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Abstract

We present an original initializatioprocedurefor the parameters ofeedforwardwavelet
networks, prior to training bgradient-basetechniques. It takeadvantage of wavelet
framesstemming from thediscretewavelet transformand uses a selectiomethod to
determine a set of best wavelets whose cemtaiglilation parameters are used iagtial
values for subsequemtaining. Resultsobtained forthe modeling of twosimulated
processesire compared tthoseobtainedwith a heuristic initializationprocedure, and
demonstrate the effectiveness of the proposed method.

Keywords: Waveletnetworks, Training, Initializingparameters, Nonlinear static
modeling.

|. Introduction.

Among the applications of waveldtinctions, nonlinear regression bwavelet networks is
attracting a growing interestVaveletnetworkshave beerused both fostatic[10, 12] modeling
and for dynamic input-output modeling [9].

It was proved in [4] that families of wavelet functions - particularly wavedehes -are universal
approximators, which gives theoretical basis to their use in the framework of function
approximation angrocess modeling. Fowvaveletfunctions, this propertgan beexpressed as
follows: any function of_z(R) can be approximated to any prescribed accuracy Witlites sum of
wavelets. Thereforeyaveletnetworkscan be considered as afternative to neuraand radial
basis function networks.

In the present article, we present a network initialization procedure that takemtage of the
properties of discrete wavelet framesarder to improvethe training efficiency ofcontinuous
wavelet frames. We focus on wavelet frames rather than on orthogonal virasgstecause the
latter must comply with conditions that are seldom feasible.

We first presenthe waveletnetworks that we usedheir architectures and the principle tbeir
training. The difference between continuous and discrete wavelet frames waitigte@sized, since
both approaches will besed adifferent stages ofvavelet networktraining. After outlining the



problem of parameter initialization of a wavehettwork, we firstintroduce a heuristiprocedure,

and subsequently descriltee proposed method. Finally, twexamples of static modeling are
presented, and the efficiency of the procedure is shown, by comparing its results to those obtained
with the heuristic initialization.

[I. Wavelet frames and wavelet networks.
Two categories of waveletunctions, namely, orthogonalavelets and wavelet frames, were
developed separately by different groups. Orthogonal wavelet decomposition is usually associated
to the theory of multiresolution analysis [8]. The fact that orthogonal wavelets canexpriessed
in closed form is a serious drawback foeir application to function approximation apdcess
modeling. Converselywavelet frames are constructed by simple operations of translation and
dilation of a single fixed function called timeother waveletwhich must satisfy conditions that are
less stringent than orthogonality conditions.
A waveletg(x) is derived from its mother wavelgz) by the relation:

X—m
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where the translation factmr]. and the dilation fact@tj are real numbers iR and R: respectively.
The family of functions generated pcan be defined as:

0=t /XM mORandd 0O \
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A family Q. is said to be a frame b?(R) if there exist two constants>0 andC<+o such that for
any square integrable functibthe following inequalities hold:

(lf P= Z | (gf)fsclf P ®
o2,

where| f | denotes thenorm of functionf and(f, ¢) the inner product ofunctionsf and g.

Families of wavelet frames mZ(R) are universal approximators.
For the modeling of multi-variablprocessesimultidimensional wavelets must lkefined. In the
presentwork, we usemultidimensional wavelets constructed as the produdy; agicalar wavelets
(N; being the number of variables):

X —Imy,

@)= dfz,) with 7,="" (4)

wheremj anddj are the translation and dilatimectors respectively. Families ofultidimensional

wavelets generated according to this scheme have been shown to be flhﬂl%[\é)oﬁ].
Waveletnetworks were first presented ihe framework ofstatic modeling if10, 12]. In the
present work we use a similar architecture, where the network gugpcdmputed as:




N, N
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It can be viewed as metwork with an input vector dN; components, #ayer of N, weighted
multidimensional wavelets and a linear outpeuron. Thecoefficients of the linear part of the
networks will be called direct connections. Such a network is shown on figure 1.
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Layer of wavelets
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Figure 1

A feedforward wavelet network.

Wavelet network training consists in minimizing the usual least squares cost function:
1o (i )
J(@—anl(yp—y) (6)

where vecto® includes all network parameters to émimatedtranslations, dilations, weights of
the connections between wavelets andput, and weights ofthe direct connectiondy is the
number of elements of the training %ﬂ is the output of the process fexamplen, andyn is the
corresponding network output.

Depending on the natufeontinuous or discrete) dhie waveletransform it stems fromywavelet
network training must be performed differently. This is discussed in the following.

[1.1. The continuous approach.

Wavelets stemminfyfom the continuouswavelet transform havthe form of relation (2). Since

their parameters can take on any continuous real value (note that the dilations must be positive, non-
zero), hey can be considered t® coefficients of a conventional neuradtwork, to be @ined

using gradient-based techniques such as stochastic gradient [1, 12] or second order methods.



[1.2. The discrete approach.
In the framework of the discrete wavelet transform, a family of wavelets can be defined as:
Qd:{angz{d“x—nﬁ),(m, n)DZZ} @)

wherea and 3 areconstants that fully determine, together vilte mother waveletp, the family
Q. Actually, relation (7) can be considered as a special case of relation (2), where:

/ m=na "B )

\dj =a "
These relationshow that,unlike thecontinuous approachyavelet parameters cannot be varied
continuously; therefore, gradient-based techniquemot beused to adjust them. Generally,
training wavelenetworksstemming fromthe discretedransform[6, 13] is performed using the
Gram-Schmidt selection method [3], which will be briefly describebw. This approach usually
generates largaetworks, whichare less parsimonious than thos$mined by gradient-based
techniques. Thisnay be adrawback for many applications. Incten Ill below, we show that,
although such networksare notvery suitable for applicationgheir properties can béaken
advantage of for initializing the translations and dilations of wavelets with continuous parameters.

[1l. Initializing wavelet networks.
Due to the fact that wavelets are rapidly vanishing functions,

* awavelet may be too local if its dilation parameter is too small,

it may sit out of the domain of interest (as defined by the examples of the trségjungnce),

if the translation parameter is not chosen appropriately.

Therefore, it is verynadvisable tanitialize thedilations and translatiomeindomly, as is usually
the case for the weights of a standard neural network with sigmaudtiactfunction. Inthe next
sections, we present twnitialization procedures that take into account the speoibperties of
wavelets. The first one is heuristic, wherahs second is based otime selection of discrete
wavelets.

[11.1. A heuristic initialization procedure.
The present procedure takes into accdbhatdomain of input spacgherethe wavelets are not
zero. We use the following mother wavelet:

@) =—xez* (©)
We denote byd,, b,] the domain containinthe values of th&-th compment of the input vectors
of the examples.
« The center of wavelgtis initialized at the center of the parallelepipgefined by theN,
intervals {[a,, b,]}. For thek-th input we have:

My = ;(ak +by) (10)

» The dilations parameters of wavglatre initialized to:



dy = 0'2(bk _ak) (12)
These initializations guarantee that thavelets extenchitially over the whole inputdomain. The
choice of the weights is less critical. They are initialized to small randdnes. Thisprocedure is

very simple and requires a small numbeopérations. Examples of resuéiee shown insection
V.

I11.2. An initialization procedure using a selection method.

We propose tanakeuse ofwavelet frames stemming frothe discretedransform (relation 7) to
initialize thetranslation and dilation parameters of waveletworkstrained using gradient-based
techniques. The procedure comprises three steps:

() generate a library of wavelets, using a family of wavelets described by relation (7),

(i) rank all wavelets in order of decreasing relevance,

(i) usethe translations and dilations of thaost relevant wavelets amitial values and use a
gradient method to train the network thus initialized.

These steps are described in detail in the following subsections.

[11.2.1. Generating the library.
Generating the library amountsfiading, amongall the members of family2, (relation7), those
wavelets

-whose dilations belong to a set of discrete values.

-whose translations are within the parallelepiped defined by, timeervals {fa,, b.]}.
Typical values otr andfB area = 2 andB = 1.
In thefollowing, we describe a methofibr choosingthe sets ofdilations and translations in the
case of scalar wavelets (single input model). Due tdaittethat weuse multidimensional wavelets
as the product of scalaravelets,the method can be easily extended to the multidimensional case
by applying it separately to each input.

The dilation set.
As shown byrelation (8), and taking into accourdur choicefor the values ofa and 3, the
dilations are given bg™™", wheremis an integer
We consider three successive dilations, where the largest gives a wavelet extending whele
domain of thecorresponding variable. Generalipore dilations result in too largelibrary. For
the mother wavelet that we use, this condition can be expressed as:

2"<0.2(b,—a) (12)

Hence:
In (O.Z(bk—ak))
In2
Since mmust be an integer, the three values that we consider are:

m=- (13)



In (O.Z(bk—ak)) In (O-Z(bk—ak)) \

In|0.2(b ,—a,
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where [ ] is the integer part operator.

The translation set.
For eachdilation from the set(14), wekeep in the libranall the wavelets fromfamily Q, whose
translations are irg[, b]. This results in the following relation:

a<2 "n <b, (15)
We are interested in all the valueshaibeying the previous condition. They are solutions of:
2" <n <2Mpy (16)
Sincen must be an integer, the values that we consider are:
{[Zmak]+1,[2mak]+2 . [ Z“bk]} (17)

Unlike the dilations, the dggner need not chooslee number of translations: depends on the
value ofm. This number increases exponentially with

Note that we usenultidimensional wavelets with different dilatiof each inputvariable.Other

authors [13] usedadial wavelets. Ourchoice leads to larger librariesith better modeling
capabilities. The price to pay is a longer computatime for wavelet selectionhowever, this

duration is but a small fraction of thiene required to train thanetwork, so thathe overhead
introduced by the larger library size is unimportant.

[11.2.2. Ranking the wavelets.

After generating the library as described above, the wavelets must be ranked in order of decreasing
relevance. This is performed in three steps:

(i) estimate the weights of the direct connections of the network by standard least squares,

(i) derive a training sequence by subtracting the output of the linear model deriveffom(the

initial training sequence,

(iii) rank the wavelets by the Gram-Schmidt method.

[11.2.2.1. Training the direct connections (linear model).

Since we want to rankhe wavelets, weare mainly interested here in the nonlinear part of the
model; therefore, we first build a linear model. Having taken care of whatandse explained by

a linearmodel, wecan proceed to generate the nonlinear part ofntbdel, for whichwavelet
ranking is important. Therefordhe wavelets(without the direct connections) are ranked and
selected using the residuals of the linear model.



[1.2.2.2. The Gram-Schmidt method for ranking wavelets.

The ranking method adopted herdhie Gram-Schmidprocedure. For aetailed presentation of
this method sedor instance 3]. In the following we present its principle. Figure €hows
graphically atwo dimensional example (&wo-input model with a training sequence of two

examples).

Y
________________ ,
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Figure 2
A geometric illustration of the selection by orthogonalization method.

Consider a model, linear witlespect to its parameters, with} inputs. For a traininget of N
examples, wedefine theN-vector Y of the measuredutputs, and theN; input vectorsX’,

j = 1 toN;, which are als®-vectors. The inputare ranked afllows: first, the input vectothat

has the smallest angle with the vector output is selected. Then all other input vectors, and the output
vector, are projected onto the subspace orthogortaktselected inputector. In this subspace of
dimensionN-1, the procedure is iterated, and it is terminated when all inputs are ranked.



Since the output of the wavelet netk is linear with respect tahe weights,the above procedure
can easily beused, where each input is actually theutput of a multidimensionalvavelet.
Therefore, at the end of the procedure, all the wavelets of the library are ranked.

As shown on Figure 2angle8, is smaller thar@,: therefore wavelet®, is selected as the most
significant to model the poess. The part of therocess output notet modeled and the wavelets
not yet selected are subsequemtlgjected ontdhe sibspace orthogonal the selectedegressor.
The procedure is repeated until all wavelets are ranked.

In all simulations presentdaelow, wehave usedthe “Modified Gram-Schmidimethod", which
has been shown to have better numerical stability than the classical one [2].

IV. Numerical experiments.

In the present section, wélustrate the wavelet initialization-by-selection procedure on several

examples, and compare its effectiveness to that of the heuristic procedure described ihlisgction

In all the simulations presented below, the following procedure was used for each network:

* the wavelet parameters (dilations and translatiomsje initialized either by the heuristic
procedure (section I11.1) or by the selection procedure (section 111.2);

» the weights of the connections wenéialized torandomvalues,uniformly distributed between
-10° and +10;

e wavelet parameters and connectiaights (including those ofhe direct connections) were
trained simultaneously by the BFGS algorithm [11]; training is terminated thiegmorm of the
gradient of the cost function is too small, or when a maximum number of epochs is reached.

It should benoted that irall the experiments reportetere, the connectiorweightsare the only

parameters whichare initialized randomly; thdranslations and dilations areitialized in a

deterministicfashion, onthe basis ofthe available traininglata. Foreach simulation reported

below, 100 different trainings were performed, with 100 different weight initializations.

IV.1. Example 1.
The firstexample is the approximation of a function ddiagle variablefunction, without noise,
given by:

—2.186x—12.864 for x 0[—10, —2[
fix)=¢{ 4.246x for x O[—2,0[ (18)

10 exp( —0.05(—0.5) sin(x(0.03x+0.7)) for x O[0, 10]

This example was first proposed in [13], which is on¢hef seminapapers orwaveletnetworks.
The graph of this function is shown on Figure 3.
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Figure 3
The process output in the domain of interest.

A wavelet network approximation in the domaii(, 10] is to be found from a trainirsgquence
of 300 examples, uniformly distributed tine interval ofinterest. Wedefine the TMSE (Training

MeanSquare Error) as'i—‘] , WhereJ is thecost function given byelation(6), computed on the
T

training setN; is the number of examples in the training set.
The performance of the model is estimated using a test set of 1,000 equally spaced examples.

We define thePMSE (Performancéean Square Error) asli—‘J where J is the quadratic cost
P

function computed on the test gdt.is the number of examples in the test set.

Several architectures were tested. In the following, we présengsults obtained with a network
of 10 wavelets. Figure dhowsthe TMSE histogram (a) and thBPMSE histogram (b) obtained
when the 100 trainingsare initializedwith the heuristicprocedure. Figure Shows the TMSE
histogram (a) and the PMSE histogram (b) oietdivhenthe 100 trainingsare initializedwith the
initialization-by-selection procedure. Comparing figures 4 and 5 sblmady that the initialization
by selection leads to

* amore frequent occurrence of the best result,

 less scattered results both on the training set and on the test set.

IV.2. Example 2.
The process to be modeled is simulated by a functiaw@¥ariables withadditive output noise.

The expression of this function is given by :
(19)

f(xl, x2)=1.335{ 1.$ t xl)}+ exp{ 2x1—1) sir( 3 dx1—0.6)2)+ exp{ 4X2—0.5)) sin( 4 n(xz—O.g)z)

wherew is a pseudo-random variable, uniformly distributed with variance 10
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TMSE histogram PMSE histogram
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Figure 4
TMSE (a) and PMSE (b) histograms for 100 trainings
performed with the heuristic initialization procedure.

TMSE histogram PMSE histogram
T T T T T

0 0.005 0.01 0.015 0.02 0.025 0.03 0 0.005 0.01 0.015 0.02 0.025 0.03
(a) (b)
Figure 5
TMSE (a) and PMSE (b) histograms for 100 trainings
performed with the selection-based initialization procedure.

The domain of interest is defined by the intef@l 1] x [0, 1]. Figure 6 is a plot othe surface
defined by relation (19) without noise& € 0); this example was first proposed[%). The taining
sequence is a set &f000 examplesyniformly distributed.The performance sequence is a set of
1,600 examples, equally spaced on a grid. Aherfirst example, several architectura® tested;
for eachnetwork, 100trainings are performedith different random weight initializations. We
present the results obtained with a network of 10 waveletatchitecturewvhich allow us to reach

a performance close to thwise variance, without overtraining. Figure shiows the TMSE
histogram (a) and the PMSE histogram (b) oletdivhenthe 100 trainingsare initializedwith the
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heuristic procedure. Figure 8 shows the TMSE histogram (a) and the PMSE histogram (b) obtained
when the 100 trainings are initialized with the selection-based initializarocedure. As observed

with thefirst example, initialization by selection leadsthe best performance (whetbe mean-

square prediction error isqual to the variance of theise) more frequently thathe heuristic
procedure; such a minimum of the cost function is obtained 97 times out of 100.

Figure 6

TMSE histogram PMSE histogram
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Figure 7
TMSE (a) and PMSE (b) histograms for 100 trainings
performed with the heuristic initialization procedure.
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These results show that the effect of the random initializatidgheofeights is muctsmallerwhen
the wavelet centers and dilations andtialized by selection tharwhen they are initialized
heuristically; used together with second-order gradiegthods, itmakes wavelehetwork taining
very efficient.
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TMSE (a) and PMSE (b) histograms for 100 trainings
performed with the selection-based initialization procedure.

V. Conclusion.
Wavelet networks are an alternative tsigmoid neuralnetworks for black-boxmodeling of
processes having small number of nputs, if both the weights of the connections and the
parameters of the wavelets are adjus$tenh trainingdata. However, due tilve local character of

the wavelets,the initialization of their translations and dilationsquires more care than the

initialization of theweights of a conventional neurakt. We have proposed aninitialization

procedure for the centers and dilations, which is more principled than the usual heuristics, based on

the properties of discrete wavelets,. We have shown that, when used together with etiniagt t
algorithms, this initialization leads to results tha¢ much more independefiom the random
initialization of the weights than the results obtained by a heuristic procedure.
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