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In this paper we present new algorithms for counting minimum cost bounded degree subtrees in connected graphs in which the 2-vertex-connected (biconnected) components have small sizes. The 2-vertex-connected components and the cut vertices can be organized into a block-cut vertex tree which is also a tree decomposition with small width of the graph. We present a dynamic programming algorithm which is very efficient on this particular tree decomposition and we also discuss methods of solving the problem given an arbitrary tree decomposition with small width. Among some of the most important results is an algorithm which can efficiently compute the number of subtrees of a (small) graph corresponding to each possible degree sequence.

INTRODUCTION

Bounded-degree subgraphs of a given base graph are important structures which arise in a wide variety of scenarios, like network design [START_REF] Amini | Degree-Constrained Subgraph Problems: Hardness and Approximation Results[END_REF], security or parallel processing [START_REF] Dekker | The Maximum Degree & Diameter-Bounded Subgraph and its Applications[END_REF]. In this paper we consider a special class of boundeddegree subgraphs, namely bounded-degree subtrees. We present new algorithms for counting minimum cost bounded degree subtrees in connected graphs where the 2-vertex-connected (biconnected) components have small sizes. The 2-vertexconnected components and the cut vertices of any connected graph can be organized into a tree structure called a block-cut vertex tree [START_REF] Andreica | The Tree of Biconnected Components and Critical Nodes[END_REF], [START_REF] Pirzada | An Introduction to Graph Theory[END_REF]. The block-cut vertex tree has two types of nodes, one type corresponding to cut vertices and another type corresponding to the 2vertex-connected components. This tree is also a small-width tree decomposition [START_REF] Kintali | Computing Bounded Path Decompositions in Logspace[END_REF] of the graph (the width of the decomposition depends on the size of the largest 2vertex-connected component). By employing a dynamic programming algorithm on this special tree decomposition we can efficiently find the minimum cost of a degree-bounded subtree of the graph, as well as the number of such minimum cost subtrees.

The time complexity of the obtained algorithm is of the form O(f(K,D) N+M), where K is the maximum size of a 2-vertex-connected component, D is the maximum allowed degree, N is the number of vertices of the graph and M is the number of edges od the graph. Thus, when K and D are bounded by constants, the algorithm can be considered to have a linear time complexity. We should mention that, in theory, a solution with a time complexity of this form can be immediately derived from [START_REF] Arnborg | Linear Time Algorithms for NP-Hard Problems Restricted to Partial k-Trees[END_REF]) (because the problem can be expressed in extended monadic second-order logic).

However, the f(K,D) factor is difficult to estimate in this case and may be prohibitively high for a practical implementation. In this paper we will analyze the f(K,D) factor carefully and will focus on obtaining solutions where this factor is as good as possible.

The rest of this paper is structured as follows. We define the problem in more details in Section 2. Then, in Section 3, we present a dynamic programming algorithm which computes the minimum cost of a bounded-degree subtree and the number of such minimum cost subtrees given an arbitrary tree decomposition with small width of the graph. In Section 4 we show how we can use the special structure of the block-cut vertex tree in order to obtain an improved dynamic programming solution. This improved solution will also be based on counting the number of minimum cost boundeddegree subtrees of each biconnected component having every possible degree sequence. An initial solution which enumerates all the possible subtrees is given in Section 5 and much more efficient solutions are given in Sections 6 and 7. In Section 8 we present experimental results for the block-cut vertex treebased dynamic programming algorithm which uses the algorithms from Sections 5, 6 and 7. In Section 9 we discuss some alternative algorithms to those presented in Sections 5, 6 and 7. In Section 10 we discuss related work and in Section 11 we conclude.

PROBLEM DEFINITION

We consider an undirected graph G with N vertices and M edges. Each edge (i,j) has an associated cost c(i,j) (which may be positive, zero, or negative). A subtree of G consists of a subset of vertices V of G and a subset of edges E of G such that |E|=|V|-1, each endpoint of an edge from E is part of V and the edges from E form no cycles. Thus, the subtree is uniquely defined by the pair (V,E). The cost of a subtree is equal to the sum of the costs of the edges from the set E. The degree of a vertex v of the subtree is equal to the number of edges from E incident to it. In this paper we are interested in subtrees for which the maximum degree of any node in the subtree is at most equal to an upper limit D. We will call such subtrees D-degree-bounded subtrees. We want to compute the minimum cost of a D-degree-bounded subtree as well as the number of such minimum cost subtrees.

USING DYNAMIC PROGRAMMING ON AN ARBITRARY TREE DECOMPOSITION OF THE GRAPH

If the graph G has small treewidth [START_REF] Kintali | Computing Bounded Path Decompositions in Logspace[END_REF] and a tree decomposition of G can be computed (or is given), then we can use dynamic programming techniques in order to efficiently count the number of minimum cost D-degree-bounded subtrees of G. Each node X of the tree decomposition has an associated subset v(X) of nv(X) vertices of G: v(X,1), v(X,2), …, v(X,nv(X)). The main properties of a tree decomposition are as follows:

-for every edge (i,j) of G we must have at least one node X of the tree decomposition such that both i and j belong to the subset v(X)

-if vertex i belongs to both v(X) and v(Y) then i belongs to the subsets of all the nodes Z located on the unique path from X to Y in the tree decomposition Any tree decomposition can be easily transformed into a nice tree decomposition [START_REF] Kintali | Computing Bounded Path Decompositions in Logspace[END_REF] consisting of three types of nodes (besides the leaves):

-Introduce node: A node X is an Introduce Node if it has a single child Y, nv(X)=nv(Y)+1 and there exists an index j (1 j nv(X)) such that v(X,i)=v(Y,i) for 1 i j-1 and v(X,i+1)=v(Y,i) for j i nv(Y). Thus, node X introduces the vertex v(X,j).

-Forget node: A node X is a Forget Node if it has a single child Y, nv(X)=nv(Y)-1 and there exists an index j (1 j nv(Y)) such that v(X,i)=v(Y,i) for 1 i j-1 and for j+1 i nv(X). Thus, node X forgets the vertex v(Y,j).

-Join node: A node X is a Join node if it has exactly two children Y and Z such that nv(X)=nv(Y)=nv(Z) and the subsets v(X), v(Y) and v(Z) are identical (although we may have the vertices in different orders in the three nodes).

We will use the nice tree decomposition for our dynamic programming algorithm instead of the original tree decomposition, because the description of the algorithm is simplified this way.

For each node X of the tree decomposition we will define by GI[X] the subgraph induced by the vertices from v(X) and the edges between them and by GS[X] the subgraph induced by the vertices from v(X) and all of its descendants in the tree decomposition, and the edges between these vertices.

For each node X of the tree decomposition we will compute a table The degree sequence DS(S) contains the degrees of all the vertices of v(X) in ST (DS(S,i) is the degree of v(X,i)). Note that the degree of a vertex v(X,i) depends both on its subforest neighbors in GI[X] and on its ST subtree neighbors in GS[X]\GI [X] (1 i nv(X)). T(X,S).cmin will contain the minimum cost among all the D-degree-bounded subtrees ST of GS[X] corresponding to the state S (intersection and degree sequence) and T(X,S).cnt will contain the number of such minimum cost subtrees ST. If no subtree corresponds to a given state S then we will implicitly assume that T(X,S).cmin=+ ∞ and that T(X,S).cnt=0. In terms of implementation we can use a hash table for T(X), storing information only for those states S for which T(X,S).cmin<+ ∞ and T(X,S).cnt>0. Then, if a state S' is not found in T(X)

we will assume that T(X,S').cmin=+ ∞ and T(X,S').cnt=0.

We will now show how to compute the tables T(X) for each node X of the tree decomposition. If X is a leaf node then we will simply generate all the possible partitions of GI[X] into any number of Ddegree-bounded subtrees (including the possibility of leaving out some vertices of v(X)). For each such partition GP(S) we will have DS(S,i)=the degree of v(X,i) in its subtree (or 0, if v(X,i) was left out of any subtree) (1 i nv(X)). Note that in this case we will have T(X,S).cmin = the sum of the edges costs in all the subtrees of the partition and T(X,S).cnt=1. A very simple method for generating all the partitions is to first select which vertices are left out and then decide which edges are kept among the edges connecting vertices which are not left out. Once the subset of vertices and edges is selected, we only need to verify that the connected components of the selected edges are D-degree-bounded subtrees.

If X is an Introduce node in the tree decomposition then we will proceed as follows. Let Y be the only child of X and let v(X,j) be the introduced vertex. Let e(X,j) be the set of edges having v(X,j) as an endpoint in GI[X]. We will consider every state S from T(Y) (such that T(Y,S).cnt>0) and every subset se(X,j) of at most D edges from e(X,j) (including the empty subset), such that if the edge All the subforests of GP(S) which are connected by edges from se(X,j) are merged into a single subforest (which will also include v(X,j)), thus obtaining a new partition GP(S') corresponding to a state S' for the node X (the subforests of GP(S) which are not connected by an edge to v(X,j) are copied as they are into GP(S')). We will obtain DS(S') from DS(S) by inserting on position j DS(S',j)=|se(X,j)|. Then, for every vertex v(X,k) such that the edge (v(X,j),v(X,k)) is part of se(X,j) we will increment DS(S',k) by 1. If |se(X,j)|=0 then GP(S') will be obtained from GP(S) by adding a new subforest containing the single node v(X,j). Let Cmin=T(Y,S) + the sum of the costs of the edges from se(X,j) and Cnt=T(Y,S).cnt. If Cmin<T(X,S').cmin then we will set

(v(X,i),v(Y,k)) is part of se(X,

T(X,S').cmin=Cmin and T(X,S').cnt=Cnt; otherwise, if Cmin=T(X,S').cmin then we will increment T(X,S').cnt by Cnt.

The part presented so far corresponds to the case when the introduced vertex is selected to be part of the D-degree-bounded subtree. We must also consider the case when the introduced vertex is left out. In this case we will consider every state S from T(Y) and we will try to extend it to a valid state S' for X. We will have GP(S')=GP(S) and DP(S') is obtained from DP(S) by inserting on position j DP(S',j)=0. If T(Y,S).cmin<T(X,S').cmin then we will set

T(X,S').cmin=T(Y,S).cmin and T(X,S').cnt=T(Y,S).cnt; otherwise, if T(Y,S).cmin=T(X,S').cmin then we will increment T(X,S').cnt by T(Y,S).cnt.

If X is a Forget node then let Y be its only child and let v(Y,j) be the forgotten vertex. We will consider all the states S of T(Y) (such that T(Y,S).cnt>0) in which:

v(Y,j) belongs to no subforest of GP(S) v(Y,j) belongs to a subforest of GP(S) with at least two nodes For each such state S we will obtain a new state S' as follows. If v(Y,j) belongs to no subforest of GP(S) then we will have GP(S')=GP(S); otherwise we will obtain GP(S') from GP(S) by removing the vertex v(Y,j) and all the edges adjacent to it from the subforest to which it belongs. DS(S') will be obtained from DS(S) by simply removing the entry DS(S,j).

Then, if T(Y,S).cmin<T(X,S').cmin we will set T(X,S').cmin=T(Y,S).cmin and T(X,S').cnt=T(Y,S).cnt;

otherwise, if T(Y,S).cmin=T(X,S').cmin then we will increment T(X,S') by T(Y,S).

If X is a Join node then let Y and Z be its two children. We will first reorder the vertices of v(Y) and

v(Z) such that v(X,i)=v(Y,i)=v(Z,i) (1 i nv(X))
. The reordering will also modify the components DS(SY) and DS(SZ) of all the states SY of T(Y) and SZ of T(Z). Then we will consider every pair of states

(SY,SZ) such that T(Y,SY).cnt>0, T(Z,SZ).cnt>0, GP(SX)=GP(SY) and DS(SY,i)+DS(SZ,i)- DegP(SY,v(Y,i)) D (for 1 i nv(X)).
We denoted by DegP (SY,v(Y,i)) the degree of the vertex v(Y,i) in the subforest of GP(SY) to which it belongs (i.e. the number of edges of the subforest which are adjacent to

v(Y,i)). If v(Y,i) does not belong to any subforest of GP(SY) then DegP(SY,v(Y,i))=0. We obtain a new state SX with GP(SX)=GP(SY) and DS(SX,i)=DS(SY,i)+DS(SZ,i)-DegP(SY,v(Y,i)) (for 1 i nv(X)). Let Cmin be equal to T(Y,SY)+T(Z,SZ)
minus the sum of the costs of the edges in all the subforests of GP(SY), and let Cnt be equal to

T(Y,SY) T(Z,SZ). If Cmin<T(X,SX).cmin then we will set T(X,SX).cmin=Cmin and T(X,SX).cnt=Cnt; otherwise, if Cmin=T(X,SX).cmin then we will increment T(X,SX).cnt by Cnt.

In order to find the minimum cost of a D-degreebounded subtree MinCost and the number of such minimum cost subtrees NumSubtrees, we will proceed as follows. We will initialize MinCost=0 and NumSubtrees=N+1 (corresponding to the empty subtree and the subtrees containing a single vertex). Then we will consider every node X whose parent is a Forget node. We will also consider the root node of the tree decomposition to belong to this category (because all of its vertices are forgotten after it). Let's denote the set of vertices forgotten by this node's parent by F (usually F contains only one vertex, except in the case of the root when it contains all of the root's vertices). We will consider all the states S for which GP(S) contains exactly one subforest, T(X,S).cnt>0 and DS(S,i)>0 for at least one position i (1 i nv(X)) for which v(X,i) belongs to F (i.e. we consider only subtrees containing at least one forgotten vertex). If T(X,S).cmin<MinCost we will set MinCost=T(X,S).cmin and NumSubtrees=T(X,S).cnt; otherwise, if T(X,S).cmin=MinCost then we will increment NumSubtrees by T(X,S).cnt. Let's analyze the time complexity of the presented algorithm. Let tw be the width of the tree decomposition we used. The number of states computed for each node is of the order NStates=(tw+1) 2 tw D tw+1 . An Introduce node can be processed in time O(2 tw NStates CopyState(tw+1)), where CopyStates(u) denotes the time complexity of copying a state into another, where u is the maximum number of vertices (in its subforests and in its degree sequence). In this case CopyState(u) is of the order O(u). A leaf node and a Forget node can be processed in time O(Nstates CopyState(tw+1)). A Join node can be processed in time O((tw+1) 2 tw D 2 (tw+1) CopyState(u)). It is obvious that handling a Join node is more complex than the other types of nodes and this dominates the time complexity of the algorithm, which becomes O((tw+1) 2 tw D 2 (tw+1) CopyState(u) N), because the number of nodes of the tree decomposition is of the order O(N).

Note that in our analysis we assumed that arithmetic operations involving the costs and the number of subtrees (the cmin and cnt fields of the tables) take constant time. Although this may be a valid assumption regarding the costs, note that the number of subtrees may be exponential in the number of nodes of the tree. Thus, the assumption that the fields cmin and cnt have constant size may be false. In this case we should add extra factors to the time complexity regarding the addition and multiplication of numbers with a non-constant number of bits. However, there are scenarios when even the cnt fields may be safely assumed to be constant -for instance, when we are not interested in the exact number of subtrees, but rather in the number of subtrees modulo a given number P. In these cases all the additions and multiplications involving the cnt fields can be performed modulo P -thus, these numbers will never exceed the number of bits P has. We will not discuss this issue in more details in the rest of the paper and in all the other time complexity analyses we will assume that arithmetic operations involving the cmin and cnt fields take constant time.

USING DYNAMIC PROGRAMMING ON THE BLOCK-CUT VERTEX TREE

The block-cut vertex tree of the graph is a tree decomposition of the graph obtained as follows. We have a node in the tree for each 2-vertex-connected component and a node for each cut vertex (critical node). Two nodes X and Y are adjacent in the tree if X corresponds to a 2-vertex-connected component B, Y corresponds to a cut vertex C, and C belongs to B (note that a cut vertex may belong to multiple 2vertex-connected components). We will choose a node corresponding to a cut vertex as the root of the tree. If the graph is 2-vertex-connected (i.e. it has no cut vertices) we will artificially mark one of the graph vertices as a cut vertex (in this case the tree will only have two nodes).

Fig. 1 shows a graph with 13 vertices, where the cut vertices are marked with a darker background. Fig. 2 shows its block-cut vertex tree, where one of the cut vertices was chosen as the root.

For a node X corresponding to a cut vertex C we will have the subset of vertices v(X)={C}, i.e. nv(X)=1 and v(X,1)=C. For a node Y corresponding to a 2vertex-connected component we will have the subset of vertices v(Y) as the subset of vertices belonging to the 2-vertex-connected component. We will denote by nc(X) the number of children in the block-cut vertex tree of the node X. The children will be denoted as child(X,1), …, child(X,nc(X)). For a node X corresponding to a 2-vertex-connected component (i.e. nv(X) 2) we will order the vertices in its subset as follows. v(X,1) will be the cut vertex C corresponding to the parent of node X. v(X,i) will be the cut vertex C corresponding to the child child(X,i-1) (for 2 i nc(X)+1). The remaining vertices of the subset (from nc(X)+1 to nv(X)) may be ordered arbitrarily (they are not cut vertices and are only part of the subset v(X)).

With a block-cut vertex tree it will be enough to store some simplified states during the dynamic programming algorithm. In fact, a state S for a node X will consist only of a degree sequence (DS(S,1), …, DS(S,nv(X)) (with 0 DS(S,i) D for 1 i nv(X)). We do not need the partition into subforests because the intersection between a subtree of the graph and a 2vertex-connected component is either void or consists of a single subtree. Moreover, in a block-cut vertex tree there are no Join nodes, for which the exact partition into subforests (and the edges of the subforests) was most important.

Since by using only the degree sequence we are unable to distinguish between subtrees containing a single vertex and subtrees containing zero vertices, our algorithm will compute only subtrees containing at least two vertices (thus, if DS(S,i)=0 for a node X this will mean that the vertex v(X,i) is not part of the subtree). Subtrees with only one or with zero vertices will be considered separately. Apart from the simplified states we will compute some tables T(X,i) for each node X of the tree, having a similar meaning as before. The extra index i refers to the size of the degree sequence. For nodes X corresponding to 2vertex-connected components this index will decrease below nv(X) because we will perform a state reduction after considering each of its children and also before considering any of its children.

If X is a node corresponding to a 2-vertex-connected component (i.e. nv(X) 2) we will proceed as follows.

For each possible sequence of degrees DS(1), …, DS(nv(X)) we will compute the minimum cost of a D-degree-bounded subtree fully contained in the 2vertex-connected component and the number of such minimum cost subtrees in the table T(X,nv(X)) (T(X,nv(X),DS).cmin and T(X,nv(X),DS).cnt). We can achieve this by enumerating all the D-degreebounded subtrees (as in Section 5) or, more efficiently, by using the algorithms from Sections 6 and 7. If there are no subtrees corresponding to a degree sequence DS we will consider T(X,nv(X),DS).cmin=+ ∞ and T(X,nv(X),DS).cnt=0.

Before proceeding further we will describe the reduction operation Reduce(X, A, B). This operation will consider all the states from T(X,A) and reduce them into T(X,B) (B<A). The reduction operation is based on the premise that the degree information about the nodes v(X,B+1), …, v(X,A) is no longer needed further. The Reduce operation can be implemented easily. We will consider all the states DS from T(X,A). For each such state DS we will compute the state DS' containing only the first B entries of DS (i.e. DS'(i)=DS(i) for 1 i B). If DS' contains at least a non-zero entry then we continue as follows. If T(X,A,DS).cmin<T(X,B,DS').cmin then we set T(X,B,DS').cmin = T(X,A,DS).cmin and T(X,B,DS').cnt = T(X,A,DS).cnt; otherwise, if T(X,A,DS).cmin = T(X,B,DS').cmin then we will increment T(X,B,DS').cnt by T(X,A,DS).cnt. We will also have, by definition, T(X,B,DSZ B ).cmin=0 and T(X,B,DSZ B ).cnt=1, where DSZ B is a degree sequence containing B zeros.

After computing the table T(X,nv(X)) for a node X corresponding to a 2-vertex-connected component we will call Reduce(X, nv(X), nc(X)+1) (only if nv(X)>nc(X)). Then we will consider, in order, the tables T(X,j) (with j going down from nc(X)+1 to 2). We will consider each state DS of T(X,j) and we will also consider each state DS' of T(child(X,j-1),1) such that DS(j)+DS'(1) D. We now have a new state DS'' which is identical to DS, except that we remove the last (j th ) entry from it. If DS'' contains at least one non-zero entry then we continue as follows. Let Cmin be T(X,j,DS).cmin+T(child(X,j-1),1,DS').cmin and let Cnt be T(X,j,DS).cnt T(child(X,j-1),1,DS').cnt. If Cmin<T(X,j-1,DS'').cmin then we will set T(X,j-1,DS'').cmin=Cmin and T(X,j-1,DS'').cnt=Cnt; otherwise, if Cmin=T(X,j-1,DS'') we will increment T(X,j-1,DS'').cnt by Cnt. We will also have, by definition, T(X,j-1,DSZ j-1 ).cmin=0 and T(X,j-1,DSZ j- 1 ).cnt=1.

Let's assume now that X is a node corresponding to a cut vertex (i.e. nv(X)=1). In this case there are only D+1 possible states (one for each possible degree of the cut vertex in the subtree, from 0 to D). Note that since we only consider subtrees with at least two vertices (i.e. containing at least one edge), we will have T(X,1,DSZ 1 ).cmin=0 and T(X,1,DSZ 1 ).cnt=1 (corresponding to an empty subtree). We will use a knapsack-like dynamic programming algorithm for computing T(X,1,DS) (1 DS(1) D).

We will use a temporary table Tmp(X) where Tmp(X,j,DS) contains the computed values (cmin and cnt) corresponding to the degree sequence DS after considering the first j children of X. We have Tmp(X,0,DSZ 1 ).cmin=0 and Tmp(X,0,DSZ 1 ).cnt=1 (no other states except for DSZ 1 are defined for j=0).

For 1 j nc(X) we will consider all the states DS of Tmp(X,j-1) (i.e. such that Tmp(X,j-1,DS).cnt>0) and all the states DS' of T(child(X,j),1) (i.e. such that T(child(X,j),1,DS').cnt>0), such that DS(1)+DS'(1) D. For each such combination we obtain a new state DS'' with a single entry DS''(1)=DS(1)+DS'(1). If DS''(1)>0 then we continue as follows. Let Cmin be Tmp(X,j-

1,DS).cmin+T(child(X,j),1,DS').cmin and let Cnt be Tmp(X,j-1,DS).cnt T(child(X,j),1,DS').cnt. If Cmin< Tmp(X,j,DS'').cmin

then we will set Tmp(X,j,DS'').cmin=Cmin and Tmp(X,j,DS'').cnt= Cnt; otherwise, if Cmin=Tmp(X,j,DS'') we will increment Tmp(X,j,DS'').cnt by Cnt. We will have T(X,1,DS)=Tmp(X,nc(X),DS) for every degree sequence DS such that 1 DS(1) D. At the end we will set T(X,1,DSZ 1 ).cmin=0 and T(X,1,DSZ 1 ).cnt=1.

In order to find the minimum cost of a D-degreebounded subtree MinCost and the number of such minimum cost subtrees NumSubtrees, we will proceed as follows. We will initialize MinCost=+ ∞ and NumSubtrees=0. Then we will consider every node X corresponding to a cut vertex and every state DS of T(X,1), such that DS DSZ 1 . If T(X,1,DS).cmin<MinCost then we will set MinCost=T(X,1,DS).cmin and NumSubtrees= T(X,1,DS).cnt; otherwise, if MinCost= T(X,1,DS).cmin then we will increment NumSubtrees by T(X,1,DS).cnt. Afterwards we will consider nodes X corresponding to 2-vertex-connected components. For these nodes we will consider several situations. First of all, during the call Reduce(X, nv(X), nc(X)+1), whenever we encounter a degree sequence DS' containing only zeros, we will compute Cmin=T(X,nv(X),DS).cmin and Cnt=T(X,nv(X),DS).cnt. If Cmin<MinCost then we will set MinCost=Cmin and NumSubtrees=Cnt; otherwise, if Cmin=MinCost then we will increment NumSubtrees by Cnt. Second, while considering the states of the table T(X,j) (with the purpose of filling in the table T(X,j-1)) (2 j nc(X)+1), we may reach states DS''=DSZ j-1 . In these cases we will compute Cmin and Cnt as if DS'' contained at least one nonzero entry and we update MinCost and NumSubtrees (if it is the case) according to the rules mentioned above.

The time complexity of the presented algorithm depends on the maximum size K of a 2-vertexconnected component. There are O(min{D+1,K} K ) states generated initially for each 2-vertex-connected component (by using one of the algorithms from the next three sections). We will denote the time complexity for computing the values associated to these states by TI(K,D). Then, for each cut vertex of the 2-vertex-connected component we traverse all the relevant states S and try to combine each such state with the O(D+1) states computed for the cut vertex. Because of our state reduction procedure, if the 2vertex-connected component contains Q 1 cut vertices, handling all of them will take Q+1 ). The worst case situation occurs when we have large 2-vertex-connected components (with K vertices each, if possible) and as many as possible of these vertices are cut vertices. In order for a vertex of a 2-vertex-connected component to be a cut vertex in this scenario we need to attach it to another 2-vertexconnected component containing K-1 other vertices. Thus, in order to have P cut vertices we will need to have at least N=K+P (K-1) vertices in our graph. Since we don't need exact numbers we can conclude that we may have O(N/K) 2-vertex-connected components and O(N/K) cut vertices (this means that only O(N/K 2 ) 2-vertex-connected-components can have all of their vertices as cut vertices). The overall time complexity is O(N/K (TI(K,D)+K 2 )+N/K 2 (D+1) K+1 ), where TI(K,D) is, at best, O(min{D+1,K} K ) (and, in the worst case, TI(K,D)=O(K K )). The O(N/K K 2 )= O(N K) term stands for the number of edges of the graph. Constructing the block-cut vertex tree takes O(N+M) time, which in this case is O(N K).

O((D+1) ((D+1) Q +(D+1) Q-1 +…+(D+1) 1 )) = O( (D+1)

ENUMERATING D-DEGREE-BOUNDED SUBTREES

In this section we present a recursive algorithm which generates all the D-degree-bounded subtrees of a graph. During the execution of the algorithm we will maintain three types of values:

-CT: the cost of the subtree generated so far -a tuple (deg 1 , deg 2 , …, deg N ) representing the degrees of the vertices 1, 2, …, N, in the subtree generated so far (0 deg i D)

-a tuple (done 1 , …, done N ), where done i =0 or 1; if done i =1 it means that the degree deg i of the vertex i is final (i.e. it cannot be increased any more by the algorithm); if done i =0 the degree of vertex i is not final, yet.

The generated subtrees will be considered to be rooted at the smallest indexed vertex which is part of the subtree. Moreover, we will only generate subtrees containing at least one edge. The N+1 zero cost subtrees consisting of 1 vertex or of no vertex will be considered separately. The main loop of the algorithm will consider all the vertices r of the graph in increasing order (1 r N) and generate all the subtrees rooted at the vertex r. For each root r we initialize the three types of values as follows:

-CT=0

-deg k =0 for 1 k N -done k =1 for 1 k r-1 and done k =0 for r k N
The recursive function GenerateSubtrees described below will be called with the arguments r, 1, CT,

deg k (1 k N) and done k (1 k N).
The GenerateSubtrees function adds new children to the node r in the current subtree which is being generated. Then the function chooses the next node to which children may be added (if any) and calls itself with a new set of arguments.

GenerateSubtrees(r, kmin, CT, deg 1 , …, deg N , done 1 , …, done N ):

for k=kmin to D-deg r do { let S(k)=the set of all subsets of k vertices v(1),…,v(k) such that v(i) r, done v(i) =0 and the edge (r,v(i)) exists in the graph (for 1 i k) In order to find the minimum cost of a D-degreebounded subtree and the number of such subtrees we will initialize (in the beginning) two variables: MinCost=0 and NumSubtrees=N+1, corresponding to the N+1 zero cost subtrees containing at most 1 vertex. Then, in the GenerateSubtrees function, whenever a new subtree is completely generated, we need to compare CT' to MinCost. If CT'<MinCost then we will set MinCost=CT' and NumSubtrees=1; otherwise, if CT'=MinCost then we will increment NumSubtrees by 1.

for each subset (v(1),…,v(k)) in S(k) do { CT' = CT + sum of the values c(r,v(i)) (for 1 i k) deg i '=deg i (for 1 i N, i r and i v(j) for 1 j k) deg r '=deg r +k deg v(i) '=deg v(i) +1 (1 i k) done i '=done i (for 1 i N, i

IMPROVED COUNTING OF MINIMUM COST D-DEGREE-BOUNDED SUBTREES

In this section we will present an algorithm which, for each possible sequence of vertex degrees (deg 1 , …, deg N ), computes the minimum cost D-degreebounded subtree (cmin(deg 1 , …, deg N )) as well as the number of such minimum cost subtrees (cnt(deg

1 , …, deg N )).
The algorithm presented in the previous section can be used for this purpose, because for each generated subtree it also has its sequence of vertex degrees. However, we will present a faster algorithm in this section which does not need to generate all the subtrees for this. Note that the number of different degree sequences can be significantly smaller than the number of D-degree-bounded subtrees. A rough approximation of the number of degree sequences is (D+1) N . However, the number of valid degree sequences is much smaller because the sum of the vertex degrees must be an even number at most equal to 2 N-2. Moreover, if the sum of vertex degrees is 2 (G-1) (for G 2) then we must have exactly G non- We can see that using the algorithms from Sections 6 and 7 for computing the values associated to the initial states of each 2-vertex-connected component becomes increasingly more efficient as K increases. The only part of the time complexity affected by the usage of the algorithms from Sections 5, 6 or 7 is the TI(K,D) factor.

We did not implement the dynamic programming algorithm which is capable of using an arbitrary tree decomposition, because it is obvious from the time complexity analysis that its running time would be significantly worse than the one based on the blockcut vertex tree (if the widths of the two tree decompositions have close values).

ALTERNATIVE SOLUTIONS FOR COUNTING MINIMUM COST D-DEGREE-BOUNDED SUBTREES

In this section we discuss two alternative solutions for the problem addressed by the algorithms from Sections 5, 6 and 7. For the first solution we will start with the degree sequence corresponding to an empty subtree (i.e. all degrees are equal to 0). We will set cmin(0, …, 0)=0 and cnt(0, …, 0)=1. Then we will add at the back of a queue Q all the degree sequences corresponding to subtrees containing a single edge.

For each edge (u,v) of the graph we will construct the degree sequence (deg 1 , …, deg N ), where deg u =deg v =1 and deg i =0 for i u and i v. Then we will insert this sequence at the back of the queue Q.

We will also maintain a hash table HT with the degree sequences already inserted in Q. Thus, whenever a degree sequence is inserted in Q it will also automatically be inserted in HT. As before, until cmin(DS) or cnt(DS) are explicitly initialized for a degree sequence DS, we will assume that cmin(DS)=+ ∞ and cnt(DS)=0.

Then, as long as Q is not empty, we will extract from Q the degree sequence (deg 1 , …, deg N ) located at the front of the queue. We will choose any vertex u such that deg u =1. In order to avoid double-counting in this case, let's consider that j is the smallest index such that deg j 1. We will set deg j '=deg j for this index j (i.e. we will not consider the case deg j '=0, too); thus, we will have deg j ''=0.

We will also have auxcmin(i, deg j =0 (1 j i))=0 and auxcnt(i, deg j =0 (1 j i))=1.

In the end we have cmin(deg 1 , …, deg N )=auxcmin(N, deg 1 , …, deg N ) and cnt(deg 1 , …, deg N )=auxcnt(N, deg 1 , …, deg N ) for every valid degree sequence (deg 1 , …, deg N ).

A simple analysis shows us that the time complexity of this approach is upper bounded by O((D+1) N N+(D+1) N 2 N-2 ). Note that in this case we did not specify how to generate all the valid degree sequences for i vertices (1 i N). We could use the method from the previous solution or one of the methods presented in Sections 6 or 7. We also did not include the time complexity of the generation of valid degree sequences into the stated upper bound.

RELATED WORK

The problem of finding a minimum cost degree bounded subtree in an undirected graph has been studied from various perspectives in the scientific literature. Many papers considered the problem of computing an optimal spanning tree (or subgraph) under various degree constraints. Approximation algorithms for finding spanning trees which violate a maximum degree bound by a small constant while at the same time having a cost at most equal to that of the optimal degree bounded spanning tree were proposed in [START_REF] Goemans | Minimum Bounded Degree Spanning Trees[END_REF] and [START_REF] Singh | Approximating Minimum Bounded Degree Spanning Trees to within One of Optimal[END_REF]. A more general approach regarding the constraints imposed on the spanning tree edges adjacent to each vertex was considered in [START_REF] Zenklusen | Matroidal Degree-Bounded Minimum Spanning Trees[END_REF]. Approximation algorithms for finding maximum bounded degree spanning subgraphs were proposed in [START_REF] Feng | Approximating Bounded Degree Maximum Spanning Subgraphs[END_REF]. A branch-and-cut algorithm for finding a degreeconstrained minimum spanning tree was presented in [START_REF] Behle | A Primal Branch-and-Cut Algorithm for the Degree-Constrained Minimum Spanning Tree Problem[END_REF].

The problem of finding a minimum cost degree bounded subtree is similar to several other wellstudied problems. For instance, when D=2, the problem is equivalent to finding the path of minimum total length (note that this is equivalent to the longest path problem if we negate all the cost values).

Algorithms based on dynamic programming on tree decompositions of graphs for finding optimal connected or degree-constrained subgraphs or vertex subsets were also presented in the literature. An algorithm for the Connected Vertex Cover problem was presented in [START_REF] Moser | Exact Algorithms for Generalizations of Vertex Cover[END_REF]. An algorithm for the Connected Feedback Vertex Set problem was described in [START_REF] Misra | FPT Algorithms for Connected Feedback Vertex Set[END_REF]. An algorithm for finding a minimum subgraph with minimum degree at least D (but not necessarily connected) was proposed in [START_REF] Amini | Degree-Constrained Subgraph Problems: Hardness and Approximation Results[END_REF]. A solution for the Steiner Tree problem was presented in [START_REF] Chimani | Improved Steiner Tree Algorithms for Bounded Treewidth[END_REF]. A general method for developing dynamic programming algorithms on tree decompositions was presented in [START_REF] Arnborg | Linear Time Algorithms for NP-Hard Problems Restricted to Partial k-Trees[END_REF] . However, the algorithms obtained by employing the proposed method are not the most efficient possible in terms of time complexity.

Instead of a tree decomposition some authors used a branch decomposition of the graph. For instance, in [START_REF] Sau | Subexponential Parameterized Algorithms for Degree-Constrained Subgraph Problems on Planar Graphs[END_REF], the authors present a branch decomposition-based dynamic programming algorithm for finding a connected induced D-degreebounded subgraph having a maximum number of edges (or vertices).

Counting certain types of subgraphs of a given base graph is a problem which has been considered many types in the scientific literature (e.g. counting spanning trees in dense graphs [START_REF] Person | Counting Spanning Trees in Dense Graphs[END_REF]).

However, counting subgraphs obeying some cost optimality criterion has received less attention.

CONCLUSIONS

In this paper we presented novel efficient algorithms for finding the minimum cost of a degree-bounded subtree of a graph and the number of such subtrees, when the graph has 2-vertex-connected components with small sizes. The algorithm uses a special tree decomposition of the graph, called the block-cut vertex tree. The proposed solution was also evaluated experimentally.

We also presented a general solution which is capable of using any tree decomposition of the graph, but it is less efficient than the one based on the blockcut vertex tree.

Our solutions consider that the maximum degree of each vertex in the subtree can be at most D. The solutions can be modified in a straight-forward manner in order to have different upper bounds for different vertices. For instance, these bounds can be easily integrated in the algorithms from Sections 5, 6 and 7. In the dynamic programming algorithms, when the degrees of some vertices increase (either because of joining states from adjacent tree nodes or because new vertices are introduced), we need to replace the verification that the new degrees do not exceed D by the verification that the new degrees do not exceed the upper bounds of the corresponding vertices.

Fig. 1 .

 1 Fig.1. A graph with 13 vertices. Cut vertices (labeled 3, 5, 6 and 9) are marked with a darker background.
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		. Running time (in seconds) of the dynamic
	programming algorithm when using the algorithms
	from Sections 5, 6 or 7 for computing the number of
		minimum cost subtrees corresponding to each
		possible degree sequence for each 2-vertex-
		connected component.	
	K Algorithm from	Algorithm from	Algorithm from
		Section 5	Section 6	Section 7
	5	0.01	0.01	0.01
	6	0.02	0.05	0.03
	7	0.18	0.2	0.13
	8	2.25	0.99	0.54
	9	33.89	4.95	1.92

  Then we will iterate through all the possible subtree neighbors v of u. If the degree sequence corresponds to a single edge (i.e. the sum of the degrees from the sequence is 2) then v can be only one vertex: the other vertex besides u for which deg v =1. Otherwise, v can be any of the vertices for which deg v 2. For each possible subtree neighbor v of u (with the extra condition that the edge (u,v) exists in the graph) we will construct the degree sequence (deg 1', …, deg N ') such that: deg i '=deg i for i u and i v, and deg i '= deg i -1 for i=u or i=v. We will compute cmin'=cmin(deg 1 ', …, deg N ')+c(u,v) and cnt'=cnt(deg 1 ', …, deg N '). If cmin'<cmin(deg 1 , …, deg N ) then we will set cmin(deg 1 , …, deg N )=cmin' and cnt(deg 1 , …, deg N )=cnt'; otherwise, if cmin'=cmin(deg 1 , …, deg N ) then we will add to cnt(deg 1 , …, deg N ) the value cnt'. such that: deg i '=deg i for i u and i v, and deg i '=deg i +1 for i=u or i=v. If the degree sequence (deg 1 ', …, deg N') was not yet inserted in Q (we look for it in the hash table HT) then we will insert the degree sequence (deg 1 ', …, deg N ') at the back of the queue Q (and also in HT, as we explained earlier). ) for all the valid degree sequences (deg 1 ,…,deg i ) for i vertices (1 i N). For i=1 we have a single valid degree sequence: deg 1 =0. We have cmin(1,0)=0 and cnt(1,0)=1. For 2 i N we will proceed as follows.As before, we assume that any uninitialized entries in the auxcmin(i) table are equal to + ∞ and any uninitialized entries in the auxcnt(i) table are equal to 0. We will first consider all the valid degree sequences (deg 1 , …, deg i ) with deg i =1. We will iterate through all the graph neighbors j<i of the vertex i such that: deg j 2 or (deg j =1 and the only two non-zero entries of the degree sequence (deg 1 , …, deg i ) are deg j and deg i ). For each such neighbor j we will construct the degree sequence (deg 1 ', …, deg i-1'), where deg k '=deg k for k j and deg j '=deg j -1.Next we will consider all the valid degree sequences (deg 1 , …, deg i ) with 2 deg i D, in increasing order of deg i (breaking ties arbitrarily). For each such degree sequence we will consider all the valid degree sequences (deg 1 ', …, deg i ') such that deg j '=0 or deg j '=deg j (for 1 j i-1), deg i '=1 and the degree sequence (deg 1 '', …, deg i '') is also a valid degree sequence, where deg j ''=deg j -deg j ' (for 1 j i).

	After finalizing the computation of cmin(deg 1 , …, deg N ) and cnt(deg 1 , …, deg N ) we will generate new degree sequences by adding an extra tree edge to the current degree sequence. We will consider all the pairs of vertices (u,v), such that deg u =0, 1 deg v D-1 and (u,v) is an edge in the graph. For each such pair (u,v) we will construct the degree sequence (deg 1 ', …, deg N ') This solution has a time complexity of O(NumStates N 2 ), where NumStates is the number of different valid degree sequences (upper bounded by (D+1) N ). The time complexity could be improved if we had a more efficient method of generating all the valid degree sequences. Let's assume that we have a list of all the valid degree sequences (deg 1 , …, deg N ), in order of increasing sum of degrees (i.e. in increasing order of S=deg 1 +…+ deg N ), breaking ties arbitrarily. Then, by traversing the degree sequences in this order, we can compute cmin(deg 1 , …, deg N ) and cnt(deg 1 , …, deg N ) in O(N) time for each degree sequence (deg 1 , …, deg We set cmin'=auxcmin(i-1, deg 1 ', …, deg i-1 ')+c(i,j) and cnt'=auxcnt(i-1, deg 1 ', …, deg i-1 '). If cmin'<auxcmin(i, deg 1 , …, deg i ) then we will set auxcmin(i, deg 1 , …, deg i )=cmin' and auxcnt(i, deg 1 , …, deg i )=cnt'; otherwise, if cmin'=auxcmin(i, deg 1 , …, deg i ) then we will add to auxcnt(i, deg 1 , …, deg i ) the value cnt'. We will compute cmin'=auxcmin(i, deg 1 ', …, deg i ')+auxcmin(i, deg 1 '', …, deg i '') and cnt'=auxcnt(i, deg 1 ', …, deg i ') auxcnt(i, deg 1 '', …, deg i ''). If cmin'<auxcmin(i, deg 1 , …, deg i ) then we will set auxcmin(i, deg 1 , …, deg i )=cmin' and auxcnt(i, deg 1 , …, deg i )=cnt'; otherwise, if cmin'=auxcmin(i, deg 1 , …, deg i ) then we will add to auxcnt(i, deg 1 , …, deg

N ) (by using the method we just described).

Another solution consists of computing the following tables: auxcmin(i,deg 1 ,…,deg i ) and auxcnt(i,deg 1 , …, deg i i ) the value cnt'.

zero entries in the degree sequence. In Section 8 we present experimental results regarding the number of D-degree-bounded subtrees of a complete graph and the number of degree sequences.

The algorithm presented in this section will actually compute some auxiliary values auxcmin(deg 1 , …, deg N , done 1 , …, done N ) and auxcnt(deg 1 , …, deg N , done 1 , …, done N ), where the done k (1 k N) values have the same meaning as in the previous section. We will assume that all the *cmin values are initialized to + ∞ and all the *cnt values are initialized to 0.

We will use a data structure DS in which we will insert the tuples (deg 1 , …, deg N , done 1 , …, done N ) for which we computed auxcmin and auxcnt values. As in the algorithm from the previous section we will consider every possible vertex r as a potential root for the counted subtrees. For each root r we will initialize the deg k and done k (1 k N) values as before. We will set auxcmin(deg 

After considering every possible root for the counted subtrees the algorithm will proceed as follows. As long as the data structure DS is not empty we extract the first tuple (deg 1 ,…,deg N ,done 1 ,…,done N ) from DS and then call CountSubtrees(0,deg 1 ,…,deg N ,done 1 ,…,done N ). The tuples from DS are sorted according to the number of values equal to 1 among the done 1 , …, done N values. Thus, the first tuple from DS will be the one containing the smallest number of 1 values among the done 1 , …, done N values. Note that DS may be implemented in multiple ways, from a standard priority queue to an array of queues, each position P of the array representing a queue storing all the tuples (deg 1 , …, deg N , done 1 , …, done N ) having P values equal to 1 among the done 1 , …, done N values.

It is easy to see that this algorithm does not need to generate each D-degree-bounded subtree independently. Instead, all the subtrees corresponding to the same degree sequence and with the same set of done 1 , …, done N values are handled together (only the minimum cost of a subtree and the number of minimum cost subtrees are needed for each such class of subtrees -these numbers are stored in the auxcmin and auxcnt tables).

In order to find the minimum cost of a D-degreebounded subtree and the number of such subtrees we will initialize, as before, MinCost=0 and NumSubtrees=1. Then we will consider all the tuples N ). However, as we will see in Section 8, this number is significantly lower.

FURTHER IMPROVEMENTS FOR COUNTING MINIMUM COST D-DEGREE-BOUNDED SUBTREES

We can slightly improve the algorithm from the previous by using a different approach for computing the entries of the tables cmin and cnt. We will also use an array of queues: 

CountSubtreesImproved():

for each edge (u,v) in the graph { deg i = 0 (for 1 i N, i u and i v)

A problem occurs when we want to compute the number of subtrees modulo a given number P. In this case the division by the number of leaves (when updating the cnt values) may pose some problems. If we want to compute the cnt values modulo P then the division by the number of leaves nl needs to be performed by multiplying the corresponding value by nl -1 (the multiplicative inverse of nl modulo P). However, depending on the number P, some numbers nl may not have a multiplicative inverse. In such cases we will have to compute the cnt values exactly and then compute their remainder when divided by P after having computed all the values.

EXPERIMENTAL RESULTS

We implemented the dynamic programming solution for graphs with small 2-vertex-connected components considering all the three algorithms from Sections 5, 6 and 7 for computing the minimum cost subtrees (and their numbers) corresponding to each degree sequence (within each biconnected components). All of our tests considered D=3.

We will first present (in Table 1) a comparison between the algorithms from Sections 5, 6 and 7 in terms of the number of generated subtrees (for the algorithm from Section 5), the number of degree sequences (for the algorithms from Sections 6 and 7) and the number of intermediate states for 2-vertexconnected components which are complete subgraphs (for the algorithm from Section 6). In order to compare the algorithms from Sections 5, 6 and 7 in terms of running time we generated graphs with up to 100 vertices containing as many 2-vertex-connected components of a fixed size K as possible.

Each 2-vertex-connected component was a complete subgraph with the cost of each edge generated randomly as an integer between -100 and 100. We ranged K from 5 to 9. The tests were run on an Intel Atom N570 1.66 GHz CPU. The algorithms were implemented in C++ and the code was compiled with the G++ compiler, version 3.3.1. Table 2 presents the running times of the three algorithms for each of the 5 values of K.