a flat 2-complex and let p be a r-embedding of a graph I
in K. Assume that I' is compact. Then p(I') is 2-sided in K if and only if there is
a neighborhood N (p(T')) of p(T') in K such that:



N (p(T'))—p(T') has two connected components C_ and C which are trivial I-bundles
respectively over I'_ and I'y, where I'_ and I'; are two graphs r-embedded in K (in
a non-degenerate way).

If p is a non-degenerate r-embedding, being 2-sided is equivalent to require that
there is a neighborhood of p(I') in K which is the trivial I-bundle over p(I'). One
thus has the usual notion of being 2-sided for a surface in a 3-manifold.

In what follows, we will often omit the embedding map p and speak of a graph I’
embedded in K.

Lemma 2.9 Let K be a flat 2-complex. Any cocycle u € C1(K;Z) defines a trans-
versely oriented graph K, which is r-embedded in K. Furthermore, at each point
x € Ky,Ne, where e is any 1-cell of K, the transverse orientation to K, agrees with
the orientation of e if u(e) > 0 and disagrees otherwise.

Conversely, any transversely oriented graph K, r-embedded in K in a non-degenerate
way defines a unique cocycle in u € C1(K;Z).

Proof of lemma 2.9: Let e be any edge of the 1-skeleton of K with u(e) = =*k,
k> 0. Let x1,-- -,z be k points in e, each with a weight of +1 or —1 according to
whether u(e) = +k or u(e) = —k. Let j be the smallest integer such that the points
x; belong to K gr)bg. By lemma 1.1, the neighborhood of any x; is homeomorphic to
X; x [0,1], where X; is either an interval if x; is non-singular, or a triod otherwise.
One considers now around each z; an embedded piece X; x {t;}, t; € [0,1]. One
does the same thing for any edge in K(1). By definition of a cocycle with coefficients
in Z, the germs of 1-cells in these X; can be connected by 1-cells embedded in the
corresponding 2-cells of K. Moreover, these 1-cells are equipped with a transverse
orientation which agrees at x; with the orientation of e if the weights are positive
and disagrees otherwise.

If all the 1-cells so embedded in a same 2-cell of K are not disjointly embedded,
then classical cut-and-paste technics respecting the transverse orientation allow to
obtain an embedded complex in K. By construction, this complex is the image in K
of a r-embedding of a graph. It is also transversely oriented, the values u(e) being
its intersection numbers with the oriented edges e of the singular graph. This last
remark allows to prove the converse assertion. <

Remark 2.10 The definitions of r-embedding and regular foliation are adapted to
the case of flat 2-complexes with boundary, by imposing that a leaf of a foliation,
i.e. a r-embedded graph, in such a complex is either disjoint from the boundary, or
is a connected component of this boundary.

2.3 Whitehead moves and Elementary Foliated complexes

If f is a map from a graph I to a graph I/, we will write ~ the equivalence relation
defined by x ~¢ y if and only if f(z) = f(y). We will denote by m¢:I' — I'/ ~¢ the
associated projection-map. If e is an edge of I', we write ~, for the relation = ~. y
if and only if z and y are in e. By a collapsing C, from a graph I' to a graph I",
we will mean the projection-map I' — '/ ~, with T'/ ~.=I"". This is a homotopy
equivalence if the closure of e is not a loop. We will call splitting S, at a vertex
v of a graph I' a continuous map from I' to a graph I, which is an inverse, up to
homotopy, of some collapsing C, from I'' to I". We will call Whitehead-move from a
graph I" to a graph I'' a composition Sc.(e) © Ce where the splitting Sc, (¢) is not a
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homotopy-inverse of the collapsing C. (see figure 5). A Whitehead-move is clearly a
homotopy equivalence. The motivation for their introduction is explained by lemma
2.15 below (see also proposition 3.9).

Definition 2.11 1. A dynamic collapse from a graph I' to a graph I is a con-
tinuous deformation 7y, t € [—1,0], such that:

e For any —1 < ¢t < 0, the map f£:I' — I' is the identity outside a con-
tractible neighborhood of e in I which does not contain any vertex distinct
from i(e) and t(e).

e If he:e — [—1,1] is some homeomorphism, then f{; is equal to h, t(—the).

e The map mye is the collapsing Ce: ' — T".

2. A dynamic splitting from a graph I' to a graph I' is a continuous deformation
ST — T, t € [0, 1], such that:
e I'"=T and SY:T — T is the identity-map.
e For any t > 0, I'* =" and S is a splitting at v from I to I".

Definition 2.12 A dynamic W-move from a graph I' to a graph I is a continuous
deformation W!:T' — I'', t € [—1, 1] satisfying the following properties:

1. For t € [-1,0], W! is a dynamic collapse mge:I' = T'/ ~ye, and for ¢ € [0, 1],
W! is a dynamic splitting Sfrfe(e): me(l) — It
0

2. The map S}rfe(e) omye is a Whitehead-move We from I' to .
0

Definition 2.13 Let W!, t € [-1,1], be a dynamic W-move from a graph T to a
graph I".

1
The 2-complex Crr = U WX(T) is called an elementary foliated 2-complex.
t=—1

See figure 4 or 5.

SN
X

Figure 4: A Whitehead-move I

These elementary foliated complexes will be the basic pieces in the construction of
a transversely orientable regular foliation of a dynamical 2-complex, starting from a
positive cocycle of the complex (see lemma 2.15 and proposition 3.8). They are also
used in proposition 3.9.
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Lemma 2.14 Let Wgo be a dynamic W-move from a trivalent graph I'g to a trivalent
graph I'v. Then an elementary foliated 2-complex Cr,r, ts a standard 2-complex
with two boundary components T'yg x {—1} and T'y x {1} which admits a transversely
orientable reqular foliation with compact leaves F. Moreover, all the non-degenerate
leaves of F are homeomorphic either to I'g or I'y. There is ezactly one degenerate

leaf, containing the only crossing of Cr,r,, which is homeomorphic to the graph
Ceo(Tp).

See figure 4 or 5.

Figure 5: A Whitehead move II

Proof of lemma 2.14: From definition 2.13, Cr,r, is parametrized by coordinates
(z,t) (t € [-1,1]). It is clear that Cr,r, is a 2-dimensional CW-complex with two
boundary components I'g x {—1} and I'; x {1}. For ¢t < 0 (resp. t > 0), the level sets
are graphs homeomorphic to I'y (resp. I'1). The level set t = 0 is the graph C,(I'p).
From definition 2.11, any point z in Cr,r,, distinct from Ce,(eg), admits a neighbor-
hood of the form Nr,(z) crossed with the interval, where Ny, (z) is a neighborhood
of zin I'; (¢ € {1,2}). Since the graphs I'; are trivalent, Nr,(z) is either a triod or
an interval. Therefore, all the points of an elementary foliated complex, which are
distinct from Cg,(ep), satisfy the definition of a special 2-polyhedron. By definition
of collapsings and splittings, the point Ce,(eg) is a cone over a 1-cell in I’y x {—1}
and also of an other in I'; x {1}. The continuity of a dynamic W-move implies that
the four germs of edges of I'g incident to the vertices of eg are simply translated by
the dynamic W-move to edges of C¢,(I'p), incident to the vertex Ce,(€p), and then
translated to four germs of edges of I'y incident to the vertices of the splitted edge.
This implies that Ce,(e) is a singular point and, in a neighborhood of C¢,(ep), the
set of singular points is a cross X with four edges. By definition, the map Wel0 is a
Whitehead-move from I'g to I';. Therefore, it is not homotopic to the identity-map
of I'g. This implies that any pair of edges of the above cross X is contained in exactly
one germ of 2-cell. Therefore, from which precedes, some homeomorphism takes a
neighborhood of Cg,(ep) in K to the cone over the 1l-skeleton of the boundary of
the 3-simplex, the image of C¢,(ep) under this homeomorphism being the base of
this cone. Since the complement of the set of singular points is clearly a union of
discs, one so proved that an elementary foliated complex is a special 2-polyhedron.
All the other assertions of lemma 2.14 follow easily from the construction and the
above observations. <>
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Lemma 2.15 below allows to understand the relationship between a non-negative
d,-move on a non-negative cocycle u in a dynamical 2-complex K and a Whitehead
move.

Lemma 2.15 Let K be a flat dynamical 2-complex which admits a non-negative
cocycle u € CY(K;Z). If v is a crossing of K such that §,(u) is a non-negative
cocycle, let I'y and U5 () be as given by lemma 2.9.

Then there is a subcomplex of K containing v which is homeomorphic to an elemen-
tary foliated complez Cr,r;, (- M particular, the graph T's () is obtained from the
graph ', by a Whitehead move.

Proof of lemma 2.15: By lemma 2.9, any r-embedded graph I, is 2-sided in K,
and equipped with a transverse orientation which agrees with the orientation of the
edges of the singular graph that it intersects. Since d,(u) is a non-negative cocycle,

the cocycle u is positive on the incoming edges of K S}Lg at v. Thus, some germ of
the 2-component C of K containing v as attractor in its boundary can be assumed
to contain a 1-component ey of I';,. Clearly, eg cuts C' in two connected components.
From the definition of a special 2-polyhedron, one of these two connected components
is a cone over ey based at the crossing v.
Since I'y, is 2-sided, one can then define a continuous deformation

Hy: T, x [-1,00 —» K

(x t) — i)

e Fort € [-1,0], ¢: 'y, — K is a non-degenerate r-embedding.

such that:

e The map i is such that io(I",) contains v and is the image under a degenerate
r-embedding of the graph I' obtained from I', by the collapsing of eg.

e For any t, ' in [—1,0] such that t # ¢/, 4;(Ty,) is disjoint from iy (Ty,).

One denotes by Cr, the subcomplex of K equal to U Hy(z,t).
(2,t) €T x[~1,0]
The r-embedded graph T' is 2-sided in K. It admits a neighborhood N(T') in K
such that N(I') — I' has two connected components homeomorphic to I';, x [—1,0[
and T's, () %]0, 1]. Thus there is a r-embedding of ', ) which is disjoint from Cr,.
Moreover one can choose this r-embedding of I's (,) such that the neighborhood
N (v) above contains the closure of a 1-component ey of I's, (). This component e;
is contained in the component of K which has v as repellor in its boundary. In the
same way than above, one then defines a continuous deformation Hi(x,t) of T's,y)
in K. One denotes by Cr; , the subcomplex of K equal to U Hy(z,t).
(€,£)E€T s, (uy X|~1,0]

By construction, the subcomplex Cr, UCr,_ () 18 homeomorphic, by a “fiber-preserving”
homeomorphism, to the elementary foliated complex Cr,r;, () Lemma 2.15 follows.

o
3 Foliations with compacts leaves

In this section, we prove our main theorem.

Theorem 3.1 A flat 2-complex K admits a transversely orientable regular foliation
F by compact graphs which have all the same Euler characteristic, if and only if
there exists an orientation of the edges of the singular graph such that:
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1. The complex K together with this orientation is a flat dynamical 2-complez.

2. There is a positive cocycle in C1(K;Z), for K equipped with this orientation.

If L is any leaf of F, there is a homotopy equivalence ¢: L — L (which in particular
induces an automorphism on the fundamental group of L) such that the complex K
is homotopically equivalent to the suspension Suspy(L).

Let us recall that a positive cocycle of K is a cocycle which is non-negative on the

edges of the singular graph K D) and positive on all the positive loops embedded

sing’
in K Lgilr)lg. Let us also recall that, by edges of the singular graph, we mean the 1-
components of the complex K. These are the only 1-cells of K contained in K (1)

sing*
The only 0-cells of K contained in K S,zg are the crossings, together with a set of
valency 2-vertices, one in each loop of K 5(1-17)19 which does not contain any crossing.

All this comes from the chosen structures of CW-complex for our complexes.

3.1 From a regular foliation to a positive cocycle

We assume here that one is given a regular foliation F of a flat 2-complex K as
in theorem 3.1. One first proves that there is an orientation on the edges of the
singular graph, induced by some transverse orientation to F, which makes K a flat
dynamical 2-complex. The proof of the existence of a positive cocycle will then be
an easy task.

Proposition 3.2 Let K be a flat 2-complex. If there exists a transversely orientable
reqular foliation F of K by compact graphs which have the same Fuler characteristic,
then there is an orientation of the edges of the singular graph of K such that K
together with this orientation is a flat dynamical 2-complex.

Proof of proposition 3.2: By lemma 2.7, the leaves of a regular foliation of a flat
2-complex are c-transverse to the singular graph (see definition 2.6 and lemma 2.7).
Thus, any transverse orientation of such a foliation F induces an orientation on the
edges of the singular graph. One has to check that such an orientation satisfies the
two properties of definition 1.2. We are first going to prove that property (1) is
satisfied. This will essentially relie on the fact that all the leaves of F have the same
Euler characteristic.

Lemma 3.3 With the assumptions and notations of proposition 3.2, assume that
the edges of the singular graph of K are equipped with some transverse orientation
to F.

Let L be a degenerate leaf of F, and let {vy,---,v,} be the crossings of K contained
in L. Then, there are some small neighborhoods N (v;) of the v; in K such that, for
any i € {1,---,r}, each germ of 2-component in N (v;), which contains only germs
of incoming edges, or only germs of outgoing edges, of Ksz-lng at v;, contains exactly
one closed 1-component of any leaf L' in a sufficiently small neighborhood of L in
K. These are the only germs of 2-components at the v; satisfying this property.
The components of L' not contained in these neighborhoods are in bijection with the
components of L distinct from the v;.

14



Proof of lemma 3.3: By definition of a transversely orientable foliation, each leaf is
2-sided in K. By definition of a 2-sided embedding in a flat 2-complex (see remark
2.8), there is a neighborhood N'(£) of £ in K such that N'(£)— £ has two connected
components which are homeomorphic to £_ x[—1,0[ and £ x]0, 1], where £_ x{—t}
and £ x {t} are r-embedded in K for any t €]0,1].

All the leaves £_ x {—t} (resp. L4 X {t}) have crossings along the incoming (resp.
outgoing) edges of K S(;)Lg at the crossings v; of K. These crossings are ordered along
the edges of the singular graph containing them. One chooses € > 0 sufficiently small
and a small neighborhood in K of each v; so that only the last (resp. first) crossings
of £1 = L_x{—e€} (resp. L2 = L x {e}) along the incoming (resp. outgoing) edges
at each crossing v; are contained in this small neighborhood.

By definition of the orientation of the edges of the singular graph, the only 1-
components of £1 (resp. L3) which might be contained in these neighborhoods of
the crossing v; are the one intersecting the germs at v; of 2-components in K which
contain only incoming (resp. outgoing) germs of edges at v;. Since F is transversely

orientable, and transversely oriented by the edges of K g;zg, any such germ at v; of
any 2-component in K contains a l-component of £; (resp. L), if the € above is

chosen sufficiently small. This proves lemma 3.3.

One can now prove the following

Lemma 3.4 With the notations and assumptions of proposition 3.2, if the edges of
the singular graph of K are equipped with the orientation induced by any transverse
ortentation to F, each crossing of K is the initial crossing of exactly two such edges.

Proof of lemma 3.4: From lemma 3.3, if there are type 0- or type 4-crossings, all
the germs of 2-components at these crossings contain 1-components of leaves of F.
This implies that these crossings are leaves of the foliation, which is impossible.
Assume now that there is a type 1-crossing v. Let us recall that the Fuler charac-
teristic of a graph is the alternated sum of the number of its 0- and 1-components.
By remark 1.5, v gives rise to 3 repellors in the set of the boundaries of the 2-
components. Consider the leaf £ of F which contains this crossing v. If v is the only
crossing contained in £, then, by lemma 3.3, there is a leaf £ in a neighborhood of
£ and a neighborhood N (v) of v in K which contains three 1-components and three
crossings of £ whereas all its other 1-components and crossings are in bijection with
the 1-components and crossings of £ distinct from v. This implies x(£) > x(L+),
which contradicts our assumption. Assume now that £ contains another crossing w
of K. Using lemma 3.3 and remark 1.5, a simple calculation allows to prove that,
whatever type has the crossing w, the alternated sum of the number of crossings and
1-components of £ contained in a well-chosen neighborhood N (w) is less or equal
to 1, which is the alternated sum of the number of crossings and 1-components of £
contained in N(w) (respectively one and zero). The crossings and 1-components of
L and £ not contained in N'(w) UN (v) are in bijection. Therefore, x(£) > x(L4).
This proves that there does not exist type 1-crossings. The non-existence of type
3-crossings is proved in the same way. <>

For proving that K, equipped with the above orientation, is a flat dynamical 2-
complex, it remains to prove that there is exactly one attractor and one repellor in
the boundary of each 2-component which is a disc and no attractor nor repellor in
the boundary of the other 2-components. On one hand, each attractor or repellor in
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the boundary of a component C' is, by definition of the transverse orientation to F, a
leaf of hi;' (FNC) which is reduced to a single point (h¢ is the attaching-map of the
component C, see section 2.2). On the other hand, definition 2.6 implies that there
are no such leaves in the boundary of hal (C) if C is an annulus or a Moebius-band
and there are exactly two if C' is a disc component. The transversal orientability to
F implies that neither two attractors nor two repellors exist in the boundary of a
same disc component. All these assertions together complete the proof of proposi-
tion 3.2. $

The existence of a positive cocycle for K, equipped with an orientation on the edges
of K g,)l g @5 in lemma 3.4, is now straightforward. The union of all the non-degenerate
leaves of the foliation JF intersects all the positive embedded loops of the singular

graph K 1) Since KW s finite, there is a finite family of leaves of F whose

sing* sing
union intersects all the positive embedded loops of Ks(ilr)bg. By lemma 2.9, the integer
cocycle associated to this union of leaves is positive. The proof of one implication

of theorem 3.1 is thus completed.

Remark 3.5 Let K be a flat 2-complex which admits a transversely orientable reg-
ular foliation with compact leaves. Then all the leaves of F are homotopic in K.
This is easily deduced from the 2-sidedness of the leaves and the compacity of K.
The cocycles associated to the non-degenerate leaves chosen above are therefore co-
homologous. Thus, each leaf in this finite family intersects all the positive loops of
KW and so defines a positive cocycle.

sing’

3.2 The reverse implication

The goal now is to prove that, if a flat dynamical 2-complex admits a positive
cocycle u € C(K;Z), then there is a transversely oriented regular foliation of K,
whose leaves are compact and have the same Euler characteristic, and such that
their transverse orientation agrees with the orientation of the edges of the singular
graph.

Lemma 3.6 Let K be a flat dynamical 2-complex which admits a positive cocycle
u € CY(K;Z). Then either K has no crossing, or there is a crossing v of K such
that d,(u) is a positive cocycle.

The assumption that K is a dynamical 2-complex allows to assure, in the proofs of
lemma 3.6 and corollary 3.7, that there is at least one incoming edge of K 1) at

sing
each crossing of K.

Proof of lemma 3.6: This lemma relies on the following claim, which is easy to
check from the definition of a J,-move (see definitions 2.2 and 2.4).

Claim: Let u € C'(K;Z) be a non-negative cocycle and let v be any crossing of K.
A non-negative d,-move can be applied to w if and only if u(e) > 0 for all the in-

coming edges e of K (1)

sing at v.

Assume that K has at least one crossing and that a crossing as given by lemma 3.6
does not exist. Equivalently, by the claim above, there is at least one incoming edge
e of K iil)tg at each crossing v of K such that u(e) = 0. Let v; be any crossing and
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let e;, be an incoming edge at vy, with u(e;;) = 0. There is also, by assumption, an

incoming edge e;, of K S,zg

at the initial crossing i(e;;) with u(e;,) = 0. The path
and w is zero on this path. By

induction, from the finiteness of K Sz g» one so constructs a positive loop [ in K S,zg

with u(l) = 0. This is a contradiction with u being a positive cocycle and completes
the proof of lemma 3.6.

€i,€i, is a positive path in the singular graph Ks(l-lzg,

Corollary 3.7 With the assumptions and notations of lemma 3.6, if K has at least
one crossing, then there is a (non-unique) ordered sequence of N distinct positive

cocycles u = up — uy — -+ = uy = u such that u; is obtained from u;—1 by a
Oy;-move, © = 1,---, N. Furthermore, each crossing of K occurs exactly once in the
set {v1, -+, un}.

Proof of corollary 3.7: By lemma 3.6, if u € C'(K;Z) is a positive cocycle, there
is at least one crossing v; of K such that u; = d,,(u) is a positive cocycle. By
induction, one obtains an ordered sequence of positive cocycles u = ug, u1,---,uN
such that:

e For 1 <i < N, u; is obtained from u;_; by a J,;,-move.
e All the crossings vy, ---,vn are distinct.

e There is no crossing v distinct from vy, - -, vy so that a non-negative §,-move
can be applied to uy.

One has then two cases:

1. The set {v1,---,vn} is the set of crossings of K.

2. There is a crossing w of K which does not belong to {v1,---,vx}.

In the case (2), by the claim used in the proof of lemma 3.6, the cocycle uy is zero
on an incoming edge e at w.

This implies that u is also zero on some incoming edge of K 5(217)1 o at the crossing i(e).
Otherwise, a non-negative d;.)-move might be applied to uy. This would imply that
the crossing i(e) is one of the crossings {vi,---,vn}. Since a non-negative d,-move
has been applied to each of this crossing to obtain the cocycle uy, and no non-
negative d,,-move, w = t(e), has been applied, this would imply that uy is positive
on e. This is a contradiction with our assumption.

By induction, as in lemma 3.6, one constructs a positive loop [ in the singular graph
such that uy(l) = 0. Since uy is cohomologous to u (see remark 2.3), this is a
contradiction with u positive.

Therefore, case (1) above is satisfied. It remains to prove that uy = u. For any edge
e of the singular graph, exactly one d;(.)-move has been applied, which lowers the
value on e of the corresponding cocycle u; (j < N) by 1, and exactly one d;(.)-move
has been applied, which increases the value on e of the corresponding cocycle uy
(k < N) by 1. The other d,-move do not change the value of the corresponding
cocycles on e. Since this holds for any edge e, these remarks easily imply uy = u.
This completes the proof of corollary 3.7. {
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Proposition 3.8 Let K be a flat dynamical 2-complex which admits a positive co-
cycle u € CY(K; Z).

This cocycle defines a non-unique ordered sequence of N+1 graphs T'g,---,' N, where
N is the number of crossings in K and such that:

1. They are disjointly r-embedded in K in a non-degenerate way, and I'g is the
graph associated to u by lemma 2.9.

2. FEach graph T'; is obtained from T';_1 by a Whitehead move for i = 1,---, N
and I'y is homeomorphic to T'y.

The graphs T'g,---,T'n are the leaves of a transversely oriented regular foliation F
of K whose leaves are compact and such that:

o Their transverse orientation agrees with the orientation of the edges of the
singular graph.

o All the non-degenerate leaves of F are homeomorphic to one of the graphs
I'1,---,I'n and there are exactly N degenerate leaves.

Proof of proposition 3.8: Let us first assume that K has at least one crossing.
From corollary 3.7, one has a sequence of positive cocycles u = vy — u; —
-+ — uy = u such that u; is obtained from u;_; by a d,,-move, and {v,---,vn}
is the set of crossings of K. Lemma 2.15 allows to obtain N disjoint subcom-
plexes CuuysCujugy - Cuy uy Of K, which are homeomorphic to elementary fo-
liated complexes Cr,r,,,Cr, T, " >Cr,,_ T.,- These subcomplexes contain all
the crossings of K, and each one contains exactly one crossing. Therefore, the
complement in K of Cyy; U Cyjus U -+ UCyy ,uy has N connected components
Bi,---,Bn. Each connected component B; has two boundary components which
are homeomorphic to I'y,, ¢ = 1,---, N and is foliated by I'y,, x [0,1]. The union
Cuuy U Ty X [0,1]) UCuyuy U (Tuy X [0,1]) U -+ U Cup_yuy U (Tuy X [0,1]) gives a
transversely oriented regular foliation with compact graphs which, by definition of
an elementary foliated complex, satisfies all the properties given by proposition 3.8.
If K has no crossing, the 2-components of K are either annuli or Moebius-bands (see
the definition of a flat 2-complex and definition 1.2). The conclusion in this case is
then straightforward, one just has to push a r-embedded graph I',, along the positive
loops of the singular graph to obtain a foliation of K by graphs all homeomorphic
to I'y,. Proposition 3.8 is proved. <

Proposition 3.8 implies that if a flat dynamical 2-complex admits a positive cocycle,
then there is a regular foliation F, transversely oriented by the edges of the singular
graph, whose leaves are compact and have all the same Euler characteristic. The
equivalence of theorem 3.1 is thus proved.

3.3 Conclusion

One now completes the proof of theorem 3.1. Let I' be a non-degenerate leaf of
a foliation F as above. By cutting K along I', one obtains a 2-complex which is
homotopically equivalent to I' x [0, 1]. Thus the flat 2-complex K is homotopically
equivalent to Suspy(T") (see section 1.1), where ¢:I' — I' is a continuous map which
is a composition of maps induced by the sequence of Whitehead moves from I' to
I' (see proposition 3.8). Since these maps are homotopy equivalences, the map 1 is
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an homotopy equivalence and thus it induces an automorphism on the fundamental
group of I'. This argument is easily generalized to the case where I is a degenerate
leaf. The proof of theorem 3.1 is completed.

Theorem 3.1 implies that a positive cocycle of a flat dynamical 2-complex K defines a
continuous map of a trivalent graph which is r-embedded in K. This map appears as
a composition of Whitehead moves. The proposition below gives a kind of converse
to this result.

Proposition 3.9 Let ¥:I' — I' be a continuous map of a trivalent graph I', such
that ¥ = a oo, 0---0 01, i a composition of Whitehead-moves o;:T';_1 — T
(i=1,---,r), and of a homeomorphism ca:T', — Ty.

Then there is a flat dynamical 2-complex Kg which is homotopically equivalent to
the 2-complex Suspy(K). Moreover, Ks admits a positive cocycle u such that:

e A graph T, associated to u by lemma 2.9 is homeomorphic to I

e Some ordered sequence of Whitehead-moves defined by u (see proposition 3.8)
is the sequence given for the definition of 1.

Proof of proposition 3.9: Each Whitehead-move from I'; ; to I';, i = 1,--- 7, is
realized by a dynamic W-move (see definition 2.11). Each such move defines an
elementary foliated 2-complex Cr,_,r, (see definition 2.13). The edges of its singular
graph are oriented from I';_; to I';. One glues Cr,_,r; to Cr,r,,, by the identity of
I;,7=1,---,7r — 1. The 2-complex obtained, denoted by K’, has two boundary
components I'y and I'r. One identifies I'; to I'g by a. The 2-complex obtained is
denoted by Kg.

One has to prove that Kg satisfies all the properties of a flat dynamical 2-complex.
By lemma 2.14, an elementary foliated complex is a standard 2-complex with bound-
ary. This easily implies that K’ satisfies the same property. Therefore, since « is
an homeomorphism, any point in Kg admits a neighborhood homeomorphic to a
neighborhood of some point in the interior of the cone over the 1-skeleton of the
boundary of the tetrahedron.

Let us now prove that the components of Kg are so that Kg is a flat 2-complex. Let
e be any 1-component of I'. We are first interested in the components of K'.

If e is not collapsed by any Whitehead move in the given sequence, then it gives rise
to a [0,1] x [0, 1] component in K.

Otherwise, e gives rise to a finite set of 2-components Sy, - - -, Sy, of K’ such that, S;
denoting the closure in K’ of S;:

e Foreachm =1,---,k—1, S, N Syt is a crossing of K'.

e The component S is a 2-cell which contains exactly one attractor in its bound-
ary at SN Iy and SNy =C.

e For p =1 to p such that k = 2p or k = 2p+ 1, Sap and Szp41 are 2-cells of K'.

e The components Ss,---,Sp_1 contain each exactly one attractor and one re-
pellor in their boundary.
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e The component S}, contains exactly one repellor in its boundary at S, N T'y_1
and S, NI, is a 2-cell.

Since Kg is the quotient of K’ under a:T', — I'g and «a is an homeomorphism, all
the assertions above imply easily the following two properties:

e The 2-components of Kg are either 2-cells or are annuli or Moebius-band
components.

e Each 2-component which is a 2-cell has exactly one attractor and one repellor
in its boundary and the other components have none.

Thus Ky is a flat dynamical 2-complex. Moreover, by construction, the graph I'y is
r-embedded in Kg. The construction and the chosen orientation of the edges of the
singular graph assure that, equipped with the good transverse orientation, it defines
a positive cocycle and that this cocycle defines the given sequence of Whitehead
moves. This completes the proof of proposition 3.9.

The construction we use for proving the above proposition was suggested by G.Levitt.
One presents another construction in [12].

The following corollary comes straightforward from proposition 3.9, using the well-
known result that any free group automorphism can be expressed as a composition
of Whitehead moves.

Corollary 3.10 Let O be any automorphism of the free group F,, (n > 1).
Then there is a flat dynamical 2-complex K which admits a positive cocycle u €

CY(K;Z) such that:
o The fundamental group of K is the suspension of the automorphism O of F,.

o IfT', is as given by lemma 2.9, then any sequence of Whitehead mowves defined
by u on Ty induces the automorphism O on w1 (T'y) = F,, up to conjugacy in
the group of outer automorphisms of F,.

In particular, from this corollary, any free group automorphism is represented by a
flat dynamical 2-complex.
4 Non-singular semi-flows

In this section, we justify the name of dynamical 2-complex by proving that any
such 2-complex carries a non-singular semi-flow.

Definition 4.1 A non-singular semi-flow on a topological space X is a family of
continuous maps of X depending continuously on one parameter ¢ € R™ and such
that:

e Forall x € X, oo(z) = =.
e For all ¢, t in R, oy (2) = ot(op(z)).

e The set {z € X ; for all t in RToy(x) = z} is empty.
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If K is a flat 2-complex, one further requires that a non-singular semi-flow on K
restricts to a C'° non-singular flow on each open 2-component of K (we assume
them to be equipped with a structure of smooth manifold).

A graph I' which is embedded and 2-sided in K is transverse to the semi-flow if all
its intersection-points with the orbits of the semi-flow are transverse, and with the
same intersection-sign, once a transverse orientation to I' has been chosen.

A cross-section to a non-singular semi-flow on a flat 2-complex K is a transverse
graph I" which is r-embedded in K and which intersects all the orbits in finite time.
As in the usual case of a flow on a manifold, when a non-singular semi-flow admits a
cross-section, there is a well-defined continuous return-map of the semi-flow on the
cross-section.

In what follows, we will assume that a graph transverse to a semi-flow is transversely
oriented by the semi-flow.

4.1 Combinatorial semi-flows

In what follows, the triangle T denotes the cone, based at the origin (0,0) of the
oriented plane R?, over the interval y = 1 —z, = € [0, 1]. We denote by R the square
[0,1] x [0,1].

The model-flow on T (resp. on R) is the restriction to T' (resp. to R) of the non-
singular flow on R? whose orbits are the lines y = y — z, p € [0,1] (resp. the lines

x =, p€[0,1]).

Definition 4.2 A combinatorial semi-flow on a dynamical 2-complex K is a non-
singular semi-flow on K satisfying the following properties:

1. There is a decomposition of K in a finite number of triangular and rectangular
boxes whose boundary-points are pre-periodic under the semi-flow and such
that the semi-flow in restriction to each box is topologically conjugate to the
corresponding model-flow.

2. The orientation of the semi-flow agrees, in a neighborhood of the singular

graph K S(llr)l g» With the orientation of the edges of K S,)lg.

3. In each disc component, an orbit-segment connects the repellor to the attrac-
tor.

4. Let X be a 2-component which is either a coherent annulus component or a
Moebius-band. Then the semi-flow is transverse to the rays of X and the core
of X is a periodic orbit.

Proposition 4.3 Any flat dynamical 2-complex K carries a combinatorial semi-

flow.

Before beginning the proof, we need to introduce some terminology. One chooses an
embedding in R? of a neighborhood N (v) in K of each crossing v, which induces an

embedding in the horizontal plane R? of K iz% 4NN (v). The singular set K 5(11,)1 4NN (v)
decomposes then in a unique way as the union of two intervals, oriented by the edges
of the singular graph, which intersect transversely. These intervals are identified to
the oriented axis of the horizontal plane. All the germs of 2-components at v are

assumed to lie in a coordinate-plane, corresponding to the germs of edges that they
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contain. Let e be any edge of the singular graph incident to a crossing v. We write e
as the concatenation of two positive intervals ejes. A germ of 2-component at v lies
on the 1-side of e at i(e) = i(e1) (resp. at t(e) = t(ez)) if this germ of 2-component
contains a germ g of e; (resp. of e2) at i(e) (resp. at ¢t(e)) and also contains a germ
of outgoing edge at i(e) (resp. at t(e)) which does not lie in the same axis than g.
The germs of 2-component at i(e) satisfying the first property but not the second
lie on the 2-side of e at i(e) (resp. at t(e)).

Proof of proposition 4.3: One assumes that a collection of embeddings in R3 of
small neighborhoods of the crossing, pairwise disjoint, has been chosen as above.
In each such neighborhood, one defines a non-singular semi-flow transverse to the
singular set, going from the 2-side of each edge to its 1-side, in such a way that it
satisfies at each point property (2) of definition 4.2 (see figure 6). These semi-flows
are called below crossing semi-flows.

Figure 6: A crossing semi-flow

Let e be any edge of the singular graph. Let us recall that the neighborhood of a
point z interior to e is homeomorphic to T, x [0, 1], where T} is a triod centered at
x (see lemma 1.1, item (1)).

1. If the three germs of 2-cells at e are on the same side of e at i(e) and (e), then
we extend the crossing semi-flow through the neighborhood of e in such a way
that it is everywhere transverse to e and has the same direction at every point
of the neighborhood.

2. Otherwise, there are exactly two germs of 2-components which change side
from i(e) to t(e). Then we extend the semi-flow through the neighborhood of
e in the following way:

e It has the same direction at each point of the germ of 2-component which
does not change side from i(e) to t(e).

e The direction of the semi-flow at the points in e varies continuously from
i(e) to t(e).

e Let x be a point interior to e and let T, be the triod over x. The di-
rection of the semi-flow along the two arms of T, which belong to the
2-components changing side from i(e) to t(e) is the same than its direc-
tion at z.

By applying this construction along each edge of the singular graph, one obtains

a non-singular semi-flow in a neighborhood N (KS& g

) of the singular graph, whose
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Figure 7: Extending a semi-flow through an edge

orientation agrees with the orientation of the edges. The point now is to extend this
semi-flow on N(KS(ZIT)LQ
Let D be any disc in the complement in K of V(K nglr)lg) Since K is a dynamical 2-
complex, the disc D has exactly one repellor R and one attractor A in its boundary.
The boundary 0D, cut at R and A, decomposes in two positive paths p1, p2 oriented
from R to A (see lemma 1.3). By construction, there are no singularities of the
semi-flow along these paths, and the orientation of the semi-flow agrees with their
respective orientation. With respect to D, the semi-flow is incoming (resp. outgoing)
in a neighborhood of R (resp. A). We denote by k; the number of external tangencies
of the semi-flow with the path p;. Let us observe that there are at least two points of
external tangency, and between two such points, there is a point of internal tangency.
We now define the vertical flow on R? to be the flow whose trajectories are the lines
z = C, C € R, oriented from —oo to +00. One draws a curve in R? which is modelled
on y = z? (resp. y = —x?) at (0,0) (resp. (0,1)), on = = y? (resp. = = —y?) at

k1 points (-2, ﬁ), e (=2, %) (resp. at kg points (2, Flﬂ)’ (2, %)), on
r = —y? (resp. = = y?) at k; — 1 points (—1,%),---,(—1,%) (resp. at
k2 — 1 points (1, m), - (1 %)) Therefore, the curve is orthogonal to the
vertical flow at (0,0) and (0, 1), tangent to this flow at all the other points defined
above. It is easy to check that it can be drawed tranverse, and non-orthogonal, to

this flow outside these points. See figure 8.

RN
C

>

) to a semi-flow on K without adding fixed points.

Figure 8: Extending a semi-flow though a disc component

This curve bounds a disc D. By construction, the vertical flow has the same be-
haviour along 0D than the semi-flow along @D. Thus, one can choose a diffeo-
morphism from D to D which carries the restriction of the vertical flow on D to a
non-singular flow on D in such a way that it extends the semi-flow already defined
along the boundary curve 0D.

The construction for extending the semi-flow through the coherent annulus and

23



through the Moebius-bands in the complement in K of N (K 5(21,19) is similar. One
just substitutes horizontal intervals to the attractors and repellors. Let us now
consider an incoherent annulus in the complement of N(K nglr)lg) One defines two
periodic orbits in its interior, which are oppositely oriented and such that, by cutting
the annulus along them, one obtains three annuli, two of which are coherent. For
extending the semi-flow through these two annuli, the construction is the same than
above. In the last annulus, one just defines the semi-flow to form a Reeb-component

(see figure 9).

Figure 9: A Reeb component in an annulus

One so obtains a non-singular semi-flow on K. After possibly some small pertuba-
tions, one obtains a non-singular semi-flow such that the points of tangency with the
boundary of the components are pre-periodic, and the cores of the coherent annulus
components, and of the Moebius-band components are periodic. It is then an easy
task to obtain a combinatorial semi-flow. This completes the proof of proposition
4.3.

Proposition 4.4 If a flat dynamical 2-compler K admits a positive cocycle u €
CY(K;Z), then any combinatorial semi-flow (04),cg+ on K admits some r-embedded
graph T'y, as given by lemma 2.9 as a cross-section.

Proof of proposition 4.4: By definition of a combinatorial semi-flow, in each disc
component D, an orbit-segment of (0¢), g+ connects the repellor R to the attractor
A. By lemma 1.3, it cuts D in two connected components whose boundary is the
union of this orbit-segment with a positive path p;, ¢ = 1,2, in the singular graph S
of K, going from R to A.

Lemma 4.5 Let D be either a disc component, or a coherent annulus or Moebius-
band component. Then any orbit-segment of (0t),cg+ in D which is transverse to
0D at its endpoints (one will say properly embedded ) is homotopic, relative to these
endpoints, to a positive path in S.

Proof of lemma 4.5: Assume that this property is not satisfied by some properly
embedded orbit-segment s. The existence of the orbit-segment connecting R to
A implies that the endpoints of s in D belong to a same positive path p;. The
above assumption implies that the incoming endpoint i(s) of s follows, along p;, the
outgoing one t(s). Let p} be the positive subpath of p; from ¢(s) to i(s). The union
of s and p) forms an oriented loop, whose orientation agrees with the orientation
of the semi-flow (see figure 10). This loop bounds a disc in D. This implies that
there is a singularity of the semi-flow in the disc. This is impossible. Therefore,
any properly embedded orbit-segment of (0¢),.g+ in D is homotopic relative to its
endpoints to a positive path in S.

The same conclusion than above remains for the orbit-segments in the coherent an-
nulus components, or in the Moebius-band components. The core of the component,
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X singularity
for the semi flof

Figure 10: All orbits are positive paths.

which by definition of a combinatorial semi-flow is a periodic orbit, plays the role of
the orbit-segment connecting the repellor to the attractor. {

Since K admits a positive cocycle, K does not have any incoherent annulus compo-
nent. Since S is finite, and since, by definition of a positive cocycle, any r-embedded
graph I', intersects positively all the positive loops in S, lemma 4.5 gives the fol-
lowing corollary:

Corollary 4.6 For any point x in K, the algebraic intersection-number of some
finite union of properly embedded orbit-segments of (ot),.gp+ through x with any
r-embedded graph Ty, is strictly greater than one.

For proving that some r-embedded graph Iy, is a cross-section to (0¢),.g+, it remains
to prove that some such I'y is transverse to (0¢),cg+-

Lemma 4.7 Let K be a flat dynamical 2-complez. Let {(o¢)}icr+ be any combina-
torial semi-flow on K. If x, y are any two points in the boundary of a disc component
D, which lie on both sides of a line connecting the repellor to the attractor, there
exists a segment in D transverse to {(o¢) }ser+ which connects x toy. The same as-
sertion is true if D is a coherent annulus component, or a Moebius-band component,
and z and y are on both sides of the core of D.

Proof of lemma 4.7: Choose a segment u connecting x to y, and transverse to the
orbit-segment Opra of {(o¢)};cr+ connecting the repellor R to the attractor A of
D. If u is transverse to {(o¢) };cr+, one is done. Let us assume therefore that there
exists at least one point of tangency T between u and {(o¢) }ier+. Without loss of
generality, one can assume that these points of tangency are isolated and in finite
number.

One considers now a small rectangular neighborhood Ny of Tp in K. One slightly
pushes the segment u N Ny along the normal to {(o¢)};cr+ in Np. If the tangency
point does not disappear, i.e. one has a sequence of quadratic contacts with the semi-
flow (see figure 11), then one obtains a new segment u; in the horizontal boundary
of Ny, which contains a point of tangency 71 with {(o¢)};cr+. One considers then
a new small, rectangular neighborhood N; of 71, overlapping with Ny, and executes
the same process. By induction, one so constructs a chain of overlapping small rect-
angular boxes N;. One stops either when one has to pass through the orbit-segment
ORra, or when the horizontal boundary of N; meets 9D, or when the tangency point
disappears. Let us observe that, at the first step, one has the choice to push in
one direction or in the other along the normal to the semi-flow. If, once chosen one
direction, after some steps one cannot push further in this direction because one
met 0D, then one returns to the initial point of tangency Ty and pushes in the other
direction. Clearly, the chain so constructed is finite.

25



Figure 11: Pushing a segment along a normal to {(o¢)};cr+

The important point now is that, since the orientation of {(o:)};cr+ agrees, in a
neighborhood of the singular graph, with the orientation of the edges, this chain does
not connect the boundary of D to itself (see figure 11). Furthermore, from lemma
4.5, no properly embedded orbit-segment of {(o¢)};cr+ is homotopic, relative to its
endpoints, to a negative path in the singular graph. From these two observations,
constructing a new segment connecting x to y with one less tangency point with
{(0t) }ter+ than u is now an easy task. We refer the reader to figure 12: the first
picture illustrates the case where pushing along the normal to {(o¢) };cg+ makes the
intersection-point disappear, the second picture corresponds to the case where one
meets the orbit-segment Oga4.

Figure 12: Eliminating points of tangency

This allows to eventually obtain an arc connecting z to y and transverse to the
semi-flow in D. The arguments are the same if D is a coherent annulus component,
or a Moebius-band component. <

Lemma 4.7 allows to get a r-embedded graph I';, transverse to the given combinato-
rial semi-flow. Together with which precedes, this completes the proof of proposition
4.4. $

Remark 4.8 Let K be a flat dynamical 2-complex.

1. There exists a regular foliation F of K transversely oriented by the edges of
the singular graph if and only if there are no incoherent annulus components.
In particular, any standard dynamical 2-complex admits such a foliation.

2. If K admits a regular foliation F transversely oriented by the edges of the
singular graph, then any combinatorial semi-flow on K is transverse to such a
foliation. In particular, any combinatorial semi-flow on a standard dynamical
2-complex is transverse to such a foliation.
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5 Remarks

5.1 Dynamical 2-complexes and branched surfaces

In what follows, we discuss the relationships between the dynamical 2-complexes
and other classes of 2-complexes already existing in the literature, which are more
or less close to the dynamical 2-complexes introduced here.

A branched surface W is a 2-complex equipped with a smooth structure such that
a tangent plane T, W, varying continuously in x, is defined at each point z of the
complex. Branched surfaces have known a great success, since their first apparition
in the work of Williams in 1973 ([24]), in several areas: In dynamical systems, they
have been used, also under the name of templates, as well for the study of Lorenz
attractors (see [3, 4, 25] for instance) as for the study of flows on 3-dimensional
manifolds, for instance through the knots formed by their periodic orbits (see [3,
4, 15]). Under another form, branched surfaces also appeared more recently in the
work of Christy (see [6, 7, 8]) or Benedetti-Petronio (see [2]).

The first defines the dynamic branched surfaces, which are branched surfaces with
the property to carry a non-singular semi-flow. Topologically, a dynamic branched
surface is like a dynamical 2-complex. The existence of this tangent plane allows
to distinguish, at each point of the complex, a locally 2-sheeted and a locally 1-
sheeted side. At the difference of a dynamical 2-complex, the semi-flow on the
dynamic branched surface is transverse to its singular graph, going from the locally
2-sheeted to the locally 1-sheeted side. Not any dynamical 2-complex is a dynamic
branched surface and not any dynamic branched surface is a dynamical 2-complex.
One can define in a natural way a smoothing in a neighborhood of the crossings of
a dynamical 2-complex by requiring that the locally 2-sheeted side is the 2-side of
each edge in these neighborhoods. However, such a smoothing does not necessarily
extend through the edges of the singular graph, because some germ of 2-component
might change side along some edge (see figure 7). Conversely, one can define in

a natural way an orientation on the germs of edges of Ws(il,zg at the crossings of a

dynamic branched surface W. However, these orientations do not necessarily define
an orientation of the edges of the singular graph (see figure 13).

LTt )T
LS/

Figure 13: A singularity for the orientation induced by a semi-flow

This figure illustrates an essential difference between dynamic branched surfaces
and dynamical 2-complexes, that is the edges of the singular graph of a dynamic
branched surface are not necessarily coherently oriented by the semi-flow. There are
some points in the interior of the edges of Ws(llg at which the semi-flow is orthogonal
to the edge. J.Christy introduced these dynamic branched surfaces for the study of
hyperbolic attractors in dimension 3.

Benedetti and Petronio introduced the branched standard spines. A non-singular
flow is also present here, transverse to the spine. These branched spines thus give in
some sense a combinatorial coding of a flow. The authors give then a caracterization

of the homotopy-class of this flow, by proving that two branched standard spines

27



define homotopic flows if and only if one can pass from one to the other by a finite
number of well-defined moves on the spines. At this point, two remarks are to be
done: On one hand, the authors do not make any reference to the hyperbolicity of
their flows. This would perhaps be an interesting exercise to be able to determine
at which condition a flow presented by a branched spine is an Anosov, or pseudo-
Anosov, flow. On the other hand, neither is it true that a branched standard spine is
a dynamic branched branched surface, nor the converse. Indeed, whereas the Euler
characteristic of a dynamic branched surface vanishes, which is not necessarily the
case for a branched standard spine, this last one is embedded in a compact 3-manifold
and tranversely oriented, which is not necessarily the case for a dynamic branched
surface.

In parallel to these developments in dynamical systems, branched surfaces played
also an important role in 3-dimensional topology, starting from the works of Oertel
on incompressible surfaces (see [9, 19] for instance) and continuing with the works of
Gabai, among others, about laminations (see [11] for instance). Let us observe that,
anterior to the branched surfaces, in topology appeared the standard spines in the
work of Casler ([5]). The generic branched surfaces defined by Williams in [24] in
particular were standard spines. However, both objects evolved in different worlds
until very recently, and J.Christy, in [6], was the first to establish a link between
them.

5.2 Connectedness of the leaves

From our assumption on the connectedness of the CW-complexes considered in this
paper, when one is given a leaf of a foliation, this leaf is assumed to be connected.
However, when one is given a positive cocycle u of a dynamical 2-complex K, an
associated r-embedded graph K, (see lemma 2.9) is not necessarily connected. The
fact that u defines a regular foliation with compact leaves of K allows to prove that
a positive cocycle u defines a connected r-embedded graph K, if and only if the
cohomology class of u is indivisible, that is there exists a loop [ in K with u(l) = 1.

5.3 Mapping-tori of surface homeomorphisms

In the context of spines of 3-manifolds (see [1], [5], [17] for instance), any non-
singular semi-flow {(o¢) };cr+ on a dynamical 2-spine (that is a dynamical 2-complex
which is a spine of some compact 3-manifold with boundary) will give rise to a
non-singular semi-flow on the ambient manifold. We refer the reader to [13] for
more details. However, a nice way for the construction of non-singular flows on
3-manifolds, starting from a standard dynamical 2-spine K, is to consider K as the
2-skeleton of the dual to a union of tetrahedra 7, glued together along their faces
(see figure 14).

More precisely, each crossing of K is the barycenter of a tetrahedron, the edges of
K iil)tg are dual to the faces, each 2-component is dual to an edge of 7. The link of
each vertex, in the second barycentric subdivision of 7T, is deleted. One so obtains
an embedding of K in an oriented compact 3-manifold with boundary Mg whose it
is a spine. Now, the orientation of the edges of the singular graph allows to define
a non-singular flow through each tetrahedron, the flow being incoming through the
faces dual to the incoming edges at the corresponding crossing, and outgoing through
the two other faces. The gluing of the tetrahedra defines then a non-singular flow
on M K-
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Figure 14: Embedding a standard 2-complex in a 3-manifold

Furthermore, in this topological context, one can prove the following topological
analog to corollary 3.10 of proposition 3.9:

Any compact 3-manifold with boundary M3 which admits a fibration f over the cir-
cle admits a dynamical 2-spine K with a positive cocycle u € Cl(K ;Z) such that
ix([u]) is in the cohomology class of H'(M?3;Z) defined by f, where [u] denotes the
cohomology-class of u in HY(K;Z) and iy: H(K; Z) — HY(M?3;Z) the isomorphism
induced by the inclusion i of K in M3.

Indeed, any such 3-manifold is the mapping-torus of a homeomorphism h of a com-
pact surface with boundary S. Up to isotopy, this homeomorphism can be given by
a composition of Whitehead moves and of a homeomorphism ¢ applied on a spine I"
of S, in such a way that each Whitehead move and the homeomorphism ¢ preserve
the embedding in S. From such a decomposition, one easily checks that proposition
3.9 gives a dynamical 2-spine K of M3. The properties of K listed in proposition
3.9 assure that K is as announced above.

5.4 Effectivity of the cocycle-criterion

The criterion given by theorem 3.1 for the existence of a foliation with compact
leaves of a flat 2-complex is effective, that is one can easily check, by hand or by a
computer, if a given flat 2-complex admits a positive cocycle. Let us briefly describe
this process. Assume that you are given some flat 2-complex K. Check if the edges
of its singular graph admit an orientation which makes it a dynamical 2-complex.
Since the singular graph is finite, this is a finite process. In a second step, consider
the integral matrix whose lines are the images of the 2-components of the complex by
the second boundary-operator, and the columns are the edges of the singular graph.
Supress from this matrix the lines corresponding to the Moebius-band components.
Let us denote by Mg the resulting matrix. Search for the non-negative integer
solutions to the system Mx X = 0. A classical result asserts that these non-negative
solutions are generated by a finite number of them, i.e. there are n such solutions
S1,++, 9y of this system such that, if .S is any non-negative integer solution, then

n
S = Z AiSi, Ai > 0. Each solution S; does not necessarily define a cocycle of the 2-
i=1
complex K, but, in any case, one easily shows that 2*.5; will define a cocycle. Thus,
for testing if there is a positive cocycle, it suffices to consider the sum 2 % > 1 ; S;.
There is a positive cocycle in C'(K;Z) if and only if this sum is one.

Let us observe that all what preceeds implies in particular that, on a given flat dy-
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namical 2-complex K, there might be an infinite number of indivisible non-negative
cohomology classes (it is necessary that rk(H1(K;Z)) > 1).

Examples

Example 1: In this example, we assume given a trivalent graph with two vertices,
together with a cyclic ordering at each of these vertices. We consider a sequence
of two Whitehead moves from this graph to an homeomorphic one. Moreover, the
two Whitehead moves and the homeomorphism preserve the above cyclic orderings.
Up to homeomorphism, there is a unique orientable compact surface with boundary
which admits this graph, equipped with these cyclic orderings at its vertices, as a
spine. We leave the reader check that this surface S is the torus with one boundary
component. The above sequence of Whitehead moves and homeomorphism defines
a continuous map of the graph, induced by a homeomorphism h of S. In fact, this
homeomorphism is induced by the classical automorphism ? 1 of the torus.
We apply proposition 3.9 for constructing a suspended dynamical 2-complex of the
induced automorphism on the fundamental group. Since the Whitehead moves and
the homeomorphism preserve the cyclic orderings of the edges at the vertices, one
gets a flat dynamical 2-spine of the 3-manifold which is the suspension of the home-
omorphism h of S. This manifold is the complement in S of the figure eight-knot.
Let us describe this construction. The edges of the graph are labelled with 1, 2 and
3. When one edge is collapsed by a Whitehead move, the symbol attached to the new
edge created is the same than the original one, with a prime. The homeomorphism
« is defined by «(2') =3, a(3') = 1 and a(1) = 2.

Since there are two Whitehead moves, the singular graph of the suspended dynamical
2-complex is a 4-valent graph with two crossings.

The second picture in figure 15 illustrates what happens to each edge along the pro-
cess, the graph I' having been cut at its vertices. It allows to find the 2-components
of the complex, together with a decomposition of their boundary in 1-simplices.
Since the edge 1 is collapsed by no Whitehead move, it gives rise to a rectangle.
The two other edges are collapsed. Thus, each of them gives rise to two triangles:
these are the cones over the edges 2, 2 = a~!(3) and 3, 3’ = a~!(1). The vertex
common to the two triangles with bases 2 and 2’ is a crossing of the complex, and
the same is true for the vertex common to the two triangles with bases 3 and 3'. For
obtaining the desired suspended 2-complex, one identifies the top and the bottom
of two “bands” when this top and bottom carry the same letters.

The suspended 2-complex has two 2-components. The boundary of each 2-cell inher-
its a decomposition in 1-simplices which are copies of the edges of the singular graph
along which this 2-cell is attached. For finding this decomposition of the boundary
of each 2-cell, let us notice that one took care of not putting the two crossings at
the same level in this second picture of figure 15. Since all the edges of I' are in-
cident to both vertices of I', it suffices then to subdivide the vertical boundaries of
the “bands” at the level of the crossings to obtain the desired decomposition of the
boundary of the 2-cells in 1-simplices. These 1-simplices, copies of the edges of the
singular graph, are oriented from top to bottom in this picture.
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The dynamical 2-complex K is showed in the third picture of figure 15. We also
drawed a r-embedding of our original graph I' into K. The interested reader can
easily check that the associated cocycle is a positive one. Let us notice that K
admits a compatible structure of dynamic branched surface (see [13]).

This dynamic branched surface first appeared in [6]. It is dual to the decomposition
in two tetrahedra of the complement in S3 of the figure-eight knot given by Thurston
in its notes (see [22]).

2 3 1
3 1 2
A
B

Figure 15: Example 1

Example 2: Figure 16 presents a flat dynamical 2-complex which admits a com-
patible structure of dynamic branched surface (see [13]). This complex admits a
positive cocycle and we show a r-embedded graph associated to such a cocycle. One
easily checks, using criterions of embeddability of Christy or Benedetti-Petronio (see
[7, 1]), that this complex does not embed in any compact 3-manifold.

x=5y=z=t=1

Figure 16: Example 2
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Example 3: Figure 17 gives a dynamical 2-complex which does not admit any
positive cocycle. There are only non negative cocycles which are not positive. For
instance, the solution Xo = 2, Xy = 2, X4y = X9 = 1 gives such a cocycle. It
remains, in the complement of the edges with positive weight, the positive loop
X3X10X5. As the example 2, this 2-complex does not admit any embedding in a
compact 3-manifold. Let us observe that if we give to all the edges of the singular
graph the opposite orientation, then the dynamical complex admits a compatible
structure of dynamic branched surface (see [13]).
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X6
X9
X X6 X6 X10
X7 X
X 3
Xg X4
XIO X9

Figure 17: Example 3

References

[1] R. BENEDETTI and C. PETRONIO ‘A finite graphic calculus for 3-manifolds’,
Manuscripta Mathematica (3) 88 (1995) 291-310.

[2] R. BENEDETTI and C. PETRONIO Branched standard spines of 3-manifolds Lecture
Notes in Math. 1653, Springer-Verlag, Berlin (1997).

[3] J.S. BIRMAN and R.F. WILLIAMS ‘Knotted periodic orbits in dynamical system I’,
Topology (1) 22 (1983) 47-82.

[4] J.S. BIRMAN and R.F. WILLIAMS ‘Knotted periodic orbits in dynamical system II’,
Contemporary Mathematics 20 (1983) 1-60.

[6] B.G. CASLER ‘An imbedding theorem for connected 3-manifolds with boundary’, Pro-
ceedings of the American Mathematical Society 16 (1965) 559-566.

[6] J. CHRISTY ‘Branched surfaces and attractors I: Dynamic branched surfaces’, Trans-
actions of the American Mathematical Society (2) 336 (1993) 759-784.

[7] J. CHRISTY ‘Immersing branched surfaces in dimension three’, Proceedings of the
American Mathematical Society (3) 115 (1992) 853-861.

[8] J. CHRISTY ‘Standard spines and branched surfaces’, M.S.R.I. Preprint (1993).

[9] W. FLOYD and U. OERTEL ‘Incompressible branched surfaces via branched surfaces’

Topology 23 (1983) 117-125.

32



[10] D. FRIED ‘Geometry of cross-sections to flows’, Topology (4) 21 (1982) 353-371.

[11] D. GABAI and U. OERTEL ‘Essential laminations in 3-manifolds’ Annals of Mathe-
matics 130 (1989) 41-73.

[12] F. GAUTERO ‘CW-complexes dynamiques’, doctoral thesis, University of Nice-Sophia
Antipolis (1998).

[13] F. GAUTERO ‘Cross-sections to semi-flows’, in preparation.
4] F. GAUTERO ‘Suspension of injective free group endomorphisms’, in preparation.

[15] R.W. GHRIST, P.J. HOLMES and M.C. SULLIVAN Knots and links in Three-
Dimensional Flows Lecture Notes in Math. 1654 (1997).

[16] H. IKEDA ‘Acyclic fake surfaces’, Topology 10 (1971) 9-36.

[17] S.V. MATVEEV ‘Special spines of piecewise linear manifolds’, Math. USSR Sbornik
(2) 21 (1973).

[18] J.R. MUNKRES Elements of Algebraic Topology (Addison-Wesley, Menlo Park CA,
1984).

[19] U. OERTEL ‘Incompressible branched surfaces’ Invent. Math. 76 (1984) 35-41.

[20] R. PIERGALLINI ‘Standard moves for standard polyhedra and spines’, Rendiconti
Circ. Mat. Palermo (2) Suppl. 18 (1988) 391-414.

[21] W.P. THURSTON ‘A norm for the homology of 3-manifolds’, Memoirs of the American
Mathematical Society (339) 59 (1986) 99-130.

[22] W.P. THURSTON Three-Dimensional Geometry and Topology, volume 1 (Edited by
S.Levy, Princeton Mathematical series 35, 1997).

[23] D. TISCHLER ‘On fibering certain foliated manifolds over S'’, Topology 9 (1970) 153-
154.

[24] R.F. WILLIAMS ‘Expanding Attractors’, Publications Mathématiques de ’I. H.E.S. 43
(1974) 169-203.

[25] R.F. WILLIAMS ‘The structure of Lorenz attractors’, Publications Mathématiques de
VLH.E.S. 50 (1979) 73-99.

[26] P. WRIGHT ‘Formal 3-deformations of 2-polyhedra’; Proceedings of the American
Mathematical Society 37 (1973) 305-308.

AMS classification: 57Mxx,20Fxx,57N10,54H20

33



