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Hyperbolicity of mapping-torus groups and spaces

This paper deals with the geometry of metric "two dimensional" spaces, equipped with semi-flows admitting transverse foliations by forests. Our main theorem relates the Gromovhyperbolicity of such spaces, for instance mapping-telescopes of -trees, with the dynamical behaviour of the semi-flow. As a corollary, we give a new proof of the following theorem [3]: Let be an hyperbolic injective endomorphism of the rank free group . If the image of is a malnormal subgroup of , then is a hyperbolic group.

Introduction

The subject of -dimensional topology has completely changed in the seventies with Thurston's geometric methods. His geometrization conjecture involves eight classes of manifolds, among which the hyperbolic manifolds play the most important rôle. In this context, a hyperbolic manifold is a compact manifold which admits (or whose interior admits in the case of non-empty boundary) a metric a constant curvature . According to another conjecture of Thurston, any closed hyperbolic -manifold should have a finite cover which is a mapping-torus. This gives a particular interest to these mapping-tori manifolds. Recall that a mapping-torus is a manifold which fibers over the circle. Namely this is a -manifold constructed from a homeomorphism of a compact surface as For these manifolds, the hyperbolization conjecture has been proved, see for instance [START_REF] Otal | Le théorème d'hyperbolisation pour les variétés fibrées de dimension[END_REF]: the manifold constructed from and as above is hyperbolic if and only if has negative Euler characteristic and is a pseudo-Anosov homeomorphism (see [START_REF] Fathi | POENARU Travaux de Thurston sur les surfaces Astérique[END_REF]).

In parallel to these developments in -dimensional topology, there has been a revival in combinatorial group theory. First introduced by Dehn at the beginning of the twentieth century, geometric methods were reintroduced in this field by Gromov in the 80's. The notion of hyperbolicity carries over in some sense from manifolds to metric spaces and groups. We speak then of Gromov hyperbolicity. Such metric spaces and groups are also termed weakly hyperbolic, or negatively curved, or word-hyperbolic, see [START_REF] Gromov | Essays in Group Theory Math[END_REF] as well as AMS classifications: 20F65,20F67,53C23,57M20,57M60,37D99,37E25,20E06 1 [START_REF] Ghys | HARPE Sur les groupes hyperboliques d'après Mikhael Gromov[END_REF], [START_REF] Alonso | Notes on word hyperbolic groups edited by H. Short, Group Theory from a Geometrical viewpoint[END_REF], [START_REF] Coornaert | PAPADOPOULOS Géométrie et théorie des groupes Lecture Notes in Math. 1441[END_REF] or [START_REF] Bridson | HAEFLIGER Metric spaces of non-positive curvature Fundamental Principles of Mathematical Science[END_REF] among others. Mapping-tori manifolds have the following analog in this setting: given a finitely presented group ; , , and an endomorphism of , the mapping-torus group of is the group with presentation ;

. For instance, if the -manifold is the mapping-torus of and if is the automorphism induced by on the fundamental group of , then the fundamental group of is the mapping-torus group of . In fact, in this case, since is an automorphism of , the mapping-torus group is easily described as the semi-direct product . The main and central result in group theory concerning the preservation of hyperbolicity under extension is the Combination Theorem of [START_REF] Bestvina | A combination theorem for negatively curved group[END_REF] (see also a clear exposition of this theorem in [START_REF] Kapovich | A non-quasiconvexity embedding theorem for hyperbolic groups[END_REF]). Alternative proofs have been presented since the original paper of Bestvina -Feighn [START_REF] Gitik | On the combination theorem for negatively curved groups[END_REF][START_REF] Kharlampovich | Hyperbolic groups and free constructions[END_REF], but concerning essentially the so-called 'acylindrical case', where the 'Annuli Flare Condition' of [START_REF] Bestvina | A combination theorem for negatively curved group[END_REF] is vacuously satisfied. Gersten [START_REF] Gersten | Cohomological lower bounds for isoperimetric functions on groups[END_REF] proves a converse of the Combination Theorem. At the periphery of this theorem, let us also cite [START_REF] Farb | The geometry of surface-by-free groups[END_REF][START_REF] Mosher | A hyperbolic-by-hyperbolic hyperbolic group[END_REF] about the hyperbolicity of other kinds of extensions or [START_REF] Mitra | Cannon-Thurston maps for trees of hyperbolic metric spaces[END_REF] who shows the existence of Cannon-Thurston maps in this context.

As a corollary of the Combination Theorem, and to illustrate it, the authors of [START_REF] Bestvina | A combination theorem for negatively curved group[END_REF] emphasize the following result: Let be a hyperbolic group and let be an automorphism of . Assume that is hyperbolic, namely there exist and , , such that for any element of word-length in the generators of , we have max . Then is a hyperbolic group. This corollary lives in a different world than the above cited alternative proofs of the Combination Theorem, namely it is 'nonacylindrical'. No paper, at the exception of the Bestvina -Feighn original one, covers it. Swarup used it to give a weak hyperbolization theorem for -manifolds [START_REF] Swarup | Proof of a weak hyperbolization theorem[END_REF]. Hyperbolic automorphisms were defined by Gromov [START_REF] Gromov | Essays in Group Theory Math[END_REF], see also [START_REF] Bestvina | A combination theorem for negatively curved group[END_REF]. From [START_REF] Sela | Cyclic splittings of finitely presented groups and the canonical JSJ-decomposition[END_REF], if an hyperbolic automorphism is defined on a hyperbolic group then this hyperbolic group is the free product of two kinds of groups: free groups and fundamental groups of closed surfaces with negative Euler characteristic. Hyperbolic automorphisms of fundamental groups of closed surfaces are exactly the automorphisms induced by pseudo-Anosov homeomorphisms. Brinkmann characterized the hyperbolic automorphisms of free groups as the automorphisms without any finite invariant set of conjugacy-classes [START_REF] Brinkmann | Hyperbolic automorphisms of free groups[END_REF]. Below we consider hyperbolic injective free group endomorphisms. The notion of hyperbolic automorphism is generalized in a straightforward way to injective endomorphisms. We give a new proof of the Bestvina -Feighn's theorem in this setting: Theorem 0.1 Let be the free group of rank . Let be a hyperbolic injective endomorphism of . Assume that the image of is malnormal, that is Im Im for any Im of . Then the mapping-torus group ; is a hyperbolic group.

I. Kapovich [START_REF] Kapovich | Mapping-tori of endomorphisms of free groups[END_REF] worked on mapping-tori of injective free group endomorphisms, trying to avoid the assumption of malnormality of the image of the endomorphism.

We consider the group given by its standard presentation of mapping-torus group. Our proof relies on an approximation of the geodesics in the Cayley complex of the group for this presentation. Let be an automorphism of . Let be the mapping-torus group of . The above Cayley complex for has a very particular structure. It carries a non-singular semi-flow and this semi-flow is transverse to a foliation of the complex by trees. A non-singular semi-flow is a one parameter family of continuous maps of the -complex, depending continuously on the parameter and satisfying the usual properties of a flow:

Id,
. Let be a graph with fundamental group . Let be a simplicial map on which induces on the fundamental group of . Let be the mapping-torus of . Then is a simple example of a -complex equipped with a non-singular semi-flow. The orbits of the semi-flow are the concatenation of intervals , , glued together by identifying with . Moreover the -complex is foliated with compact graphs transverse to the semi-flow. The universal covering of this -complex is the Cayley complex of for the standard presentation as a mapping-torus group. Let us describe this universal covering. The universal covering of is a tree . Let be a simplicial lift of . That is, if is the covering-map, . Since induces an automorphism on , the universal covering of is homeomorphic to the quotient of by the identification of with . Such a topological space is called the mapping-telescope of . As a corollary of our main theorem we obtain an analog for mapping-telescopes of Thurston's theorem for mapping-tori of surface homeomorphisms. The structure of graph or of -complex which exists when dealing, as above, with Cayley complexes of mappingtorus groups is irrelevant. We only need that be a -hyperbolic metric space, that is a geodesic metric space whose geodesic triangles are tripods. Equivalently, such a is antree. We refer the reader to [START_REF]BESTVINA -trees in topology, geometry and group theory Handbook of geometric topology[END_REF] or [START_REF] Coornaert | PAPADOPOULOS Géométrie et théorie des groupes Lecture Notes in Math. 1441[END_REF] for the equivalence of these two notions and to [START_REF]BESTVINA -trees in topology, geometry and group theory Handbook of geometric topology[END_REF] for a survey about -trees. Let us observe that Bowditch [START_REF] Bowditch | Stacks of hyperbolic spaces and ends of -manifolds[END_REF] refers, without further proof, to [START_REF] Bestvina | A combination theorem for negatively curved group[END_REF] for stating a theorem about the Gromov-hyperbolicity of mapping-telescopes of -graphs. A weak version of our result gives a complete proof of such a result in the case of -trees: Theorem 0.2 Let be an -tree. Let be a continuous map on which satisfies the following properties:

1. There exist , such that holds.

2. There exist , , such that for any pair of points , in with , either or for some , with , , .

Then the mapping-telescope of is a Gromov-hyperbolic metric space for some mapping-telescope metric.

Let us briefly explain what is a mapping-telescope metric. Roughly speaking, at each point in the mapping-telescope we can move in two directions. Either along a leaf , or along a path which is a concatenation of intervals , . The lengths in the vertical direction are measured using the obvious parametrization. We provide the trees with a metric. Then the mapping-telescope metric is defined as follows: the distance between two points is the shortest way from to among all the paths obtained as sequences of horizontal and vertical moves.

We deal with more general spaces than mapping-telescopes. The reader will find in Section 4 the precise statement of our result. The spaces under study are called forest-stacks. We only need on the one hand the existence of a non-singular semi-flow and, on the other hand, the existence of a transverse foliation by forests. We allow the homeomorphism-types of the forests to vary along . We refer the reader to Remark 13.8 for a brief discussion about direct applications of our main theorem, which we chosed not to develop here for the sake of a clearer and shorter presentation.

In Section 1, we give an illustration, and a proof, of our theorem in a very particular case. However very simple, basic ideas of the work to come appear here. Sections 2 to 11 form the heart of the paper. In Sections 2 and 3 we define the objects under study. In Section 4 we state our theorem about forest-stacks. The statements of the other results, concerning mapping-telescopes and mapping-torus groups, take place in Sections 12 and 13. After some preliminary work, Section 5, we study the so-called straight quasi geodesics in forest-stacks equipped with strongly hyperbolic semi-flows, Sections 6 and 7. We rely upon these last two sections to give an approximation of straight quasi geodesics in fine position with respect to horizontal one, Section 8, and then in Section 9 to show how to put a straight quasi geodesic in fine position with respect to a horizontal one. In Section 10 we gather all these results to prove that straight quasi geodesic bigons are thin. We conclude in Section 11.
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Since they play the central rôle in this paper, we briefly precise what we mean by Gromov hyperbolic metric spaces. Gromov introduced the notion of -quasi geodesic space in [START_REF] Gromov | Essays in Group Theory Math[END_REF]: A metric space is a -quasi geodesic space if, for any two points in there is a -chain, that is a finite set of points such that for and . A quasi geodesic metric space is a metric space which is -quasi geodesic for some non negative real constants .A -chain triangle in a quasi geodesic metric space is a triangle whose sides are -chains. A chain triangle is -thin, , if any side is in the -neighborhood of the union of the two other sides. We say that chain triangles in a -quasi geodesic metric space are thin if there exists such that any -chain triangle in is -thin. In this case, is a Gromov-hyperbolic metric space, more precisely is a -hyperbolic metric space.

In the whole paper, unless otherwise specified, "(quasi) geodesic(s)" means "finite length (quasi) geodesic(s)".

An illustration

We start considering a very particular case of our theorem. We feel this simple example might serve as an illustration of the work to come. We hope this will help the reader to figure out the contents and ideas of the paper. Our aim is to prove the Affirmation stated below.

We choose a real number . We set the usual distance on . For any real , we set

. The length of a real interval is the distance, with respect to , between the endpoints of . We consider the plane . We denote by the projection on the -axis and by the projection on the -axis. We denote by the vertical line through a point . Vertical lines (resp. horizontal line )

are equipped with the distance (resp. with the distance ). Lengths of horizontal and vertical intervals are measured with respect to the distance defined on the corresponding line. A telescopic path is a concatenation of vertical and horizontal non degenerate intervals, where non degenerate means not reduced to a point. The horizontal (resp. vertical) length of a telescopic path is the sum of the horizontal (resp.vertical) lengths of its maximal horizontal (resp. vertical) intervals. The telescopic length of a telescopic path is the sum of its horizontal and vertical lengths. The telescopic distance between two points in is the infimum of the telescopic lengths of the telescopic paths between these two points. We want to prove the following result:

Affirmation: The plane equipped with the telescopic distance is a Gromov hyperbolic geodesic metric space.

Step : Computation of the geodesics. Let be any two points in . Let be the compact interval of the -axis, bounded by the projections and of and . Let be any telescopic geodesic from to . On the one hand, the length of a telescopic path is never shorter than the length of its projection on a vertical line, so that lies between and . On the other hand, if , the vertical line separates from , so that intersects . Therefore the telescopic geodesic intersects all the vertical lines separating from , and no other vertical line. Given a telescopic path containing one vertical interval and two horizontal intervals at different heights, there exists a stricly shorter telescopic path with the same endpoints. It is obtained by substituting one of the horizontal intervals, say , by another horizontal interval which intersects the same vertical lines than , and which lies at the same height than . Thus the telescopic geodesic is the concatenation of at most one non degenerate horizontal interval with at most two non degenerate vertical intervals. Furthermore, any horizontal interval in the -axis minimizes the horizontal distance between the vertical lines passing through its endpoints. Thus, if , then is the concatenation of the horizontal interval in the -axis which connects and , with the vertical intervals in and which connect and to the endpoints of . In order to compute the geodesics in the case where , we distinguish two cases:

Case A:

Then is the concatenation of two vertical intervals of vertical lengths with one horizontal interval . The horizontal length of is equal to if and to if and . Indeed let us recall that horizontal intervals in the -axis are dilated both in the future and in the past. We set . Let be any real number such that and min . From which precedes is the concatenation of two vertical intervals of length with a horizontal interval in the horizontal line . The function attains its minimum at . Therefore min max is unique. We so proved that there exists a unique telescopic geodesic between and . Its telescopic length is equal to .

We distinguish below three cases.

Case (0):

The horizontal distance between and is so short that the horizontal interval between and realizes the telescopic distance. Indeed . The horizontal distance between and , which is the horizontal length of the horizontal interval with the notations above, is smaller than .

Case (1):

The optimal case The horizontal interval of lies in the horizontal line . The horizontal length of is . The vertical intervals in have vertical lengths .

Case (2):

The horizontal distance between and is too large with respect to the height of the horizontal line through and . Then the horizontal interval of lies in the -axis. The horizontal length of is equal to . It depends on and might be arbitrarily large.

Case B:

Without loss of generality we assume .W e consider the point . The non negative real number is greater than or equal to . Therefore the telescopic geodesic from to computed in Case A admits a subpath from to . This subpath is the unique telescopic geodesic between and .

The same arguments apply to the case where both and lie in the negative half-plane. This concludes the computations of the geodesics.

Step : Geodesic triangles are thin. Let be any geodesic triangle in the upper halfplane. Let be the sides of . Let and be the non negative real numbers for defined above. Let , be the horizontal geodesics respectively in , and .

Case (1):

Then and . Therefore , . The vertical segment of between and is at horizontal distance smaller than from a vertical segment in . Because of the uniform contraction in , this implies that is at vertical distance smaller than from . Therefore the union of with the two orbit-segments between its endpoints and the horizontal line is at telescopic distance smaller than from . All the points of not considered up to now belong to at least two distinct sides.

Case (2):

Then , i.e. lies in the -axis.

1. If and , then for . Thus . We conclude as in Case (1).

If both

and then both and lie in the -axis so that . Then any point in belongs to at least two distinct sides.

If only then . Let be the complement of in . Then

. The same inequality is satisfied for the horizontal distance between the vertical segments connecting the endpoints of to . This concludes Case (2).

The case where lies in the negative half-plane is treated in the same way. The other cases are dealt with using similar, but simpler, arguments than above. We leave these cases as an exercise for the reader.

Remark 1.1 The above computations fail, and the space is no more Gromov-hyperbolic, if one substitutes to with a polynomial function of . Indeed, in this case, the length of the horizontal interval between the two considered orbits, evaluated at the height where the minimum of the length-function is attained, depends, even in the optimal case, on the horizontal length of the interval connecting one point to the orbit of the other. Whereas in the exponential case it equals unless it belongs to the horizontal axis.

Mapping-telescopes and Forest-stacks

Let be a topological space. Call a topological tree if there exists a unique arc between any two points in .Atopological forest is a union of disjoint topological trees. By arc, we mean the image of an injective path. A path in is a continuous map from a bounded interval of the real line into .Aforest-map is a continuous map of a topological forest into itself. Then is a continuous surjective map. The pre-image of any real number is , a topological forest. Furthermore, for any , , where is defined by . We extracted above the two properties shared by mapping-telescopes which are really important for our work. We now define a class of spaces which satisfy these two properties, and in particular generalize the mapping-telescopes.

Definition 2.2 Let

be a topological space. Let be a semi-flow on . Let be a surjective continuous map such that:

1. For any real number , the stratum is a topological forest.

For any ,

, where for any real number .

Then is a forest-stack, denoted by .

Remark 2.3

All the strata of a mapping-telescope are homeomorphic. This is not required in the definition of a forest-stack.

As we just saw, a mapping-telescope is an example of a forest-stack. In Section 13, we show that a Cayley complex for the mapping-torus group of an injective free group endomorphism is a mapping-telescope of a forest-map, and so a forest-stack. The reader can also find there, and in Section 12, an illustration of the horizontal and vertical metrics on forest-stacks, that we are now going to define.

Metrics

The aim of this section is to introduce a particular metric on forest-stacks, called telescopic metric. We deal sometimes with metric spaces which are not necessarily connected, for instance forests. In this case, when considering the distance between two points, it will always be tacitly assumed that the two points lie in a same connected component of the space.

Horizontal and Vertical metrics

Let us consider a forest-stack , see Definition 2.2. We want to define a natural metric on the orbits of the semi-flow.

Definition 3.1

The future orbit of a point under the semi-flow is the set of points such that for some . The past orbit of a point under the semi-flow is the set of points such that is in the future orbit of .

The orbit of a point under the semi-flow is the set of points such that there exists which lies in the future orbit of both and .

Let us observe that in general the orbit of a point strictly contains the union of the future and past orbits of .

The orbits of the semi-flow are topological trees. This is a straightforward consequence of the semi-conjugacy of the semi-flow with the translations in via the map . Let be any two points in a same orbit of the semi-flow. Assume that and lie in a same future orbit of the semi-flow. We consider the orbit-segment between and , where an orbitsegment is a compact interval contained in the future orbit of some point. The function is a homeomorphism from this orbit-segment onto an interval of the real line. We define the distance between and as the real length of this interval. Assume now that and do not lie in a same future orbit. The future orbits of and meet at some point such that the concatenation of the orbit-segment between and with the orbit-segment between and is an injective path. We then define the distance between and as the sum of the distances between and and and . We so have defined a distance on the orbits of the semi-flow. This distance is termed vertical distance. Definition 3.2 A vertical path in a forest-stack is a path contained in an orbit of the semiflow. A vertical geodesic is an injective vertical path.

A horizontal path in a forest-stack is a path contained in a stratum. A horizontal geodesic is an injective horizontal path. , where is the unique horizontal geodesic between and , and denotes the horizontal length with respect to in the stratum . A forest-stack equipped with a horizontal metric will be denoted by .

In other words, a horizontal metric on a forest-stack is a collection of metrics on the strata such that the length of the horizontal paths varies continuously when homotoping them along the orbits of the semi-flow. The definition of "horizontal metric" does not imply that the horizontal distance varies continuously along the orbits. See Figure 1. This figure is an illustration of what might happen because of the possible non-injectivity of the maps : if for two distinct points , in a horizontal geodesic then is an horizontal path but this is not necessarily the image of an injective path. Thus the distance between the endpoints of is not realized by but by a path of smaller length, smaller of at least the length of , where is the subpath of between and .

Definition 3.4 Any horizontal geodesic

between two distinct points such that for some is a cancellation. The pulled-tight projection (or image) of on the stratum is the unique horizontal geodesic between the endpoints of in the stratum .

A geodesic pre-image of under is any geodesic with .

If is a path in , the pulled-tight projection of on , max , is the unique horizontal geodesic which connects the images of the endpoints of under the semi-flow in the stratum .

Telescopic metric

Definition 3.6 A telescopic path in a forest-stack is a path which is the concatenation of non-degenerate horizontal and vertical subpaths.

The vertical length of a telescopic path is equal to the sum of the vertical lengths of the maximal vertical subpaths of .

If the considered forest-stack comes with a horizontal metric , the horizontal length of a telescopic path is the sum of the horizontal lengths of the maximal horizontal subpaths of .

The telescopic length of a telescopic path in is equal to the sum of the horizontal and vertical lengths of .

We will always assume that our paths are equipped with an orientation, whatever it is, and we will denote by (resp.

) the initial (resp. terminal) point of a path with respect to its orientation.

Lemma -Definition

Let be a forest-stack equipped with some horizontal metric . For any two points in , we denote by the infimum, over all the telescopic paths in between and , of their telescopic lengths . Then is a -quasi geodesic metric space. The map is a telescopic distance associated to .

Proof of Lemma -Definition: If

then . The distance is realized as the infimum of the telescopic lengths of an infinite sequence of telescopic paths. There exists a unique horizontal geodesic between and . Otherwise any telescopic path between and has vertical length, and thus telescopic length uniformly bounded away from zero. Let be fixed. For some integer all the telescopic paths in the above sequence are contained in a box of height with horizontal boundaries the pulled-tight projection and all the geodesic pre-images of under . The vertical boundaries are the orbit-segments connecting the endpoints of the above geodesic preimages to the endpoints of . From the bounded-dilatation property, the horizontal length of each for is greater than or equal to . Thus for any , . Since Inf , . That is . This is satisfied for any . Since depends continuously on , so that . We so proved that does not vanish outside the diagonal of . The conclusion that this is a distance is now straightforward.

By definition of the telescopic distance, for any in , for any , there exists a telescopic path between and such that . We choose min . We consider the maximal collection of points in with , , and the telescopic length of the subpath of between and is equal to for . The maximality of the collection implies that the telescopic length of the subpath of between and is smaller than or equal to . By definition for . Thus for any and . The choice of then implies . Therefore is a -quasi geodesic chain between and .

Remark 3.7

In nice cases, for instance in the case where the forest-stack is a proper metric space, the forest-stack is a true geodesic space.

Main Theorem

Definition 4.1 Let be a forest-stack equipped with some horizontal metric .

1. The semi-flow is a bounded-cancellation semi-flow (with respect to ) if there exist and such that for any real , for any horizontal geodesic , for any , .

2. The semi-flow is a bounded-dilatation semi-flow (with respect to ) if there exists such that for any real , for any horizontal geodesic , for any , .

Remark 4.2

The reader can observe a dissymetry between the bounded-cancellation and bounded-dilatation properties, in the sense that this last one does not allow any additive constant. This is really necessary, several proofs (like the proofs of Propositions 8.1 or 9.1) fail if allowing an additive constant here.

Definition 4.3 Let be a forest-stack equipped with some horizontal metric .

1. The semi-flow is hyperbolic (with respect to ) if it is a bounded-dilatation and bounded-cancellation semi-flow with respect to and there exist , such that for any horizontal geodesic with :

Either for any integer ,

Or for any integer , some geodesic pre-image of satisfies .

2. The semi-flow is strongly hyperbolic (with respect to ) if it is hyperbolic and satisfies furthermore the following condition:

Any horizontal geodesic with , which admits geodesic preimages in distinct connected components of the stratum for arbitrarily small, admits a pre-image in each connected component of the stratum such that .

Let us observe that, if the strata are connected, then a hyperbolic semi-flow is strongly hyperbolic.

It is now possible to state the main theorem of this paper.

Theorem 4.4 Let be a connected forest-stack. If is strongly hyperbolic with respect to

then is a Gromov-hyperbolic metric space for any telescopic metric associated to .

At this point, the reader might prefer to look at Sections 12 and 13 where he will find applications, and so illustrations, of this theorem to the cases of mapping-telescopes spaces and of mapping-torus groups.

Remark 4.5 (about the necessity of the bounded-cancellation property)

Let us observe that the Cayley complex of a Baumslag -Solitar group ; is a forest-stack with a hyperbolic semi-flow. But this is not a Gromov hyperbolic -complex with respect to the telescopic metric. What happens here is that the semi-flow is hyperbolic but not strongly hyperbolic.

An example of a non Gromov-hyperbolic locally finite forest-stack with connected strata and a semi-flow satisfying all the desired properties, at the exception of the boundedcancellation property (first item of Definition 4.1) is constructed as follows. We start with the forest-stack defined in Section 1 and equipped with the associated telescopic metric. We consider copies , , of . We glue them to in the way illustrated in Figure 2, that is by creating an infinite sequence of pockets with increasing sizes.

In J J n n 1 2 Figure 2: A pocket
We now attach copies of the negative half-plane of , along the horizontal lines with integer -coordinate of the copies of considered above. In order to get a foreststack whose strata are trees, we now identify a vertical half-line in each of the copies of the negative half-plane, ending at the horizontal line along which this copy was glued, to the corresponding vertical half-line in . In this way, we get a forest-stack whose strata are trees and whose semi-flow is as anounced. This forest-stack is not Gromov-hyperbolic because in each pocket (see Figure 2) the horizontal interval admits two pre-images so that there are two telescopic geodesics joining the endpoints of . These are the concatenation of and with the two vertical segments joining their endpoints to the endpoints of . Since, by construction, there are pockets of arbitrarily large size, these two telescopic geodesics might be arbitrarily far away one from the other, so that the forest-stack is not Gromov-hyperbolic.

Preliminary work

We consider a forest-stack equipped with a horizontal metric such that the semi-flow is strongly hyperbolic. Definition 4.3 introduces three constants of hyperbolicity, denoted by in all which follows. The other constants of hyperbolicity, which appear in the bounded-dilatation and bounded-cancellation properties, are denoted by . Any horizontal geodesic with horizontal length greater than satisfies at least one of the following two properties:

The pulled-tight image of after , , is times longer than . In this case the horizontal geodesic is dilated in the future, or more briefly dilated, after . admits a geodesic pre-image under which is times longer than . In this case, the horizontal geodesic is dilated in the past after .

More generally, we will say that is dilated in the future after (resp. dilated in the past after

), , if the same inequalities hold only for any , after substituting by , and by for the dilatation in the future and by for the dilatation in the past.

When the dilatation occurs in the past, only one geodesic pre-image is required to have horizontal length times the horizontal length of the horizontal geodesic considered. So it might happen, a priori, that the other geodesic pre-images of remain short when going in the past. Lemma 5.1 below shows that the constants of hyperbolicity can be chosen so that such a situation does not occur. This is a consequence of the bounded-cancellation property. . We consider any horizontal geodesic with . We assume that is dilated in the past after . Since the semi-flow is strongly hyperbolic, for each , in each connected component of , there is at least one geodesic pre-image of with . We need an estimate of the horizontal length of the other geodesic pre-images of in this stratum. Lemma We will assume the constants of hyperbolicity and chosen to satisfy the conclusion of Lemma 5.1 above. Moreover the constants of hyperbolicity are chosen sufficiently large enough so that computations make sense. In what follows, we say that a path is -close to a path if and are -close with respect to the Hausdorff distance relative to the metric specified (the telescopic metric if no metric is specified). The indices of the constants refer to the lemmas or propositions where these constants appear.

About dilatation in cancellations

Let us recall that a cancellation is a horizontal geodesic whose endpoints are identified under some , .

Lemma 5.3 Let be any horizontal geodesic which is dilated in the future after for some integer

. There exists a constant , increasing with , such that, if is contained in a cancellation, then .

Proof of Lemma 5.3: Let be the cancellation containing . Let , with for some . We assume for a while that is an endpoint of . The boundedcancellation property implies that the horizontal length of a cancellation "killed" in time , that is a cancellation whose pulled-tight projection after is a point, is a constant . This constant does not depend on the horizontal length of . Let us consider the pulled-tight image . Let be the maximal subpath outside the pulled-tight image of . This subpath is the image of a cancellation killed in time . From the observation above and the bounded-dilatation property,

. The same arguments lead to the upper bound for the horizontal length of the subpath of outside . Since is dilated in the future after , .

From the last two inequalities, if , then the horizontal length of the subpath of in is greater than . If , is dilated in the future after by the convention that satisfies the conclusion of Lemma 5.1. We so obtain, for any , the existence of a geodesic with horizontal length greater than in . This is impossible. Let us now consider the case where is not an endpoint of . After some time , the situation will be the one described above, that is a cancellation with an endpoint of . The arguments above, together with the bounded-cancellation and bounded-dilatation properties, lead to the conclusion.

We will often encounter situations where the pulled-tight projection of a horizontal geodesic is identified with the pulled-tight projection of another horizontal geodesic in the same stratum. In this case, are not necessarily contained in cancellations. But, if they lie in the same connected component of their stratum, both are contained in the union of two cancellations. Lemma 5.4 below will allow us to deal with similar situations.

Lemma 5.4 Let be a horizontal geodesic which admits a decomposition in subpaths such that for some constant , for any , either or

. There exists a constant , increasing in each variable, such that, if is dilated in the future after , then .

Proof of Lemma 5.4:

We set in order to simplify the notations, the general case is done in the same way. Up to permuting the indices, for . Since is dilated in the future after , . Therefore .

Straight telescopic paths

Definition 5.5 A straight telescopic path is a telescopic path such that if are any two points in with then the subpath of between and is equal to the orbit-segment of the semi-flow between and .

If is a path containing a point , let be the maximal subpath of containing , whose pulled-tight projection on is well defined. The point does not necessarily belong to . However there exists a unique point in which minimizes the horizontal distance between and . This point is denoted by . Lemma 5.6 below gives an upper-bound, depending on , for the telescopic distance between and . Lemma 5.6 Let be any straight telescopic path. If is any non negative real number, there exists a constant , increasing with , such that any point is at telescopic distance smaller than from the point (see above).

Proof of Lemma 5.6: If , we set . Since is straight, if , belongs to a cancellation whose endpoints lie in the past orbits of . The bounded-cancellation property gives an upper-bound on the horizontal length of . This leads to the conclusion. There exists a constant , increasing in each variable, such that is a -quasi geodesic which is -close to .

Proof of Lemma 7.1: Since each is -close to a , and with the same endpoints, is -close to . Let us consider any two points in and let be the subpath of between and . If both and lie in a , or in a same subpath in the closed complement of the union of the 's, max max . Otherwise , where , are contained either in some or in , and begins and ends with the initial or terminal point of some . The third property given about the 's leads to:

where is the subpath of with the same endpoints than . Thus max . This completes the proof of Lemma 7.1.

Lemma 7.2 Let be a straight

-quasi geodesic -hole such that max , where is the horizontal geodesic joining the endpoints of . Then there exists a constant , increasing in each variable, such that:

1. .

is a straight -quasi geodesic which is close to .

Proof of Lemma 7.2: A horizontal geodesic is always straight. The horizontal geodesic is the pulled-tight projection of . Thus, by the bounded-dilatation property, . From Lemma 5.6, is -close to . Let us consider any subpath of , this is the pulled-tight projection of some subpath of . By the boundeddilatation property, . Since is a -quasi geodesic, . Since is -close to , . The proof of Lemma 7.2 is complete.

Lemma 7.3 Let be a straight

-quasi geodesic -hole such that the horizontal length of the horizontal geodesic between its endpoints is less or equal to . Then there exists a constant , increasing in each variable, such that:

1. .

is a straight -quasi geodesic which is close to .

Proof of Lemma 7.3: Since is a -quasi geodesic, max . Lemma 7.2 then gives Lemma 7.3.

Lemma 7.4 Let be a straight

-quasi geodesic stair. For any , there exists a constant , increasing in each variable, such that, if is a straight stair whose points are at horizontal distance less or equal to from , and with the same endpoints than , then:

1. is a straight -quasi geodesic stair which is -close to .

2.

.

Proof of Lemma 7.4:

We consider a stair , in the disc bounded by , with endpoints the endpoints of and , and whose vertical geodesics end at , all the stairs being oriented so that is increasing along them. Let us consider a subpath of which is the concatenation of a vertical segment followed by an horizontal one. By assumption, the horizontal length of is bounded above by . Let be its vertical length. The bounded-dilatation property implies that the quotient of by the telescopic length of the subpath of between the endpoints of is bounded above by . Since , tends toward with . One so obtains a constant such that for , is bounded above by some constant, depending on . When both and are close to then is also close to . Thus, since is continuous, admits an upper bound, denoted by , for all the and considered. This upper bound will be the same for all the subpaths as above. The stair is a concatenation of such subpaths , possibly with one or two subpaths of at the extremities. Thus the additivity of the telescopic length gives . Let be a subpath of which is the concatenation of a horizontal subpath followed by a vertical one. The path is the concatenation of such subpaths possibly with one or two subpaths of at the extremities. Exactly the same arguments than above give .

We so get . It only remains to prove that is a quasi geodesic with constants of quasi geodesicity depending only on . Let be any two points in . As usually is the subpath of between and and we denote by the subpath of between the two points in which lie at horizontal distance less or equal to from and . We consider a stair between and , with the same endpoints than . The same arguments than above apply and give . Since is a -quasi geodesic, we conclude . Since , the proof of Lemma 7.4 is complete.

8 Approximation of straight quasi geodesics in fine position Proposition 8.1 Let be a horizontal geodesic. Let be a straight -quasi geodesic, between the orbits of the endpoints of . There exists a constant such that, if is in fine position with respect to , then is -close to the orbitsegments between its endpoints and those of . Moreover if , and if .

Proof of Proposition 8.1: We consider any maximal (in the sense of the inclusion) -hole in , with min . From Lemma 6.7, the horizontal geodesic between its endpoints is dilated in the past after if . Since and are in fine position, this implies max . If

, the bounded-dilatation property gives . With the same notations, assume now that is a maximal -hole with . The pulled-tight image of in the stratum of is not necessarily contained in . However, if it is not, then such that: and are contained in cancellations, the pulled-tight image of in the stratum of is contained in . This is a consequence of the fact that and are in fine position. If then, from Lemma 6.7, is dilated in the future after . On the other hand, , and either or for or . Indeed gives a contradiction to Lemma 5.3 since the left inequality implies that is dilated in the future after , thus would be dilated in the future after . From Lemma 5.4, we get: If , then max . It remains to consider the case where . The bounded-cancellation property gives an upper-bound for . We so proved that, whatever maximal -hole in which lies above , or whatever maximal -hole in which lies below , the horizontal distance between the endpoints of is bounded above by some constant . Lemmas 7.3 and 7.1 give then a constant such that after substituting maximal -holes in by the horizontal geodesics between their endpoints, we get a straight -quasi geodesic, with the same endpoints, in fine position with respect to , which is -close to and which is a stair or the concatenation of two stairs. Lemma 6.4, together with Lemma 5.4 used as above, give then and such that this, or these, stair(s) are -close to the orbit-segments between and their endpoints. We conclude that is -close to these orbit-segments. The last point of the proposition is clear. 9 Putting paths in fine position Proposition 9.1 Let be a horizontal geodesic. Let be a straight -quasi geodesic, which joins the future or past orbits of the endpoints of . There exist a constant and a -quasi geodesic which is -close to , which has the same endpoints than , and which is in fine position with respect to .

Proof of Proposition 9.1:

We consider a maximal subpath of whose endpoints lie in the future or past orbits of some points in , and such that no other point of satisfies this property. Let us consider any maximal -hole in . Let us denote by the horizontal geodesic between the endpoints of .

Case : either is contained in a cancellation or is the concatenation of two horizontal geodesics, each one contained in a cancellation. Lemma 6.7 gives such that, if then is dilated in the future after . Lemma 5.3 gives such that the horizontal length of any horizontal geodesic contained in a cancellation and dilated in the future after is less or equal to . From Lemma 5.4, we get an upper-bound on the horizontal length of .

Case : There exists another horizontal geodesic in another connected component of the same stratum whose pulled-tight projection agrees with the pulled-tight projection of after some finite time.

We consider the maximal geodesic pre-image of under which connects two points of . It admits a decomposition in subpaths connecting points in such that the subpath of between the endpoints of each is a -hole. The strong hyperbolicity of the semi-flow implies, by Lemma 6.7, that the horizontal length of each is bounded above by . Since is a -quasi geodesic, we get max .

Case : Some subpath of connects the future or past orbits of points in . The only possibility is that be a pulled-tight image of , i.e.

. Consider a geodesic pre-image of under between two points in . Then proceed as in Case , the only difference being that for each subpath , either there exists a horizontal geodesic in another connected component of the same stratum, whose pulled-tight projection agrees with the pulled-tight projection of after some finite time, this is exactly Case , or is contained in a cancellation or in the union of two cancellations, and the arguments are exactly those of Case . The bounded-dilatation property then gives an upper-bound on the horizontal length of .

We denote by the maximum of the constants found in Cases , and . We denote by the maximum of the constants , and . Lemmas 7.2, 7.3 and 7.1 give then such that, substituting the maximal -holes in by the horizontal geodesic between their endpoints yields a straight -quasi geodesic stair , with the same endpoints, which is -close to . Let be a horizontal geodesic between and a future or past orbit of some point in , which is minimal in the sense of the inclusion, i.e. does not contain any subpath connecting to a future or past orbit of a point in . This horizontal geodesic is a pulled-tight image of a subpath of in the stratum considered. It is either contained in a cancellation, or is the union of two horizontal geodesics contained in a cancellation. Lemma 6.4 gives such that, if then is dilated in the futur after . From Lemmas 5.3 and 5.4 we get . Therefore is at horizontal distance less or equal to max from a straight stair , with the same endpoints and in fine position with respect to . Lemmas 7.4 and 7.1 then give such that substituting the maximal subpaths as above by the given stair gives a straigth -quasi geodesic, with the same endpoints than , in fine position with respect to , and which is -close to .

10 Straight quasi geodesic bigons are thin Proposition 10.1 There exists a constant such that any straight -quasi geodesic bigon is -thin.

Proof of Proposition 10.1: We denote by the two sides of a -quasi geodesic bigon. We assume for a while that some horizontal geodesic connects the past orbits of the endpoints of the bigon. We choose such a horizontal geodesic satisfying min . Proposition 9.1 gives a -quasi geodesic bigon, with the same vertices, which is -close to . We denote by and the sides of this bigon.

Let us call a diagonal a horizontal geodesic which minimizes the horizontal distance between the future and past orbits of its endpoints. From the hyperbolicity of the semi-flow, any diagonal with horizontal length greater or equal to is dilated both in the future and in the past after . We choose a real number (the signification of the constant will become clear later). Let . We assume that there exist two points , whose future orbits intersect , such that is at telescopic distance from , . We consider a diagonal between and . This diagonal is in fine position with respect to . Since is in fine position with respect to , and connects the future or past orbits of points in , and the future or past orbits of points in , then is in fine position with respect to . Since the point is at telescopic distance from and from , Proposition 8.1 implies . Since is in fine position with respect to , and connects the union of the future and past orbits of the endpoints of , some horizontal geodesics connect to and to . These horizontal geodesics either are contained in the pulled-tight image of , or some pulled-tight image of their concatenation contains . Because of the boundedcancellation and bounded-dilatation properties, the telescopic distance between a point and an orbit tends toward infinity with the horizontal distance between this point and that orbit. Since the telescopic distance between and , and between and is , this easy observation gives an upper-bound , depending on , for the horizontal length of each one of these horizontal geodesics. Therefore some horizontal geodesic connecting to has horizontal length smaller or equal to some constant (depending on ). In particular, .

We noted that a diagonal with is dilated both in the future and in the past after . Here . Since the concatenation of the above two horizontal geodesics, which lie in the future or in the past of , has horizontal length less or equal to , a straightforward computation gives , still depending on such that . Lemma 5.6 then implies that is at telescopic distance smaller than from some point in . Since and are in fine position, if no point of lies in the future or past orbit of an endpoint of , this endpoint belongs to a cancellation. Thus we can write with:

(resp.

) is non trivial if and only if no point of lies in the future or past orbit of the initial (resp. terminal) point of .

and

, if non trivial, are contained in cancellations.

connects the future or past orbits of the endpoints of .

Let us assume that and both are trivial. Then, since , Proposition 8.1 tells us that some subpath of is -close to the orbit-segments which connect its endpoints to the endpoints of . We observed that is dilated both in the future and in the past after . We proved . An easy computation gives a time such that the pulled-tight images and the geodesic pre-images of after have horizontal length greater or equal to . Thus some point of the above subpath of satisfies . Lemma 5. [START_REF] Brinkmann | Hyperbolic automorphisms of free groups[END_REF] Let us now consider the case where the points do not exist. Then is -close from some point in the orbit of an endpoint, say , of the bigon. With similar arguments than above (putting paths in fine position and applying Proposition 8.1), we find a horizontal geodesic , with one endpoint in the future or past orbit of , such that both paths and have one point -close from , for some constant . Since and both end or begin at the point , this implies that admits a point -close to each point of the orbit-segment between and . In particular there exists which is -close to . It remains to consider the case where no horizontal geodesic connects the past orbits of the endpoints of the considered -quasi geodesic bigon. Then, in the future orbit of the initial endpoint there exists a point whose past orbit can be connected to the past orbit of the terminal endpoint, and this property is not satisfied by the point with , which is either in the future or past orbit of the initial endpoint. The strong hyperbolicity of the semi-flow and Proposition 8.1 give then a constant such that initial subpaths of both sides of the bigon are close to the orbit-segment connecting the initial endpoint of the bigon to . From which precedes, any -quasi geodesic bigon between and the terminal endpoint of the considered bigon is -thin, for some constant . This easily implies that the given bigon is -thin, and completes the proof of Proposition 10.1.

Geodesic triangles are thin

The following lemma was suggested to the author by I. Kapovich ) are arbitrarily small, non trivial, subpaths preceding (resp. following) in , then the endpoints of and do not lie in a same orbit-segment. We consider a bad subpath . It might happen that contains other bad subpaths . If this happens, we choose one of them, denoted by , and we substitute all the other bad subpaths in by the orbit-segment between their endpoints. Since orbit-segments are telescopic geodesics, the resulting path, denoted by , is a -quasi geodesic. Since does not contain any bad subpath other than , there exists a point such that is the concatenation of two straight -quasi geodesics , where goes from its initial point to , and goes from to its terminal point . We now consider the -quasi geodesic triangle of vertices , and with sides and the orbit-segment between and . We consider any point which minimizes the telescopic distance between and . We choose a telescopic geodesic between and . We denote by (resp. ) the path from to (resp.

) which is the concatenation of with the subpath of between and (resp.

). As in the proof of Lemma 11. 

Back to mapping-telescopes

We elucidate in this section the relationships between forest-stacks and mapping-telescopes.

Statement of Theorem

An -tree, see [START_REF] Culler | Group actions on -trees[END_REF][START_REF]BESTVINA -trees in topology, geometry and group theory Handbook of geometric topology[END_REF] among many others, is a metric space such that any two points are joined by a unique arc and this arc is a geodesic for the metric. In particular an -tree is a topological tree. A -forest is a union of disjoint -trees.

Lemma 12.1 Let be a -forest and let be a forest-map of . Let be the mapping-telescope of equipped with a structure of forest-stack as given in Section 2. Then there is a horizontal metric on such that:

1. The -forests and are isometric. Each stratum , integer, is isometric to .

2. For any real , for any horizontal geodesic , the map is monotone.

Such a horizontal metric is called a horizontal -metric. The telescopic metric associated to a horizontal -metric is called a mapping-telescope -metric.

Proof of Lemma 12.1: We make each , integer, a -forest isometric to .W e consider a cover of by geodesics of length which only intersect at their endpoints. Each inherits the same cover. There is a disc in for each such horizontal geodesic in . This disc is bounded by , and the orbit-segments between the endpoints of and the endpoints of . We foliate this disc by segments with endpoints in, and transverse to, the orbit-segments in its boundary. Then we assign a length to each such segment so that the collection of lengths varies continuously, in a monotonic way, from the length of to the length of . We so obtain a horizontal metric on the mapping-telescope. Furthermore each stratum , integer, is isometric to . And the maps denoted by in Lemma 12.1 are monotone by construction. By definition of a mapping-telescope, the discs between and are copies of the discs between and , for any in . This allows us to choose the horizontal metric to satisfy moreover that is isometric with for any real number .

We now define dynamical properties for -forests maps. , then in each connected component containing both a pre-image of and a pre-image of under , there is at least one pair of such pre-images such that .

If the forest is a tree then a hyperbolic forest-map is strongly hyperbolic (similarly we saw that a hyperbolic semi-flow on a forest-stack whose strata are connected is strongly hyperbolic).

Our theorem about mapping-telescopes is stated as follows: geodesic between two vertices with two proper subsets of edges of . Thus the inequality follows in a straightforward way from the preceding assertions. Injective free group endomorphisms satisfy the so-called "bounded-cancellation lemma" (see [START_REF] Dicks | The group fixed by a family of injective endomorphisms of a free group[END_REF], and [START_REF] Cooper | Automorphisms of free groups have finitely generated fixed point sets[END_REF] for the particular case of automorphisms), i.e. there exists such that for any in with then . This inequality gives a constant as required above, that is such that, if then . Setting max and , we get Lemma 13.6. Lemma 13.7 With the assumptions and notations of Lemma 13.6:

1. If is hyperbolic then the forest-map is hyperbolic.

If is hyperbolic and its image Im

is malnormal, then the forest-map is strongly hyperbolic.

Proof of Lemma 13.7: Item (1) is plain to check. Let us prove item [START_REF]BESTVINA -trees in topology, geometry and group theory Handbook of geometric topology[END_REF]. The notations used are the notations introduced in Section 13 when defining the forest and the map . If the map is not strongly hyperbolic, there exists an infinite sequence of pairs of connected components such that and get identified under along a geodesic and the length of tends toward with . Thus there exists an infinite number of elements Im Im such that some geodesic word (resp.

) connects two vertices associated to elements in Im (resp. in Im ) where the length of the 's tends toward with . Observe that in particular Im , Im , whereas Im and Im because they carry an element of Im (resp. Im ) to an element of Im (resp. of Im ). The lengths of the can be assumed less or equal to the maximum of the length of the images under of the generators of , which is finite. Since there are only a finite number of pairs of elements of bounded lengths, a same pair (resp.

) appears an infinite number of times when listing the sequence of words (resp.

). The same argument of finiteness then gives two words with such that Im , Im , Im and Im , . Thus Im , Im , Im . Now Im whereas Im , Im and Im . We so get a contradiction with the malnormality of Im in . This completes the proof of Lemma 13.7.

Proof of Theorem 13.2

From Lemmas 13.6 and 13.7, the Cayley complex is the mapping-telescope of a strongly hyperbolic forest-map, equipped with the standard metric. A Cayley complex is connected. Thus, from Theorem 12.4, is a Gromov-hyperbolic metric space for any mapping-telescope standard metric. From Lemma 13.5 the group acts cocompactly, properly discontinuously and isometrically on equipped with a mapping-telescope standard metric. A classical lemma of geometric group theory (usually attributed to Effremovich, Svàrc, Milnor -see [START_REF] Gromov | Essays in Group Theory Math[END_REF] or [START_REF] Ghys | Infinite groups as geometric objects (after Gromov)' Ergodic theory, symbolic dynamics, and hyperbolic spaces[END_REF] for instance), applied to quasi geodesic metric spaces, tells us that and are quasi-isometric so that is a hyperbolic group.

Definition 2. 1

 1 Let be a forest-map. The mapping-telescope of is the topological space resulting from by the identification of each point with the point . Let us examine a little bit more closely the topology of these mapping-telescopes. For any integer , for any , for any non negative real number defines a family with one parameter of continuous maps of . This family depends continuously on the parameter . It satisfies furthermore Id and . Such a family is called a semi-flow on . Let defined by if .
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6 About straight quasi geodesics
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	,		. Therefore is dilated in the past after . We choose	so that
		. Thus, if		max	then is dilated in the
	past after		. The arguments and computations in the case where
	max		are the same.	
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	Lemma 7.1 Let be a	-quasi geodesic. Let be obtained from by substituting
	Definition 6.1 Let subpaths by	be a forest-stack. A -quasi geodesics satisfying the following properties: -quasi geodesic,	,
	in	is a telescopic path whose every subpath satisfies: has the same endpoints than ,
		is -close to ,		
	.			.	
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	past after	.		
	Proof of Lemma 6.2: By the bounded-dilatation property,	.
	We choose	so that			. For any greater than , the inequality
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		for	being dilated in the future after some fixed finite time.
	Definition 6.3 Let	be a forest-stack. A stair in	is a telescopic path along
	which the function is monotone.	

  , and allows us to simplify the conclusion. Let us recall that, in the context of quasi geodesic metric spaces, a Let us call bad subpath of any "maximal" subpath of whose endpoints lie in a same orbit-segment of the semi-flow, where maximal means that, if (resp.

	Lemma 11.3 There exists a constant		such that any	-quasi geodesic is
	-close to a straight				-quasi geodesic.
	Proof of Lemma 11.3:				
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	Proof of Lemma 11.1: We consider a	-chain triangle with vertices , , and sides
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	claim that	is a	-chain, where	and	denote	-chains from to
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	. Let us thus assume	and	. Since is a point in	closest to , is
	a point in	closest to . Thus			. Moreover	.
	Therefore			. Whence the claim. The given	-chain triangle
	decomposes in two	-chain bigons. Therefore this triangle is	-thin.
	Lemma 11.2 Let		be a forest-stack. There exists a constant	such
	that any	-chain in	is contained in a	-quasi geodesic.
	Proof of Lemma 11.2: Any consecutive pair of points	,	, in a	-
	chain		can be connected by a telescopic path which is the concatenation
	of exactly one vertical geodesic and one horizontal geodesic. The vertical length of the verti-
	cal geodesic is bounded above by		. By the bounded-dilatation property, the
	horizontal length of the horizontal geodesic is bounded above by	.
	If is the concatenation of the 's then is a telescopic path containing the chain whose
	telescopic length satisfies:				. Since we
	consider	-chains			. Thus		.
	By definition of a	-chain				. Thus
			. Any subpath of decomposes as a concatenation
	where ,	are proper subpaths respectively of		and	. The same arguments
	than above prove					. Furthermore
		and		. This implies
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	, we get Lemma 11.2.		

  The same conclusion holds if one considers any bad subpath other than in . Thus any point in is -close to . Since the choice of the bad subpath is arbitrary, the proof of Lemma 11.3 is complete.

					1,
	we prove that the bigon of vertices	and , with sides and , and the bigon of ver-
	tices	and	with sides and are straight	-quasi geodesic bigons. From
	Proposition 10.1, these bigons are	-thin. Thus there exist two points
	and	which are	-close, and such that the subpaths of	(resp. of )
	between	and (resp. between	and ) are	-close to . Since is a
	-quasi geodesic, we conclude that is -close to . Proof of Theorem 4.4: Let be a forest-stack equipped with some horizontal
	metric	such that	is strongly hyperbolic with respect to . From the Lemma
	-Definition of Section 3.2, this forest-stack is a	-quasi geodesic metric space. Let
	us consider any	-chain bigon,	. From Lemma 11.2, it is contained in
	a		-quasi geodesic bigon. From Lemma 11.3, this bigon is	-
	close, with			, to a straight	-quasi
	geodesic bigon. Proposition 10.1 gives	such that this bigon
	is	-thin. Thus the given	-chain bigon is	-thin, with
		. From Lemma 11.1, the given forest-stack, which is a	-quasi geodesic metric
	space, is	-hyperbolic.	

. There exists a constant , increasing with and , such that, if the horizontal length of a horizontal geodesic between and (resp. and ) is greater or equal to then is dilated in the past (resp. in the future) after .

Proof of Lemma 6.4: Let be such that . Assume that the horizontal length of some horizontal geodesic between and is greater or equal to . By Lemma 6.2, the choice of implies that, if is dilated in the future after , then the first point along satisfying is at horizontal distance greater than from

. By induction, we so obtain an infinite sequence of points in such that and each is at horizontal distance greater or equal to from . This is absurd. The other case of Lemma 6.4 is treated in the same way. Definition 6. [START_REF] Bridson | HAEFLIGER Metric spaces of non-positive curvature Fundamental Principles of Mathematical Science[END_REF] Let be two telescopic paths whose pulled-tight projections agree after some finite time. We say that and are in fine position if, for any two points , , satisfying , , mod , then .

Let us observe that a path is always is fine position with respect to any of its pulled-tight projections. Definition 6.6 A -hole (resp. -hole) is a telescopic path with both endpoints in a same stratum, which is in fine position with respect to the horizontal geodesic between its endpoints, and which satisfies furthermore min (resp. max ).

Lemma 6.7 Let be a straight -quasi geodesic -hole (resp. -hole). There exists a constant

, increasing with and , such that, if is the horizontal geodesic between the endpoints of and , then is dilated in the past (resp. future) after .

Proof of Lemma 6.7: We consider a decomposition of such that max . We consider a decomposition of where joins the past orbits of the endpoints of . We denote by the union of the 's which are dilated in the past after . We denote by the union of the other intervals in . From Lemma 6.2, the horizontal length of any interval in is less or equal to . Let be some positive integer. We consider a horizontal geodesic with and we assume that is dilated in the future after . Therefore: Hence , so that with .

Observe , so that for some , for any , . 

Lemma 12.6 With the assumptions and notations of Lemma 12.5, if the map is a (strongly) hyperbolic forest-map of then the semi-flow is (strongly) hyperbolic with respect to any horizontal -metric.

The proof of this lemma goes in the same way than the proof of Lemma 12.5.

Proof of Theorem 12.4: From Lemmas 12.5 and 12.6, a mapping-telescope admits a structure of forest-stack with horizontal metric such that the semi-flow is a strongly hyperbolic semi-flow with respect to . Theorem 4.4 gives Theorem 12.4.

About mapping-torus groups

We first recall the definition of a hyperbolic endomorphism of a group introduced by Gromov [START_REF] Gromov | Essays in Group Theory Math[END_REF]. Definition 13.1 ([18, 3]) An injective endomorphism of the rank free group is hyperbolic if there exist and such that for any , either or admits a pre-image which satisfies , where denotes the usual word-metric.

We recall that a subgroup in a group is malnormal if for any element of , . Our theorem about mapping-torus groups is stated as follows: Theorem 13.2 Let be an injective hyperbolic endomorphism of the rank free group . If the image of is a malnormal subgroup of then the mapping-torus group ; is a hyperbolic group.

Relationships with mapping-telescopes

We consider the rank free group . Let be an injective endomorphism of . Let ; be the mapping-torus group of . We consider the Cayley graph associated to the given system of generators. Let be a loop in whose associated word in the edges of reads a relation . We attach a -cell by its boundary circle along any such loop . The resulting topological space is a -complex. This is the Cayley complex of the mapping-torus group for the given presentation. Let us check that the above Cayley complex is a mapping-telescope of a forest-map. We consider the rose with petals . We label each edge by a generator of . We denote by the simplicial map on such that is a locally injective path whose associated word in the edges of reads . Let us denote by the universal covering of ( is a tree) and the associated covering-map. We denote by a simplicial lift of to , that is . We consider the mapping-torus of , this is thecomplex . Then the universal covering of this mapping-torus is the mapping-telescope of where and are defined as follows:

We denote by the set of integers from to Card Im . The different classes are written Im , . We denote by the bijection. Then the connected components of are in bijection with Card . Each connected component is the image, by a bijection , of a sequence of Card integers. Each connected component of is homeomorphic to via .

We define the restriction of to any connected component as follows:

-If Card then Card where Card satisfies Card Card .

-If Card then

The mapping-torus of is a -complex whose -skeleton is the rose with petals in bijection with . There is one -cell for each relation . Thus the universal covering described above is the Cayley complex for with the presentation ;

. We so proved the following:

Lemma 13.3 Let be an injective endomorphism of . Let ;

be the mapping-torus group of . Let be the Cayley complex of for the given presentation. Then is the mappingtelescope of a forest-map.

Remark 13. [START_REF] Bowditch | Stacks of hyperbolic spaces and ends of -manifolds[END_REF] If the endomorphism is an automorphism then the above Cayley complex is the mapping-telescope of a tree-map. The tree is the universal covering of the rose with petals. If the endomorphism is not injective then some element satisfies in ; the construction above fails because of the corresponding loops in the Cayley graph.

Let be an injective free group endomorphism. Let be the mapping-torus group of . Let be the Cayley complex of for the usual presentation ; . From Lemma 13.3 is a mapping-telescope of a forest-map. We now want to see what happens with respect to metrics and dynamics. The Cayley graph of a group is equipped with a metric which makes each edge isometric to the interval . More generally, given a graph , we call standard metric, and denote by , such a metric on . We will call mapping-telescope standard metric any mapping-telescope -metric on .

Lemma 13. [START_REF] Bridson | HAEFLIGER Metric spaces of non-positive curvature Fundamental Principles of Mathematical Science[END_REF] The mapping-torus group of an injective free group endomorphism acts cocompactly, properly discontinuously and isometrically on the Cayley complex equipped with any mapping-telescope standard metric.

Proof of Lemma 13.5: We consider the usual action by left translations of the group on its Cayley graph. This action is extended in a natural way to a free action on the Cayley complex . Let us denote by the map giving the strata for the structure of foreststack of , see Lemma 13.3. For a mapping-telescope metric, all the strata and are isometric. And for a mapping-telescope standard metric all the strata , , are equipped with the standard metric. This readily implies that the above action is isometric.

Free group endomorphisms and forest-maps

The key-point of Lemma 13.6 below is the so-called "bounded-cancellation lemma" of [START_REF] Cooper | Automorphisms of free groups have finitely generated fixed point sets[END_REF] for free group automorphisms, and of [START_REF] Dicks | The group fixed by a family of injective endomorphisms of a free group[END_REF] for the injective free group endomorphisms. Lemma 13.6 Let be an injective free group endomorphism. Let and be the forest and the forest-map on given by Lemma 13.3. Then is a weakly bi-Lipschitz forest-map of equipped with the standard metric .

Proof of Lemma 13.6: If is any element in , denoting the wordmetric on , then max . By definition of the standard metric, and setting max , the map satisfies for any pair of vertices . If are not vertices, then they are joined in their stratum by a horizontal geodesic which is the concatenation of a path between two vertices, with two proper subset of edges. By construction and simpliciality of , proper subset of edges are dilated by a bounded factor when applying , so that the conclusion follows for the upper-bound.

If is any element in then max . Setting max we get . Therefore for any pair of vertices . Unlike the upper-bound, the inequality for all points does not follow so easily. Because the map might identify points, which could make the distance brutally decreasing. However assume the existence of a constant such that . Any geodesic in is the concatenation of a Remark 13.8 Another way to state our main theorem about "forest-stacks", using the language of trees of spaces, goes roughly as follows: "An oriented -tree of -trees with the gluing-maps satisfying the conditions of hyperbolicity and strong hyperbolicity with uniform constants is Gromov-hyperbolic." Where by "oriented -tree" we mean an -tree equipped with an orientation going from the domain to the image of each attaching-map, and a surjective continuous map respecting this orientation. As a corollary of our theorem, and in order to illustrate it, we chosed to concentrate on mapping-telescopes. We could as well consider spaces similar to mapping-telescopes but where we allow the attaching-maps not to be the same at each step. That we only need is to have uniform constants of quasi-isometry, hyperbolicity and so on. Also, with respect to groups, a corollary could have been stated dealing with HNN-extensions rather than just semi-direct products.

Another result which easily follows from our work could be more or less stated as follows. "Let be a tree of spaces , . Let be a map of such that the mapping-telescope of each under is Gromov-hyperbolic. If induces a hyperbolic map on the tree resulting of the collapsing of each to a point, then the mapping-telescope of the tree of spaces under is Gromov-hyperbolic." We leave the precise statement of such corollaries to the reader. Together with [START_REF] Gautero | Relative hyperbolicity of (one ended hyperbolic)-by-cyclic groups[END_REF] where a new proof of the Bestvina-Feighn's theorem is given for mapping-tori of surface groups, the last one gives, thanks to [START_REF] Sela | Cyclic splittings of finitely presented groups and the canonical JSJ-decomposition[END_REF], a new proof of the full version of the Combination Theorem for mapping-tori of hyperbolic groups, namely: "If is a hyperbolic group and a hyperbolic automorphism of , then is a hyperbolic group".