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A geometry-preserving finite volume method

for conservation laws on curved geometries

Abdelaziz Beljadid1, Philippe G. LeFloch2,

and Abdolmajid Mohammadian3

Abstract

We consider nonlinear hyperbolic equations posed on curved geometries and in-
vestigate a geometry-preserving, second-order accurate, finite volume method. For
definiteness, we study the so-called class of “geometric Burgers equations” posed on
the sphere and defined from a prescribed potential function. Despite its apparent
simplicity, this model exhibits very complex wave phenomena that are not observed
in absence of geometrical effects. Our method is based on second-order finite vol-
ume approximations and generalized Riemann solvers. Our main contribution is
a rigorous investigation of the properties of discontinuous solutions. In particular,
we demonstrate the contraction property, the time-variation monotonicity property,
and the entropy monotonicity property (in all norms). We also study the late-time
asymptotic behavior of solutions, which is found to depend on the properties of the
flux vector and results from the nonlinear interactions between hyperbolic waves
and the underlying geometry.

1 Introduction

This paper is devoted to nonlinear hyperbolic problems, which can be based
on conservation laws or, more generally, balance laws and are posed on curved
geometries, for instance a surface. Our objective is to design robust and effi-
cient numerical approximation methods which allow to compute discontinu-
ous solutions and preserve the fundamental structure of the partial differential
equations, especially geometry-related properties. Hence, our goal is to design
and numerically investigate geometry-preserving, high-order accurate, finite
volume methods. We advocate the use of a (geometric) formulation of the
finite volume method based on the intrinsic (or covariant) form of the equa-
tions, rather then the coordinate expression which is more commonly used.
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In this manner, by properly taking into account the effects induced by the
geometry, we can design methods that are, both, accurate and robust.

We do not a priori restrict ourself to a specific discretization technique, but,
rather, we aim at comparing various strategies such as generalized Riemann
solvers, second-order centered schemes, etc. Compressible fluid dynamics pro-
vide a large variety of problems which involve geometrical features. The pro-
totype example is the system of shallow water on the sphere with topography,
which describe fluid flows on the surface of the Earth for instance, in connec-
tions with weather predictions [8].

Motivated by numerous applications in fluid dynamics, the study of hyper-
bolic conservation laws posed on curved manifolds were recently initiated in
the mathematical and numerical literature. We build here on the work by
Ben-Artzi and LeFloch [5] who proposed to rely on an analogue of the invis-
cid Burgers equation for curved geometry and, more generally, various classes
of hyperbolic conservation laws on manifolds. Since Burgers equations has
played such an important role in the development of shock-capturing schemes
for compressible fluid problems, it is also expected that the class of “geo-
metric Burgers models” should provide an ideal simplified setup in order to
design and test geometric-preserving shock-capturing scheme. The mathemati-
cal properties of entropy solutions to conservation laws on manifolds were then
extensively investigated by LeFloch and co-authors [1,2,5,4] and [10]– [13].

Scalar conservation laws will thus be our starting point in the present work
and, next, will extend our methodology and conclusions to other hyperbolic
equations, such as the shallow water system. In the present paper, we thus
focus on geometric Burgers models of the form

∂tu+ divF (·, u) = 0, u = u(t) : S2 → R, (1.1)

with unknown u defined on a curved space which we take to be the two-
dimensional sphere S2. The flux F (·, u) is a prescribed vector field defined on
S2, which depends on the unknown variable u as a parameter. (See Section 2,
below.) We adopt the methodology proposed in [4] which relies on second–
order approximations based on generalized Riemann problems (GRP). The
geometric GRP method therein is further developed and numerically in-
vestigated. We observe that certain global quantities are conserved by entropy
solutions to scalar conservation laws posed on curved geometries. Our aim is
therefore to exhibit these global invariants and investigate to which extend
they are preserved by (or remain monotone decreasing for) the approxima-
tion solutions generated by the geometric GRP method of [4]. We are also
interested in investigating the large-time asymptotics of solutions, which is
not understood by analytical method and will be here studied numerically.
As we show it in this paper, by distinguishing between several classes of flux
vector fields and initial conditions, we can exhibit a variety of nonlinear wave
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phenomena.

Our analysis below shows that the geometric GRP method is consistent with
the maximum principle

‖u(t′)‖L∞(S2) ≤ ‖u(t)‖L∞(S2), t′ ≥ t, (1.2)

the entropy stability property

‖u(t′)‖Lp(S2) ≤ ‖u(t)‖Lp(S2), t′ ≥ t, (1.3)

for all exponents p ∈ [1,+∞), as well as with the time-variation diminish-
ing property

‖∂tu‖M(S2)(t
′) ≤ ‖∂tu‖M(S2)(t), t′ ≥ t, (1.4)

where M(S2) denotes the space of bounded measures defined on S2. On the
other hand, the contraction property (for any two entropy solutions u, v)

‖v(t)− u(t)‖L1(S2) ≤ ‖v(0)− u(0)‖L1(S2) (1.5)

is violated by the scheme and is satisfied only by its first-order version.

Our analysis will distinguish between foliated flux fields and “generic” (or
fully coupled) flux fields. Geometric conservation laws with foliated flux are
a combination of linear transport and nonlinear hyperbolic equations, in the
sense that the solutions are simply transported within the level sets and (exact)
solutions can be defined in each level set, independently of the level parameter.
Under some assumption concerning the transport speed along the level sets
(as shown in Test 1-a, below), the solutions can be globally preserved within
the entire sphere S2 in a suitably defined “moving frame”. For foliated flux
fields satisfying a suitable nonlinearity condition, the solutions converge to
their constant average in each level set (as shown in Test 5, below). This
latter case includes, in particular, solutions which converge to constant values
in independent domains on the sphere (as illustrated in Tests 2 and 3, below).

For fully coupled flux fields, the solutions converge to constant values in in-
dependent domains on the sphere. The number of constants depends on the
existence of the curves that split the sphere in independent parts, as we define
below. In the case of the generic flux, the scalar function of the gradient can
be decomposed in several homogeneous terms. The term is said to be homo-
geneous if it corresponds to a foliated flux field. The behavior of the solution
is greatly influenced by the homogeneous terms of high order. The asymptotic
convergence to constant values is influenced on the nature of the terms of the
generic flux and the initial condition.

The outline of this paper is as follows. In Section 2, we describe the geomet-
ric conservation laws and the properties of their entropy solutions, and next
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present examples of flux fields and classes of solutions of particular interest.
Section 3 is devoted to the description and analysis of the geometric GRP
method. Section 4 presents some numerical tests for linear foliated fluxes. In
Sections 5 and 6, numerical tests are performed for nonlinear foliated fluxes. In
Sections 7 and 8, we present a variety of numerical test cases for fully coupled
flux vector fields as well as further tests to study the asymptotic convergence
of solutions. Finally, Section 9 contains concluding remarks.

2 Geometric Burgers models on the sphere

2.1 Geometric hyperbolic conservation laws on manifolds

We are primarily interested in nonlinear hyperbolic equations posed on the
sphere, but since the mathematical theory supporting the study in the present
paper has been developed for general manifolds endowed with a volume form,
as we now explain, so we introduce it at this level of generality first. Fix any
compact n-manifold M endowed with a volume form ω with L∞ regularity.
Given a flux vector field F = F (x, u) ∈ TxM depending on the real param-
eter u, we consider the geometric hyperbolic balance law

∂tu+ divωF (·, u) = 0 in R+ ×M, (2.1)

with unknown u : R+ × M → R. We impose that the flux is geometry-
compatible, in the sense that

divωF (·, u) = 0, u ∈ R, (2.2)

which is equivalent to say that constants are (trivial) solutions of the conser-
vation law. Then, weak solutions are understood in the following sense: for
every test-function θ = θ(t, x),

∫∫

R+×M

(

∂tθ(t, x) u(t, x) + ∂jθ(t, x)F
j(x, u(t, x)

)

ω(x)dtdx = 0, (2.3)

where F j denote the components of the vector field F in an arbitrary coordi-
nate chart x = (xj)1≤j≤n. Here, we have identified the volume form ω with its
expression ωdx in local coordinates (and, for simplicity in order to state (2.3),
we have assumed that the manifold is covered by a single chart).

To any equation (2.1) with flux field satisfying the condition (2.2), we can
associate a unique semi–group of entropy solutions characterized as fol-
lows: given any u0 ∈ L∞(M), there exists a unique entropy solution u ∈
L∞(R+ ×M) to the initial value problem

∂tU(u) + divωG(·, u) ≤ 0, U ′′ ≥ 0,

u(0) = u0,
(2.4)
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in which for every convex function U : R → R we have introduced the cor-
responding entropy flux G = G(x, u) ∈ TxM such that ∂uG := U ′ ∂uF . The
inequalities in (2.4) are refered to as the entropy inequalities.

Moreover, this semi-group of entropy solutions satisfies several fundamental
properties:

• Entropy stability property: for all p ∈ [1,∞) and t ≥ 0

‖u(t)‖Lp
ω(M) ≤ ‖u(0)‖Lp

ω(M), (2.5)

which also implies the maximum principle (by letting p → +∞):

‖u(t)‖L∞(M) ≤ ‖u(0)‖L∞(M). (2.6)

• The L1 contraction property: given any two entropy solutions u, v and
for all times t ≥ 0

‖v(t)− u(t)‖L1
ω(M) ≤ ‖v(0)− u(0)‖L1

ω(M). (2.7)

• The time-variation diminishing property: given any entropy solution
u

‖∂tu‖M(t) ≤ ‖∂tu‖M(0), t ≥ 0. (2.8)

We thus have a natural generalization of Kruzkov’s theory [9] to a manifold
[1,2,10,13]. Geometry-independent bounds hold, which are very useful in de-
sign and testing discrete approximation schemes.

The low regularity of the volume form allows us to also include shock wave

in the geometry (which is relevant to model earthquakes in the context of the
shallow water system, for instance).

2.2 The models of interest in this paper

In the applications, the manifold M is often defined via an embedding in
the higher-dimensional Euclidian space R

N . For simplicity, in the rest of this
paper we concentrate on surfaces and, specifically, the two-sphere S2 endowed
with a volume form ω and embedded in R

3. We denote by S2 the unit sphere
embedded in R

3 and endowed with the canonical volume form induced by the
Euclidian metric.

By denoting by ∇S2
ω
the covariant derivative operator on the sphere S2

ω ⊂ R
3,

we now express the conservation law in the form

∂tu+∇S2
ω
· (F (·, u)) = 0, (2.9)
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or equivalently, in local coordinates, we can pose the problem on the unit
sphere with a weight function ω = ω(x)

∂tu(t, x) +
1

ω(x)
∇S2 ·

(

ω(x)F (x, u(t, x))
)

= 0. (2.10)

Flux vector tangent to the sphere can always be expressed in the form

F (x, u) = n(x) ∧ Φ(x, u), x ∈ S2, u ∈ R, (2.11)

where Φ = Φ(x, u) is a u-dependent vector field defined in the ambient space
R

3, and n = n(x) denotes the unit normal vector to the sphere.

As explained earlier, we are primarily interested in geometry-compatible flux
vectors satisfying, by definition,

∇ · (F (·, ū)) = 0, ū ∈ R. (2.12)

Especially, the broad class of gradient-type flux vector fields is defined by

Φ(x, ū) = ∇h(x, ū), x ∈ S2, ū ∈ R, (2.13)

in which h = h(x, ū) is an arbitrary scalar function and∇ denotes the gradient
operator in R

3. Under these conditions, the flux vector field reads

F (x, ū) = n(x) ∧∇h(x, ū), x ∈ S2, ū ∈ R (2.14)

and we then refer to (2.9) as the geometric Burgers equations on the
sphere and are determined by a scalar function h : R3 × R → R.

We will refer to the function h as the scalar potential of the equation. For
instance, if h is chosen to be a linear function in the space variable, then Φ is
independent of x but its projection on the tangent space of the sphere is still
“non-trivial”.

2.3 Classes of flux vector fields

2.3.1 Foliated flux vector fields

A flux field F (x, u) depends on both the state variable u and the space variable
x. Roughly speaking, the dependency in x drives the propagation of the waves,
while the dependency in u may induce the formation of shocks in the solutions.
Some aspects of the influence of the parameters x and u on the evolution of the
solution are observed and analyzed in various cases studied in the numerical
tests.

Let us illustrate with two examples, which we will later investigate numerically.
In Test 1-a discussed below, the directions of propagation depend on the space
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variable x only, which is achieved by choosing the potential function h(x, u) =
−x3u. The solutions are simply transported so that the directions of this
transportation (or level sets) are defined by the curves x3 = c, where c ∈ [−1, 1]
is any real constant. Having here a potential which is linear in u, no shock
wave can form during the evolution (from regular data, say).

On the other hand, when the potential function is chosen to be h(x, u) =
−x3

u2

2
(as will be investigated in Test 5, below), again the directions of evolu-

tion are given by the curves x3 = c, where c ∈ [−1, 1] is any real constant. For
this case, shock waves do form in finite time from “general” initial data: this
feature is due to the nonlinear dependency of h in the variable u. These shocks
generate rather large variations in solutions along the level sets. We still have
formation of shocks within each level set and the solution can be computed
independently in each of these lines. We will observe later that each solution
converges asymptotically to a constant value on each line.

To conduct a rigorous numerical analysis and with the examples above in
mind, it is useful to introduce some new definitions, which allows us to have
the classification of the flux vectors and the type of evolution of solutions.
Consider first the dependency in the variable x ∈ S2. Our analysis has found
that the following parameterized level sets ΓC,u =

{

x ∈ R
3
/

h(x, u) = C
}

play a central role and that the following definition is most relevant.

Definition 2.1 A gradient flux vector field F (x, u) = n(x)∧∇xh(x, u) defined
on the sphere S2 and associated with a potential function h is called a foliated
flux field if the associated family of level sets

{

ΓC,u

}

C∈R
in R

3 is independent

of the parameter u, in the sense that for any two u1, u2 one can find C1, C2

such that ΓC1,u1
= ΓC2,u2

.

As will be confirmed later by our numerical tests, when the foliated condition
above holds, the directions of propagation associated with the equation (2.10)
depend on the spatial variable x only, and are independent on the variable u;
hence, the level sets are determined by the spatial variable only and remain
unchanged over time, even under the evolution of the solution.

A typical subclass of interest is obtained when h has the following splitting
form.

Definition 2.2 All gradient flux vector field F (x, u) = n(x) ∧ ∇xh(x, u) de-
fined on the sphere S2 and associated with a potential function h of the form

h(x, u) = h(x)f(u) (2.15)

(for an arbitrary h) are foliated and are referred to as foliated flux field
based on splitting.
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Flux vectors of the form above will be investigated later in numerical tests.
In particular, we use the x-linear potential functions, defined by h(x, u) =
(x · a)f(u), where a is some constant vector in R

3. In the latter situation, we
have a very natural slicing of the sphere S2 by planes in R

3. In all the above
cases, we obtain decoupled “dynamics” on each level set. If the family of level
sets is locally a family of curves, then the conservation laws reduces to a family
of one-dimensional equations on each curve.

2.3.2 Notion of independent domains

When the flux is not foliated, we will consider that we are in a “generic” situ-
ation and will use the terminology “generic flux field” and, in this case, the
potential function h = h(x, u) does not have the specific structure exhibited
above. Yet, this function can be decomposed into some homogeneous terms
and the evolution of the solution is influenced by all those terms, especially,
the direction of propagation changes during the evolution, until the solution
finally converges asymptotically to some limiting state.

The following notion of “independent domain” on the sphere, presented now,
will be of importance in our forthcoming study of the asymptotic convergence
of solutions.

Definition 2.3 Given a gradient flux field, a subset of the sphere S2 is called
a independent domain if within the family of level sets

{

ΓC,u

}

C∈R
, one can

find one level set that is independent of the parameter u and coincides with
the boundary of this domain.

Such independent domains may exist for foliated flux field as well as generic
flux fields. For example, the circle on the sphere defined by x1 = 0 splits the
sphere in two independent domains for the foliated flux based on the potential
function h1(x, u) = x1u

2. The same is true for the generic flux field based on
the potential function h2(x, u) = x1u

2 + x1x2u
3.

2.3.3 Genuine nonlinearity and late-time asymptotics

Consider now the dependency of the scalar potential h in u. A special situation
is obtained when the function h is linear in u, and in which case we use the ter-
minology “linear flux”. The classification that we introduced to distinguish
between foliated flux and generic flux, and the character of linearity of the
flux are expected to be sufficient to predict the late-time asymptotic behavior
of the solutions. The following will be validated numerically concernign the
asymptotic behavior of solutions. Under the notation and assumptions (2.11)
and (2.13) and for any initial condition, three late-time asymptotic behaviors
are expected for entropy solutions of equation (2.10):
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• For linear foliated flux, the solutions are simply transported within the level
sets.

• If the flux is foliated with nonlinear behavior, the solution converges to its
constant average in each level set.

• The generic flux generates large variations in solutions, which finally con-
verge to constants within independent domains on the sphere.

The late-time asymptotic behavior of the solutions for linear foliated flux is
numerically studied in Section 4 using Test 1-a and Test 1-b. According to
our analysis, we concluded that in general for this type of flux, the solution is
transported along each level set. The propagation speeds of the solution along
the sets depend on the variation of the scalar potential function according to
the spatial variable.

We examine the case of nonlinear foliated flux using Test 2-b, Test 3-a and
Test 5 presented, respectively in Sections 5, 6 and 8. In general for this type of
flux the solution converges to its constant average in each level set as examined
in Test 5. Some particular behaviors can be numerically observed according
to the structure of the computational grid for nonlinear foliated fluxes in
which the solution converges to constant values in independent domains on
the sphere. The lines which split these domains are part of the level sets. As
examples, the solution of Test 2-b converges asymptotically to two constant
values in two independent domains on the sphere and the solution of Test 3-a
converges to one constant value on the entire sphere.

For a generic flux, as will be shown by the tests performed in Section 7, the
behavior of the solution is largely influenced by the dependency of the scalar
potential h(x, u) both on the spatial variable x and the value of the function u.
In those tests we consider generic fluxes in which the scalar potential is com-
posed of different homogeneous fluxes. Following the tests performed in this
paper, for this type of flux, the solution converges to constant values in inde-
pendent domains on the sphere. The system of equations is conservative. Thus
the constant values, which are the asymptotic limits of convergence, represent
the averages of the function taken as initial condition in those domains.

2.4 Special classes of solutions

2.4.1 Wave structure

There are many solutions of particular interest which may have a very rich
wave structure, including spatially periodic solutions and steady state solu-
tions. Since for the foliated flux, the system of equations of interest can be
reduced to a family of one-dimensional equations on level sets, this type of
flux is considered to construct some particular and interesting solutions. The
Foliated flux with linear behavior is used to obtain the spatially periodic solu-
tions. The foliated flux with nonlinear behavior is employed to construct large
families of stationary solutions which are communally used in the numerical
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tests to check the well-balanced property. We will see in our numerical tests
that for nonlinear foliated flux, the level sets introduced in this paper can be
used to improve the numerical schemes by considering a suitable choice of the
mesh in order to preserve the stationary solutions. More precisely, in order to
preserve numerically the steady state solutions, the lines of the computational
grids should be a part of the level sets and their equipotential curves which
are orthogonal to them.

2.4.2 Spherical coordinates

The two-dimensional spherical coordinate system is considered here. The posi-
tion of each point on the sphere is specified by its longitude λ ∈ [0, 2π] and its
latitude φ ∈ [−π/2, π/2]. The coordinates are singular at the south and north
poles, corresponding to φ = −π/2 and φ = π/2, respectively. The Cartesian
coordinates are denoted by x = (x1, x2, x3) ∈ R

3 with the corresponding stan-
dard basis vectors i1, i2 and i3. The spherical coordinates under consideration
lead to the following unit normal vector to the sphere.

n(x) = cosφ cosλi1 + cosφ sinλi2 + sinφi3,

and for each point on the sphere with coordinates (λ, φ), we obtain the fol-
lowing unit tangent vectors in the directions of longitude and latitude

iλ = − sinλi1 + cosλi2,

iφ = − sinφ cosλi1 − sinφ sinλi2 + cosφi3.

The equation of conservation law (2.10), can be rewritten using the spherical
coordinates in the following form:

∂tu+
1

cosφ
(
∂

∂φ
(Fφ cosφ) +

∂Fλ

∂λ
) = 0, (2.16)

where Fλ and Fφ are the flux components in spherical coordinates. They

are given for each three-dimensional flux of the form Φ(x, u) = f̂1(x, u)i1 +
f̂2(x, u)i2 + f̂3(x, u)i3 as follows:

F (x, u) = Fλ(λ, φ, u)iλ + Fφ(λ, φ, u)iφ,

Fλ(λ, φ, u) = f̂1(x, u) sinφ cosλ+ f̂2(x, u) sinφ sinλ− f̂3(x, u) cosφ,

Fφ(λ, φ, u) = −f̂1(x, u) sinλ+ f̂2(x, u) cosλ.

(2.17)

2.4.3 Solutions for linear foliated flux

We consider the family of linear fluxes defined on the basis of the scalar poten-
tial h(x, u) = h(x)u with h(x) = −cxk

3
for an integer k ≥ 1 and a real number
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c chosen arbitrarily. Under these considerations, the three-dimensional flux
reads

Φ(x, u) = ∇xh(x, u) = −ckxk−1
3 ui3. (2.18)

The components of the flux in spherical coordinates can be deduced by using
the explicit formulas (2.17) as follows

Fλ(λ, φ, λ) = ckxk−1
3 cosφu,

Fφ(λ, φ, λ) = 0.
(2.19)

Finally, it is easy to derive the analytical solution for any initial condition
u0(λ, φ)

u(x, t) = u0(λ− c∗φt, φ),

c∗φ = ckxk−1
3 .

(2.20)

The level sets of this type of fluxes are the circles on the sphere defined by
constant latitudes. For k = 1 the solution is simply transported within those
level sets with the same angular speed and it is globally preserved in a rotating
frame. For k > 1 the solution is transported within the level sets with different
angular speeds and it is preserved in a moving frame along each level set but
the solution is not globally preserved. We note that more general forms of the
solutions for linear fluxes can be obtained by considering other functions h(x).

2.4.4 Non-trivial steady state solutions

In this section, we present some general classes of non-trivial steady state
solutions which will be used in the numerical tests. As mentioned before,
foliated fluxes are used to construct non-trivial stationary solutions. More
precisely, based on the expected asymptotic behavior for non-linear foliated
flux, the solution of the equation (2.10) evolves along each level set and for
long time, this solution converges asymptotically to constant value on each
level set. Thus, it is straightforward (but fundamental) to deduce that for this
type of flux, any stationary solution of the equation (2.10) must be constant
along each level set. This result is important and further simplifies the problem
to find the stationary solutions. However, for the solutions which are used in
our numerical tests, it will be proved that they are stationary. We will be
particularly interested, in this section, to a linear splitting flux vector defined
on the basis of the scalar potential h(x, u) = (x.a)f(u) for some constant
vector a = a1i1 + a2i2 + a3i3 in R

3. For this case the corresponding flux is
obtained as

F (x, u) = f(u)n(x) ∧ a.

The level sets of this flux are the circles defined as the intersections of the
sphere with the planes defined as x.a = c, where c ∈ [−‖a‖2, ‖a‖2]. These
level sets will be parametrized by the real constant c and denoted by Γc.The
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following Corollary describes for the above-mentioned type of flux, a family of
non-trivial steady state solutions

Corollary 2.4 (A family of steady sate solutions). Consider the foli-
ated flux vector F (x, u) = f(u)n(x) ∧ a, where a is some constant vector in
R

3. For any function ũ which depends on one variable, the function defined
as u0(x) = ũ(x.a) = ũ(a1x1 + a2x2 + a3x3) is a stationary solution to the
conservation law (2.10) associated to the flux F (x, u).

Proof. In order to prove that the function u0(x) is a stationary solution we
use the claim 3.2 in [4]. To conduct this, we consider the function H(x) =
H0(a1x1+a2x2+a3x3), whereH0(µ) =

∫ µ
µ0
f(ũ0(µ))dµ. It is clear that h(x, u) =

(x.a)f(u) is a smooth function in R
3 in particular in a neighborhood of S2.

The following results are obtained

∇yh(y, u0(x))|y=x = (a1i1 + a2i2 + a3i3)f(ũ0(a1x1 + a2x2 + a3x3))

and ∇yh(y, u0(x))|y=x = ∇xH(x). Therefore, all hypothesis of the claim 3.2
in [4] are satisfied. Finally, the function u0(x) is a stationary solution of the
conservation law (2.10). ✷

Since u0(x) = ũ(x.a), then the function u0 is constant on each level set Γc.
We are interested in discontinuous solutions. The results of Corollary 2.4 will
be used to construct discontinuous stationary solutions for some selected flux
vectors. In particular, if the same assumptions of the Corollary 2.4 are consid-
ered with f(u) = u2/2, then for any function ũ which depends on one variable,
the function defined as u0(x) = χ(x.a)ũ(x.a) is a stationary solution to the
conservation law (2.10), where χ(x.a) is a discrete function which depends on
the variable x.a and has the values of ±1 .

Particular values of the vector a will be used in order to construct several
forms of foliated flux which will be used in the numerical tests. In the second
test, we consider the flux of the form F (x, u) = f(u)n(x) ∧ i1 (i.e a = i1).
For this flux any function which depends on the first coordinate x1 only, is
a steady state solution of the equation (2.10). In the third test, the vector
a = i1+ i2+ i3 is considered and for this case we obtain a steady state solution
in a spherical cap of the form u0(x) = ũ0(x1 + x2 + x3), where ũ0 is any real
function depending on one variable.

3 Geometric GRP method on the sphere

3.1 Discrete form of the scheme

Following [4], we design a Godunov-type, finite volume scheme that is based
on an intrinsic approach and provides an accurate treatment of the geometry.
Second-order accuracy is obtained with the technique developed by Ben–Artzi
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and Facolvitz [3], LeFloch and Raviart [14], and Bourgeade et al. [7]. Earlier
work was done by Berger et al. [6] and Rossmanith [18,19] based on high
resolution schemes and approximate Riemann solvers, but by embedding the
sphere in a “cubic mesh” in R

3.

In the following, we present the discrete form of the geometry-compatible fi-
nite volume scheme which was formulated in [4]. In order to ensure a suitable
discrete form, an important condition obtained from the theory established by
Ben-Artzi and LeFloch [5] called the “zero-divergence” was used in the con-
struction of the scheme. We provide some details about the discrete form of
the divergence operator and the second order method using General Riemann
Problem solver (GRP) based on an operator splitting approach. The second
order scheme respects the geometry-compatibility condition in the GRP frame-
work and it is used to improve the expected order of accuracy.

The general structures of the cells used in the numerical scheme are shown in
Figure 1 and Figure 2. When we go from the equator to the north or south
poles, for some special latitude circles, the cell is changed by a ratio of 2 in
order to reduce the number of cells, to respect the condition of stability and to
have homogeneous precision in the entire domain of the sphere. The domain
of each cell is defined as Ω := {λ1 6 λ 6 λ2, φ1 6 φ 6 φ2}. A cell near the
north or south poles has three sides which is a special case of the standard
cell shown in Figure 1 with zero length for one side.

In [4], the divergence operator is discretized using the geometry-compatible
condition and the flux is approximated by using the following formula:

(∇S2 · (F (x, u(t, x))))approx =
Ii
ωi

, (3.1)

where Ii = (
∮

∂Ω F (x, u).~nds)approx, ~n is the unit normal vector to the boundary
∂Ω of the cell, and ds is the arc length along ∂Ω. The parameter Ii is calculated
for each side e of the cell in terms of the scalar potential h using the following
expression:

(
∮ e2

e1
F (x, u).~nds

)approx

= −(h(e2, um)− h(e1, um)), (3.2)

where e1 and e2 are, respectively, the initial and final endpoints of the edge e
and um is the solution of the Riemann problem in the orthogonal direction to
the interface e

3.1.1 Equations for the splitting approach

The different approximations used in the numerical scheme are based on the
splitting of the equations. Without loss of generality, the following scalar po-
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Figure 2. Grid type 2 on S2.

tentials are used to explain the procedure and the different equations of the
splitting approach

h(x, u) = h1(x)f1(u) + h2(x)f2(u) + h3(x)f3(u), (3.3)

which leads to the corresponding gradient flux vector:

Φ(x, u)

= ∇xh(x, u) =
j=3
∑

j=1

∂hj(x)

∂x1

fj(u)i1 +
j=3
∑

j=1

∂hj(x)

∂x2

fj(u)i2 +
j=3
∑

j=1

∂hj(x)

∂x3

fj(u)i3.

(3.4)
Using Claim 2.2 in [4], the above expression of Φ(x, u) as a gradient ensures
the validity of the geometry compatibility condition. The equations (2.17) are
used to obtain the following flux components in spherical coordinates:

Fλ(λ, φ, u) = Φ1(x, u) sinφ cosλ+ Φ2(x, u) sinφ sinλ− Φ3(x, u) cosφ,

Fφ(λ, φ, u) = −Φ1(x, u) sinλ+ Φ2(x, u) cosλ,
(3.5)
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where Φi(x, u) =
∑j=3

j=1
∂hj(x)

∂xi
fj(u), i = 1, 2, 3.

The geometry compatibility condition is equivalent to the following relation
in spherical coordinates which is valid for any constant value ū ∈ R:

∂Fφ(λ, φ, ū) cos(φ)

∂φ
+

∂Fλ(λ, φ, ū)

∂λ
= 0. (3.6)

Then, we find

− sinλ
j=3
∑

j=1

∂h
′

j1(x) cosφ

∂φ
fj(u) + cosλ

j=3
∑

j=1

∂h
′

j2(x) cosφ

∂φ
fj(u)

+ sinφ
j=3
∑

j=1

∂h
′

j1(x) cosλ

∂λ
fj(u)

+ sinφ
j=3
∑

j=1

∂h
′

j2(x) sinλ

∂λ
fj(u)− cosφ

j=3
∑

j=1

∂h
′

j3(x)

∂λ
fj(u) = 0,

(3.7)

where h
′

ji(x) = ∂hj(x)

∂xi
, i = 1, 2, 3 j = 1, 2, 3. Using the conservation law

in spherical coordinates (2.16), the flux components given by equations (3.5),
and the geometry-compatibility property formulated by equation (3.7), we
establish the following equivalent formulation of the conservation law, which
is easier to work with:

∂u

∂t
−

j=3
∑

j=1

h
′

j1(x)
∂fj(u)

∂φ
sinλ+

j=3
∑

j=1

h
′

j2(x)
∂fj(u)

∂φ
cosλ

+ tanφ(
j=3
∑

j=1

h
′

j1(x)
∂fj(u)

∂λ
cosλ+

j=3
∑

j=1

h
′

j2(x)
∂fj(u)

∂λ
sinλ)

−
j=3
∑

j=1

h
′

j3(x)
∂fj(u)

∂λ
= 0.

(3.8)

The longitude and the latitude of the midpoint of the interface are denoted
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by λm and φm, respectively: the “λ split” equations read

∂u

∂t
+

∂g(x, u)

∂λ
= Sλ,

Sλ = tanφm





j=3
∑

j=1

fj(u)
∂(h

′

j1(x) cosλ)

∂λ
+

j=3
∑

j=1

fj(u)
∂(h

′

j2(x) sinλ)

∂λ





−
j=3
∑

j=1

fj(u)
∂(h

′

j3(x))

∂λ

g(x, u) = tanφm





j=3
∑

j=1

h
′

j1(x)fj(u) cosλ+
j=3
∑

j=1

h
′

j2(x)fj(u) sinλ





−
j=3
∑

j=1

h
′

j3(x)fj(u),

(3.9)

while the “φ split” equations are

∂u

∂t
+

∂k(x, u)

∂φ
= Sφ,

Sφ = −
j=3
∑

j=1

fj(u) sinλ
∂h

′

j1(x)

∂φ
+

j=3
∑

j=1

fj(u)cosλ
∂h

′

j2(x)

∂φ
,

k(x, u) = −
j=3
∑

j=1

h
′

j1(x)fj(u) sinλ+
j=3
∑

j=1

h
′

j2(x)fj(u)cosλ.

(3.10)

The right-hand side terms Sλ and Sφ of the previous equations are the result
of the explicit differentiation of the flux functions g(x, u) and k(x, u).

3.2 Second-order approximations based on the GRP method

We now present the algorithm used for the second-order finite volume method
based on generalized Riemann solver. Since the same method is applied for
the λ− and φ−equations, for simplicity the variable ζ is used to denote the
variable λ or φ, respectively, if the “λ split” or “φ split” is considered. The
function g̃(x, u) is also employed as a notation for both g(x, u) and k(x, u) used
in the equations (3.9) and (3.10), respectively. The following general equation
is obtained:

∂u

∂t
+

∂g̃(x, u)

∂ζ
= Sζ . (3.11)

The right hand side term Sζ is the result of the differentiation of the function
g̃(x, u) corresponding to case ζ = λ or ζ = φ developed in the previous
section. In the second order method based on the General Riemann Problem,
it is assumed that for any time step tn, the solution is approximated by a
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piecewise linear function. The constant values un
i at the cell centers are used

to obtain piecewise linear functions un
i (ζ) inside each cell i. This reconstruction

leads to the following local function:

un
i (ζ) = un

i + (ζ − ζi)s
n
i , ζ ∈ [0,∆ζ], (3.12)

where sni are the slopes. The Godunov scheme is the special case of this method
by considering sni = 0 for all cells. The following extreme values are used to
solve the Riemann problem at the interface:

uL
i = un

i −
1

2
∆ζsni , uR

i = un
i +

1

2
∆ζsni . (3.13)

The new slope sn+1
i is obtained by using the following steps:

un+1
i+ 1

2

= un
i+ 1

2

+ (
∂u

∂t
)ni+ 1

2

(tn+1 − tn),

s̃n+1
i =

1

∆ζ
(un+1

i+ 1

2

− un+1
i− 1

2

),

sn+1
i =

1

∆ζ
minmod((un+1

i+1 − un+1
i ),∆ζs̃n+1

i , (un+1
i − un+1

i−1 )),

(3.14)

where the minmod function is

minmod(σ1, σ2, σ3)

=







σmin(|σ1|, |σ2|, |σ3|), if σ = sign(σ1) = sign(σ2) = sign(σ3),

0, otherwise.
.

(3.15)

Subject to the initial data for u, its boundary values denoted by uL and uR

and its ζ-slope denoted by uL,ζ and uR,ζ are used to obtain the solution ũm of
the Riemann problem. The General Riemann problem method uses a linear
temporal approximation of the value of um. The new value is obtained as:

um = ũm +
∂u

∂t
(λm, φm, tn)

∆t

2
. (3.16)

In equation (3.16), the derivative term is obtained by using the slope value of
u

∂u

∂t
(λm, φm, tn) = −um,ζ

∂g̃(x, u)

∂u
|(λm,φm,um) . (3.17)

The parameter um,ζ is obtained by the associated Riemann Problem. In the
following we recall briefly the procedure used to solve the Riemann problem
for u and its slopes. For uL ≤ uR, we consider the “convex envelope” of g̃ and
the solution um and um,ζ are obtained as follows:

um = argv∈[uL,uR]min(g̃(x, v) | (λm, φm)). (3.18)
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To evaluate the parameters um and um,ζ , there are three cases:

(i) A wave moving to the right:

um = uL, um,ζ = uL,ζ . (3.19)

(ii) A wave moving to the left:

um = uR, um,ζ = uR,ζ . (3.20)

(iii) A sonic point:

uL < um < uR, ∂ug̃(x, u) |(λm,φm,um)= 0. (3.21)

Not that for the sonic case, it is easy to conclude, using the equations (3.17)
and (3.21), that the time-derivative of u reduces to ∂u

∂t
(λm, φm, tn) = 0. The

geometry-compatibility condition remains valid also for the second order scheme.
Indeed, if we consider the condition u ≡ const in the computational cell and its
neighbors, the slopes and the time-derivatives of the solution in the GRP van-
ish and the solution remains constant. Finally, under the condition uL > uR,
the same procedure is used by considering the “concave envelope” of g̃ and
the value that maximizes the function g̃(x, v) in the equation (3.18) with
v ∈ [uR, uL].

4 First test case with linear foliated flux

Referring to Section 2.4.3, here we perform two tests cases using linear fluxes
based on different scalar potentials h(x, u) = h(x)u. We consider a grid with
an equatorial longitude step ∆λ = π/96 and a latitude step ∆φ = π/96, and
a time step ∆t = 0.01. In the first numerical test (Test 1-a), the function
h(x) = −x

3
is considered, which leads to the following flux vector:

Fλ(λ, φ, λ) = cosφu, Fφ(λ, φ, λ) = 0. (4.1)

We consider the initial function with a discontinuity along the curve x1 = 0,
defined as:

u(0, x) =







cosφ, x1 ≥ 0,

− cosφ, otherwise.
(4.2)

For this case, the solution is transported with the same angular speed along
the level sets which are the circles defined by φ = φc, where φc ∈ [−π

2
, π
2
].

Figure 3 shows the solution at time t = 50 and confirms that it is globally
preserved in rotating frame on the sphere.
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Figure 3. Test 1-a: time t = 50 with ∆t = 0.01, ∆λ = π/96, and ∆φ = π/96.

Now we consider the second test (test 1-b) in which the flux vector is defined on
the basis of the scalar potential h(x, u) = −x2

3
u, and the same initial condition

is used as the first test. For this test, again the solution is transported along
the same level sets but with different angular speeds. As shown in Figure 4
for t = 50, the solution is preserved on each level set in a moving frame but
not globally preserved on the sphere.
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Figure 4. Test 1-b: time t = 50 with ∆t = 0.01, ∆λ = π/96, and ∆φ = π/96.
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5 Second test case with nonlinear foliated fluxes

In this section several aspects will be analyzed for nonlinear foliated flux of the
form F (x, u) = f(u)n(x)∧i1 with f(u) = u2/2. The evolution of L1 error of the
second order scheme is analyzed using discontinuous steady state solutions.
The entropy stability property 1.3, the time-variation diminishing property
1.4 and the contraction property 1.5 are analyzed for the first and second
order of the scheme. The late-time asymptotic behaviors of the solutions are
analyzed using this flux and different initial conditions.

First, we consider the following discontinuous steady state solution of the
equation (2.10) which is taken as initial condition (test 2-a).

u1(0, x) =







1, x1 ≤ 0,

−1, otherwise.
(5.1)

In this test we compute the numerical solution by using the computational
cell with equatorial longitude step ∆λ = π/96 and latitude step ∆φ = π/96,
and a time step ∆t = 0.01. Figure 5 shows the numerical solution and the
initial condition on the equator of the sphere (φ = 0) at time t = 100. As
shown in this figure, the numerical solution is in good agreement with the
initial condition and it remains steady state.
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Figure 5. Test 2-a on the equator of the sphere at time t = 100 with ∆t = 0.01,
∆λ = π/96, and ∆φ = π/96.

Finally, a two-dimensional view of the solution at time t = 100 is presented in
Figure 6 which confirms that the solution remains unchanged over the entire
sphere. For this example, since the discontinuity coincide with the level set
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(x1 = 0), there is no numerical impact of the mesh structure on the solution
which is preserved for large simulation time. More generally, if we use the
assumption that the sides of the mesh coincide with the level sets of the flux
and their orthogonal equipotential curves, the second order scheme based on
the geometric-compatible property can correctly compute the discontinuous
steady sate solutions based on constant values on partially closed domains on
the sphere. One can say that the scheme satisfies the discontinuous geometric-
compatible property since it is capable to capture all discontinuous steady sate
solution based on constant values on closed domains which form a partition
on the sphere. But this property is numerically valid if a subset of the level
sets is taken as a lines of computational cells which is very important for the
performance of the numerical schemes in the case of nonlinear foliated flux.
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Figure 6. Test 2-a on the entire sphere at time t = 100 with ∆t = 0.01, ∆λ = π/96,
and ∆φ = π/96.

Now we consider a Test 2-b using another form of steady state solution, with
more discontinuities, which is defined in three domains separated by two closed
curves on the sphere defining these discontinuities. The numerical solution is
computed by using the same computational grid and time step such as those
considered in the previous test.

u2(x) =















x3
1, −1 ≤ x1 ≤ −0.5,

0.5x2
1, −0.5 < x1 < 0.5,

−0.25x1, 0.5 ≤ x1 ≤ 1.

(5.2)

Figure 7 shows the numerical solution and the initial condition on the equator
of the sphere at time t = 5 and Figure 8 shows the two-dimensional view of
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the solution at this time on the entire sphere. Accurate results are obtained
but for large simulation time, following the comparison between the results of
this test to those of test 2-a, we conclude that the numerical scheme is more
accurate for the discontinuous steady state solutions based on constants values
than for general steady state solutions. This can be justified by the fact that
the scheme is based on the geometric compatibility condition which ensures
that the constant functions are perfectly preserved by the scheme.
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Figure 7. Test 2.b at time t = 5 with ∆t = 0.01, ∆λ = π/96, and ∆φ = π/96.
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Figure 8. Test 2.b on the entire sphere at time t = 5 with ∆t = 0.01, ∆λ = π/96,
and ∆φ = π/96.
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Figure 9 shows the evolution of L1 error of the solution until t = 100 and
confirms that we obtain accurate results, but for the case of large simula-
tion times the numerical solution is influenced by the mesh structure. It is
extremely important to note that in general for nonlinear foliated flux the
scheme can preserve the nontrivial stationary solutions with more accurately
if the lines of the mesh are part of the level sets of the flux and their orthogonal
equipotential curves

Time
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L1-norm error

Figure 9. L1 error for Test 2.b at time t = 100 with ∆t = 0.01, ∆λ = π/96, and
∆φ = π/96.

According to the scalar potential h(x, u) = x1u
2/2, the circle defined on the

sphere by x1 = 0 splits the sphere into two independent domains, the first
domain includes the points with x1 ≥ 0 and the second includes the points
with x1 < 0. The average values of the initial condition in the first and second
domains are denoted by ūI and ūII , respectively. Figures 10 and 11 show that
the parameters ‖u(t)− ūI‖L1 and ‖u(t)− ūII‖L1 in the first domain and in
the second domain of the sphere, respectively, are decreasing over time and
tend to zero for large simulation time. The solution converges asymptotically
to different constant values in those domains and the convergence is faster in
the second domain than the first domain.

Figure 12 presents the two-dimensional view of the solution for a large simu-
lation time and shows that the solution has almost reached to an asymptotic
convergence.

Figure 13 shows the evolution of the parameter ‖u(t)‖Lp
ω(M) using Lp norm for

p = 1, 2, 3, 4, 5, 10 and ∞, and confirms that the entropy stability property 1.3
is checked for all those norms.
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Figure 10. Convergence for Test 2-b: Evolution of the parameter
E(u) = ‖u(t)− ūI‖L1 in domain 1 with ∆t = 0.05, ∆λ = π/96 and ∆φ = π/96.
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Figure 11. Convergence for Test 2-b: Evolution of the parameter
E(u) = ‖u(t)− ūII‖L1 in domain 2 with ∆t = 0.05, ∆λ = π/96 and ∆φ = π/96.

In the following, the time-variation diminishing property 1.4 is checked for
the first and second order forms of the scheme using several initial conditions.
Figure 14 confirms that this property is checked for the second order scheme
when the function of Test 2-b is used.

Several tests were performed using the following functions in order to verify
the time-variation diminishing property 1.4. As shown in Figures 15 and 16,
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Figure 12. Convergence ofor Test 2-b. Two-dimensional view of the solution at time
t = 50000 with ∆t = 0.05, ∆λ = π/96 and ∆φ = π/96.
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Figure 13. Entropy stability property 1.3 for Test 2 − b at time t = 100 with
∆t = 0.01, ∆λ = π/96 and ∆φ = π/96.

this property holds for both cases of the first and second order of the scheme.

u1(0, x) =







sinλ, x1 ≥ 0,

− sinλ, otherwise.
(5.3)
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Figure 14. Time-variation diminishing property 1.4 for Test 2 − b at time t = 100
with ∆t = 0.01, ∆λ = π/96 and ∆φ = π/96.

u2(0, x) =







x3, λ ≤ π,

x3 cosλ, otherwise.
(5.4)

u3(0, x) =







x2, x1 ≤ 0,

−x2e
x1 , otherwise.

(5.5)

u4(0, x) =















1
θ−1

, θ < 0,
1

1+θ2
, 0 ≤ θ ≤ 2/

√
3,

−3/7, otherwise.

(5.6)

where θ = x1 + 2x2 + x3.

We now proceed to the analysis of the contraction property 1.5 for the the
numerical scheme using L1 norm. We start by giving an example of two func-
tions which verify the contraction property for the first-order scheme but they
do not verify this property for the second-order method. We consider the
functions v1 and w1 defined as:

v1(0, x) =







x1 + x2
3, x1 > 0,

−x1 − x2
3, otherwise.

w1(0, x) = |x1|.
(5.7)

Figure 17 shows the evolution of the ratio E(u, v) defined by the following
formula and confirms that this parameter is decreasing only in the case of the
first-order scheme. Then the contraction property 1.5 is valid only for the case
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Figure 15. Time-variation diminishing property 1.4 for the first order scheme until
time t = 50 with ∆t = 0.01, ∆λ = π/96 and ∆φ = π/96.
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Figure 16. Time-variation diminishing property 1.4 for the second order scheme
until time t = 50 with ∆t = 0.01, ∆λ = π/96 and ∆φ = π/96.

of the first-order scheme.

E(v, w) = ‖v1(t)− w1(t)‖L1
ω(M)/‖v1(0)− w1(0)‖L1

ω(M). (5.8)

Several tests are performed to verify the contraction property 1.5 for the first-
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Figure 17. Contraction property 1.5 for the case of first and second order schemes
using the L1 norm with ∆t = 0.01, ∆λ = π/96 and ∆φ = π/96.

order scheme using the following five pairs of functions.

v1(0, x) =







sinh(x1)x2 − x3 cosh(x1), x1 ≤ 0,

x3 + x1, otherwise.

w1(0, x) =







x2x
3
1 + ex1 , x1 ≤ 0,

− cos(x1) + x2
3x1, otherwise.

(5.9)

v2(0, x) =







x2 cos(x1), x1 ≤ 0,

−x2, otherwise.

w2(0, x) =







x3 cos(x1), x1 ≤ 0,

−x3 + x3x1 log(x1), otherwise.

(5.10)

v3(0, x) =







x2
3 cos(πx1) + x2, x1 ≤ 1/2,

−x2 + x3(2x
2
1 − x1), otherwise.

w3(0, x) =







x2x3 cos(πx1) + x3(x
4
1 − x1), x1 ≤ 1,

x2x3, otherwise.

(5.11)

v4(0, x) =







x2e
x1+x3 , x1 ≤ 0,

−x2e
x3 , otherwise.

w4(0, x) =







x2x3

1−x1
, x1 ≤ 0,

x2
1 − x2x3, otherwise.

(5.12)
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v5(0, x) =







cosh(x1 + x2), x1 ≤ 0,

− cosh(x2), otherwise.

w5(0, x) =







cosh(x3), x1 ≤ 0,

− cosh(x3), otherwise.

(5.13)

Figure 18 shows the evolution of the ratio E(u, v) for the five pairs of functions.
This parameter is decreasing for all cases, which confirms that the contraction
property 1.5 is valid for all pairs of functions considered.
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Figure 18. Contraction property 1.5 for the first odrer scheme with ∆t = 0.01,
∆λ = π/96 and ∆φ = π/96.

6 Third test case with nonlinear foliated fluxes –an alternative
form

We consider the nonlinear foliated flux defined in Section 2 of the form F (x, u) =
f(u)n(x)∧(i1+i2+i3) which corresponds to the scalar potential h(x, u) = (x1+
x2 + x3)f(u). For this flux, any function of the form u0(x) = ũ0(x1 + x2 + x3)
is a steady state solution of the equations (2.10). In this section the tests are
performed using f(u) = u2/2. We consider the following discontinuous steady
state solution:

u1(0, x) =







θ3+1
5−θ

, −
√
3 ≤ θ ≤ 0,

θ2 − θ − 1/5, otherwise.
(6.1)
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where θ = x1 + x2 + x3. Using the inequality (x1 + x2 + x3)
2 ≤ 3(x2

1 + x2
2 + x2

3)
we obtain θ ∈ [−

√
3,
√
3].

The present test (3-a) is performed with the above function as initial condition,
using a grid with equatorial longitude step ∆λ = π/96 and latitude step
∆φ = π/96, and a time step ∆t = 0.01. Figures 19 and 20 show the comparison
between the numerical solution at time t = 5 and the initial condition on the
equator of the entire sphere for 0 ≤ λ ≤ π and π ≤ λ ≤ 2π, respectively.
Figure 21 shows a two-dimensional view of the solution on the sphere at time
t = 5. According to those figures, one can conclude that the second order
scheme leads to good results for t = 5.
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Figure 19. Test 3-a on the equator of the sphere with 0 ≤ λ ≤ π at time t = 5 with
∆t = 0.01, ∆λ = π/96 and ∆φ = π/96.

The evolution of L1 error of the solution is presented in Figure 22 until t = 100
and again for this case the solution is influenced by the mesh structure. Figure
23 shows the evolution of the parameter ‖u1(t)− ū1‖L1 , where ū1 is the average
value of the solution on the sphere. For large simulation time, the solution
converges to constant value in the entire sphere.

The entropy stability property 1.3 is analyzed using the entropy solution (6.1)
with the Lp norm for p = 1, 2, 3, 4, 5, 10 and ∞. As shown in Figure 24, this
property is checked for all those norms.

The the time-variation diminishing property 1.4 is now checked for the first
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Figure 20. Test 3-a on the equator of the sphere with π ≤ λ ≤ 2π at time t = 5
with ∆t = 0.01, ∆λ = π/96 and ∆φ = π/96.
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Figure 21. STest 3-a at time t = 5 with ∆t = 0.01, ∆λ = π/96 and ∆φ = π/96.

and second order schemes using the L1 norm and the following functions:

u1(0, x) =







x2 + θx1, −
√
3 ≤ θ ≤ 0,

−x2 + θx3, otherwise.

u2(0, x) =















x1 + x2 cos(λ), 0 ≤ λ ≤ π/2,

− x1, π/2 < λ < π,

x1 + x3 sin(λ), otherwise.

(6.2)
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Figure 22. L1 error for Test 3-a at time t = 100 with ∆t = 0.01, ∆λ = π/96 and
∆φ = π/96.
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Figure 23. Convergence for Test 3-a. Evolution of ‖u1(t)− ū1‖L1 for large simulation
time ∆t = 0.05, ∆λ = π/96 and ∆φ = π/96

u3(0, x) =







θex3 + eθ, −
√
3 ≤ θ ≤ 0,

− 1 + θ log(θ), otherwise.

u4(0, x) =







x2 sinh(x1) +
1

x2
1
+4

, −1 ≤ x1 ≤ 0,

− cosh(x1)/4, otherwise.

(6.3)

Figures 26 and 25 present the evolution of the parameter ‖∂tu‖M(t) for the
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Figure 24. Stability property for Test 3-a at time t = 100 with ∆t = 0.01, ∆λ = π/96
and ∆φ = π/96.

first and second order schemes, respectively. As can be seen in these figures,
this parameter decreases over time, which shows that the time-variation di-
minishing property 1.4 is valid for all the functions arbitrarily chosen.
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Figure 25. Property (2.8) for the first order scheme until time t = 50 with ∆t = 0.01,
∆λ = π/96 and ∆φ = π/96.

The contraction property 1.5 is now checked for the first order scheme using

33



Time

N
(u

t)

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3
Function 1

Function 2

Function3

Function 4

Figure 26. Entropy stability property 1.3 for the second order scheme until time
t = 50 with ∆t = 0.01, ∆λ = π/96 and ∆φ = π/96.

the following pairs of functions.

v1(0, x) =







x2θ + cosh(θ), −
√
3 ≤ θ ≤ 0,

x2θ − cosh(θ), otherwise.

w1(0, x) =







x2, −
√
3 ≤ θ ≤ 0,

−x2, otherwise.

(6.4)

v2(0, x) =







1, 0 ≤ λ ≤ π,

cos(λ), otherwise.

w2(0, x) =







arcsin(x2), 0 ≤ λ ≤ π,

cos(λ) arcsin(x2), otherwise.

(6.5)

v3(0, x) =







eθx1x2x3, −
√
3 ≤ θ ≤ 0,

−x1x2x3, otherwise.

w3(0, x) =







x2x3, −
√
3 ≤ θ ≤ 0,

−x2x3 + e−1/θ, otherwise.

(6.6)

v4(0, x) =







θ2+1
2−θ

, −
√
3 ≤ θ ≤ 0,

x2θ − 1/2, otherwise.

w4(0, x) =







eθ

θ−1
, −

√
3 ≤ θ ≤ 0,

cosh(θ)
1+θ

+ x3θ, otherwise.

(6.7)
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v5(0, x) =







θ, θ ≤ 1,
x1 log(θ)

θ
− θ, otherwise.

w5(0, x) =







θ − 2θ3, θ ≤ 1,
1
θ
+ x2 log(θ), otherwise.

(6.8)

As shown in Figure 27 the ratios E(v, w) are decreasing for all pairs of the
functions which confirms that the contraction property 1.5 is valid for all those
pairs of functions.
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Figure 27. Contraction property 1.5 for the first order scheme with ∆t = 0.01,
∆λ = π/96 and ∆φ = π/96.

7 Fourth test case with fully coupled flux vector fields

In this section we consider a generic flux defined on the basis of the parame-
terized scalar potential composed of two different terms in order to ensure the
generic behavior.

h(x, u) = H1(x)f1(u) +H2(x)f2(u),

H1(x) = x1, H2(x) = x2,

f1(u) = su2/2, f2(u) = s
′

u3/3, s+ s
′

= 1.

(7.1)

The setting of the value of the parameter s allows us to observe several char-
acters of solutions and to study the impact of each part of the scalar potential
on the evolution of these solutions and their late-time asymptotic behaviors.
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We present a synthesis of the tests performed and, first we consider the ini-
tial condition u2 given in test 2-b defined by the equation (5.4). The test 2-b
given in Section 2 corresponds to the particular case in which s = 1. For this
case, as mentioned before, the solution evolves to two constant values in two
independent domains. If the parameter s = 0.95 is used with the same initial
condition u2, both terms of the potential flux have an impact on the solution,
continuously over time, which converges to one constant value in the entire
sphere.

Figure 28 shows the convergence curves relating the evolution of the parameter
‖u2(t)− ū2‖L1 for different values of the parameters s. For all values of the
parameter s presented in figure 28, the solution converges to one constant value
in the entire sphere. As can be seen in this figure, the behaviors of the solutions
is complex depending on the choice of the parameter s. The evolution of the
solutions is highly influenced by the magnitude of the different components of
the potential function and the nature of the initial condition.
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Figure 28. Convergence for Test 4: Evolution of the parameter E(u) = ‖u2(t)− ū2‖
for generic flux with different values of the parameter s with ∆t = 0.05, ∆λ = π/96
and ∆φ = π/96

The entropy stability property 1.3 is now checked for the generic flux corre-
sponding to s = 0.5. Figure 29 shows the evolution of the parameter ‖u2(t)‖Lp

ω(M)

for p = 1, 2, 3, 4, 5, 10 and p = ∞. According to this figure, we conclude that
the solution u2 satisfies the entropy stability property for all Lp norms con-
sidered.

For the generic flux with s = 0.5, the time-variation diminishing property
1.4 is checked for the second order scheme using the five initial conditions
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Figure 29. Entropy stability property 1.3 for the generic flux with ∆t = 0.01,
∆λ = π/96 and ∆φ = π/96.

u0, u1, u2, u3 and u4, defined before in the second test. Figure 30 presents
the evolution of the parameter ‖∂tu‖M(t) and confirms that this parameter
decreases with time, which shows that the time-variation diminishing property
holds for those functions.
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Figure 30. Time-variation diminishing property 1.4 for the generic flux using the
second order scheme with ∆t = 0.01, ∆λ = π/96 and ∆φ = π/96.

The five pairs of functions defined in test 2 are used to verify the contraction
property 1.5 for the first order scheme using the generic flux with s = 0.5.

37



Figure 31 shows the evolution of the ratio parameter E(v, w) for the five pairs
of functions. This parameter is decreasing for all the pairs of initial conditions
which confirms that the contraction property holds for these pairs of functions.
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Figure 31. Contraction property 1.5 for the first order scheme with ∆t = 0.01,
∆λ = π/96 and ∆φ = π/96.

8 Fifth test case: revisiting the asymptotic convergence property

The aim of this section is to complete the analysis of the behavior of the
solutions of the equation (2.10) for nonlinear foliated flux. We present some
examples in order to cover all cases of asymptotic convergence of the solutions
when the nonlinear foliated fluxes are considered.

In the cases already seen in test 2 and test 3 for the asymptotic convergence
of the solutions for nonlinear foliated flux, we observe numerically that the
solution converges to constant values on independent domains on the sphere.
This is a particular case of what is generally observed if the numerical scheme
is more accurate and capable of simulating the solutions for large simulation
time. Then, in order to cover the other behaviors we give more attention to the
accuracy of the used scheme. To achieve this goal we consider the same second
geometry-compatible finite volume scheme by considering a computational cell
in which the sides are a part of the level sets and their equipotential curves.

We consider the nonlinear foliated flux defined on basis of the scalar potential
function h(x, u) = −x3u

2/2. For this flux the level sets are the curves defined
by φ = φc, where φc is a real constant in [−π/2, π/2]. The obtained level sets
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coincide with the grid used which ensures a very good accuracy of the scheme.
In the following, we present the results for two cases with different forms of the
functions considered as initial conditions. The first initial condition u1(0, x) is
defined as follows:

u1(0, x) =







x1 + sinλx2, 0 ≤ λ ≤ π,

−x1 + sinλx2, otherwise.
(8.1)

and the second initial condition u2(0, x) is defined by:

u2(0, x) =















x2 + sinh(x1) cos(λ), 0 ≤ λ ≤ π/2,

−x2, π/2 < λ < π,

x2 + cosh(x3) sin(λ), otherwise.

(8.2)

Figures 32 and 33 respectively show the two-dimensional view of the first initial
condition u1 and the corresponding solution for long simulation time. The
two-dimensional view of the second initial condition u2 and the corresponding
solution for long simulation time are shown in figure 34 and 35, respectively.

According to the numerical results shown in those figures for the two cases
studied, the solution remains unchanged after a certain time. The solution
converges to a nontrivial stationary solution which is constant on each level
set.

From the numerical tests one can conclude that, given any nonlinear foliated
flux and any arbitrary function taken as initial condition, the solution of the
equation (2.10) converges to a steady sate solution which is in general non-
trivial and constant on the level sets. Each constant convergence value is the
average value on the corresponding level set of the function taken as initial
condition.

We conclude this section by noting our important result which has a very
significant positive effect for the performance of the numerical schemes in the
case of nonlinear foliated fluxes. For this type of flux we recommend the use of
a computational cell which is compatible with the level sets of the flux. More
precisely we can use a subset of the level sets and their orthogonal equipoten-
tials of the nonlinear foliated flux as the constructing lines of computational
cells.

Using a choice of this kind, a very good conservation of nontrivial station-
ary solutions is guaranteed which enormously improves the accuracy of the
schemes when more general solutions are considered.
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Figure 32. Initial condition u1 with ∆λ = π/96 and ∆φ = π/96.
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Figure 33. Solution u1 at time t = 50000 with dt = 0.05, ∆λ = π/96 and ∆φ = π/96.

9 Concluding remarks

In this paper, we have analyzed a class of nonlinear hyperbolic conservation
laws posed on the sphere. The first- and second-order versions of the pro-
posed geometry-compatible finite volume scheme (based on generalized Rie-
mann solvers and on an operator splitting approach) were investigated, and
we numerically established several important properties enjoyed by discon-
tinuous solutions defined on a curved geometry, including the contraction,
time-variation monotonicity, and the entropy monotonicity properties.
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Figure 34. Initial condition u2 with ∆λ = π/96 and ∆φ = π/96.
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Figure 35. Solution u2 at time t = 50000 with dt = 0.05, ∆λ = π/96 and ∆φ = π/96.

Furthermore, we carefully investigated the late-time asymptotic behavior of
solutions, by distinguishing various types of flux potential. The following main
conclusions were established for the class of nonlinear hyperbolic conservation
laws and the finite volume schemes under consideration:

• The entropy stability property is valid in all Lp norms with p ∈ [1,+∞),
and the time-variation diminishing property is satisfied by the first- and
second-order schemes.

• The contraction property is satisfied by the first-order scheme but, as might
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be have been expected, this property is not valid for the second-order
method.

• Two classes of flux were distinguished according to the structure of the flux
potential. We introduced the notions of foliated flux and generic flux. The
late-time asymptotic behavior of solutions was found to strongly depend on
the flux (foliated or generic) as well as its (linearity or) nonlinearity.

• Specifically, when the flux is foliated and linear, the solutions are trans-
ported in time within the level sets of the potential.

• When the flux is foliated and is genuinely nonlinear, the solutions converge
to their (constant) average within each level set.

• For generic flux, the solutions evolve with large variations which depend on
the geometry. and converge to constant values within certain “independent”
domains defined on the sphere. The number of constant values depends on
curves that “split” the sphere into possibly several independent domains.

• Last but not least, we have an important conclusion about the performance
of the numerical schemes for the foliated flux, for which the level sets play
an essential role in understanding the evolution of solutions; this is espe-
cially true for genuinely nonlinear foliated flux. For such flux, we strongly
recommend the use of a suitable computational mesh not only in terms of
space constraints and the desired accuracy which are commonly used for the
choice of the mesh, but also according to the physical phenomenon studied.
The latter is reflected by the flux. More precisely, we recommend the use of
a subset of the level sets of the nonlinear foliated flux as the construction
lines of the computational grids. When this adjustment is respected, the
steady sate solutions for the nonlinear foliated flux can be captured with
more accuracy and better results can be obtained for general solutions.
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