
HAL Id: hal-00922151
https://hal.science/hal-00922151v3

Submitted on 12 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Convex Approach for Image Restoration with Exact
Poisson-Gaussian Likelihood

Emilie Chouzenoux, Anna Jezierska, Jean-Christophe Pesquet, Hugues Talbot

To cite this version:
Emilie Chouzenoux, Anna Jezierska, Jean-Christophe Pesquet, Hugues Talbot. A Convex Approach
for Image Restoration with Exact Poisson-Gaussian Likelihood. SIAM Journal on Imaging Sciences,
2015, 8 (4), pp.2662-2682. �10.1137/15M1014395�. �hal-00922151v3�

https://hal.science/hal-00922151v3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A Convex Approach for Image Restoration with Exact

Poisson-Gaussian Likelihood ∗

Emilie Chouzenoux, Anna Jezierska, Jean-Christophe Pesquet, and Hugues Talbot

August 12, 2015

Abstract

The Poisson-Gaussian model can accurately describe the noise present in a number of
imaging systems. However most existing restoration methods rely on approximations of
the Poisson-Gaussian noise statistics. We propose a convex optimization strategy for the
reconstruction of images degraded by a linear operator and corrupted with a mixed Poisson-
Gaussian noise. The originality of our approach consists of considering the exact, mixed
continuous-discrete model corresponding to the data statistics. After establishing the Lip-
schitz differentiability and convexity of the Poisson-Gaussian neg-log-likelihood, we derive
a primal-dual iterative scheme for minimizing the associated penalized criterion. The pro-
posed method is applicable to a large choice of convex penalty terms. The robustness of
our scheme allows us to handle computational difficulties due to infinite sums arising from
the computation of the gradient of the criterion. We propose finite bounds for these sums,
that are dependent on the current image estimate, and thus adapted to each iteration of
our algorithm. The proposed approach is validated on image restoration examples. Then,
the exact data fidelity term is used as a reference for studying some of its various approx-
imations. We show that in a variational framework the Shifted Poisson and Exponential
approximations lead to very good restoration results.

1 Introduction

The recovery of a target image in the presence of degradations (i.e. noise) has been exten-
sively studied in the literature. Image reconstruction problems are often formulated into the
Maximum A Posteriori (MAP) framework. The MAP estimator is computationally simple
and offers significant flexibility in the choice of a prior, while the data fidelity term usually
consists of the noise neg-log-likelihood or some approximation of it. A Gaussian noise model is
commonly assumed in imaging due to the simple and intuitive form of the related data fidelity
function, which is convex and Lipschitz differentiable. However, recent methodological progress
has ensured that more sophisticated variational problems can be efficiently solved numerically.
As a consequence, studies are no longer limited to the simplest Gaussian model. Some contri-
butions concern various standard noise distributions, e.g. Poisson [4, 11, 20, 33, 44, 48, 67],
impulsive [16] or multiplicative [5, 19, 31, 46] noise, as well as some mixed noise models, e.g.
the mixture of Gaussian and impulsive noise [72, 73].

A growing interest in Poisson-Gaussian probabilistic models has recently been observed. The
Poisson component is often related to the quantum nature of light and accounts for photon-
counting principles in signal acquisition, whereas the Gaussian component is typically related

∗Part of this work appeared in the conference proceedings of ICASSP, 2012 [51]. This work was supported by
the Agence Nationale de la Recherche under grant ANR-09-EMER-004-03.
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2to noise present in the electronic part of the imaging system. Indeed, despite constant improve-
ments, electronic noise usually cannot be neglected. In addition, the Poisson noise component
cannot usually be accurately described through Gaussian statistics, especially in the context of
low-count imaging. As a consequence, a mixed Poisson-Gaussian noise model is frequently con-
sidered in astronomy [9, 68], remote sensing [3], medicine [60] and biology [29]. There has been
a growing interest for denoising problems involving images corrupted in this fashion [8, 12, 57].
Recent advances have been made in Poisson-Gaussian noise parameters estimation procedures
[38, 47, 49]. However, the literature in deconvolution and reconstruction problems involving
such noise model remains scarce. Among existing works, Benvenuto et al. [9] proposed a scaled
gradient method and more recently Gil-Rodrigo et al. [41] developed an alternating minimiza-
tion algorithm. An augmented Lagrangian method grounded on a Poisson approximation of the
noise characteristics was proposed in [17], while a similar framework with a weighted squared
ℓ2 norm noise approximation was proposed in [55]. So far, restoration strategies have relied on
some approximations of the noise statistics, which may have been detrimental to the quality of
the results. The use of approximations is motivated by the mathematical difficulties raised by
the Poisson-Gaussian model. Indeed, the corresponding probability distribution has a discrete-
continuous nature, and the expression of the associated log-likelihood function involves infinite
sums. For simplification, one usually neglects either the Poisson or the Gaussian component,
or performs an approximation of the Poisson-Gaussian model based on variance stabilization
techniques [37, 59].

In this paper, we investigate the properties of the Poisson-Gaussian negative log-likelihood,
showing that it is a convex Lipschitz differentiable function. Since the gradient of the Poisson-
Gaussian neg-log-likelihood requires the computation of infinite series, we propose to approx-
imate it using finite sums whose bounds depend on the current signal estimate. Next, we
employ a proximal optimization method whose convergence is guaranteed even in the presence
of summable numerical errors. The retained approach belongs to the recent class of primal-
dual splitting algorithms (see [52] and the references therein) and can cope with the sum of a
gradient Lipschitz term and possibly nonsmooth penalty terms. Such terms can model a wide
range of prior information, e.g. range value constraints, criteria promoting sparsity in a frame,
total-variation and more generally hybrid regularization functions [62].

Our main contributions in this paper are as follows:

• a proof of the Lipschitz differentiability of the Poisson-Gaussian neg-log-likelihood func-
tion;

• a proof of the convexity of the mixture of Poisson and Generalized-Gaussian neg-log-
likelihood function;

• the establishment of new summation bounds, along with error control, for the infinite
sums appearing in the gradient of the Poisson-Gaussian neg-log-likelihood;

• new tools for comparing the existing approximations of the Poisson-Gaussian model; and

• validation of the numerical performance of our restoration method applied to the model
with data fidelity given by exact Poisson-Gaussian neg-log-likelihood and also by its several
approximations.

The paper is organized as follows: Section 2 introduces the notation used in this work and
investigates the Poisson-Gaussian model. In particular, convexity and Lipschitz-differentiability
results are presented. Section 3 describes the proposed optimization framework. Next, our
restoration approach is illustrated via experiments in Section 4. Finally, some conclusions are
drawn in Section 5.



32 Degradation model

Let y = (yi)1≤i≤Q ∈ R
Q be a vector of observations related to an original signal x ∈ [0,+∞)N ,

which is degraded by a matrix H in [0,+∞)Q×N (e.g., a convolutive model) and further cor-
rupted with Poisson-Gaussian noise. More specifically, the observations y are related to x by

y = z(x) + w, (1)

where z(x) =
(
zi(x)

)
1≤i≤Q

and w = (wi)1≤i≤Q are realizations of mutually independent random

vectors Z(x) =
(
Zi(x)

)
1≤i≤Q

and W = (Wi)1≤i≤Q featuring independent components. It is

further assumed that, for every i ∈ {1, . . . , Q},

Zi(x) ∼ P([Hx]i), (2)

Wi ∼ N (0, σ2), (3)

where [Hx]i is the i-th component of vector Hx, and σ ∈ (0,+∞) is the standard deviation
of the zero-mean Gaussian noise component. Hence, y is a realization of a random vector Y
with probability density function given by the convolution of the components resulting from the
Gaussian and Poisson distributions, i.e.

pY |x(y) =

Q∏

i=1




+∞∑

n=0

e−[Hx]i([Hx]i)
n

n!

e
−
(

yi−n√
2σ

)2

√
2πσ


 . (4)

In the context of inverse problems, the original signal can be recovered by minimizing a penalized
criterion:

min
x∈RN

(f(x) = Φ(x) + ρ(x)) , (5)

where Φ is the so-called data fidelity term and ρ is a regularization function incorporating a
priori information, so as to guarantee the stability of the solution w.r.t. the observation noise.
In the Bayesian framework, this allows us to compute the MAP estimate [30] of the original
image. In this context, the data fidelity term is defined as the negative logarithm of pY |x(y):

Φ(x) = − log(pY |x(y)) =

Q∑

i=1

Φi([Hx]i), (6)

where, for every i ∈ {1, . . . , Q} and u ∈ [0,+∞),

Φi(u) = − log




+∞∑

n=0

une−u

n!

e
−
(

yi−n√
2σ

)2

√
2πσ


 , (7)

and the regularization term ρ corresponds to the potential of the chosen prior probability density
function of the target image.

Let 1 denote the vector of RQ with all its components equal to 1. The gradient and Hessian
of Φ on the positive orthant are respectively given by: for every x ∈ [0,+∞)N ,

∇Φ(x) = H⊤(1− ξ(Hx)), (8)

∇2Φ(x) = H⊤Diag
(
η1([Hx]1), . . . , ηQ([Hx]Q)

)
H, (9)



4where, for every z = (zi)1≤i≤Q ∈ [0,+∞)Q, ξ(z) =
(
ξi(zi)

)
1≤i≤Q

, η(z) =
(
ηi(zi)

)
1≤i≤Q

with

ξi(zi) =s(zi, yi − 1)/s(zi, yi), (10)

ηi(zi) =
(
(s(zi, yi − 1))2 − s(zi, yi)s(zi, yi − 2)

)
/ (s(zi, yi))

2 , (11)

and, for every (a, b) ∈ R
2,

s(a, b) =

+∞∑

n=0

an

n!
e
−
(

b−n√
2σ

)2

. (12)

A common useful technique for solving large-size optimization problems such as those en-
countered in image recovery consists of splitting (i.e. decomposing) the cost function f in a
sum of simpler functions, which are then processed individually. For example, each of these
functions can be dealt with through its gradient if the function is µ-Lipschitz differentiable1, or
through its proximity operator [58, 65] if the latter has a closed form expression.

In view of this, the two following results are essential to our approach.

Theorem 1. The function Φ is µ-Lipschitz differentiable on [0,+∞)N with

µ = ‖H‖2
(
1− e−

1
σ2

)
exp

(
1

σ2

(
2 max
i∈{1,...,Q}

{yi} − 1

))
. (13)

Proof. Our proof consists of showing that, for every i ∈ {1, · · · , Q}, ηi is upper bounded on
[0,+∞) by ηi(0), where ηi(0) is defined in (30). Firstly, we recall that for a = 0 the infinite
sum (12) simplifies to the first sum element. Consequently, for every zi ∈ (0,+∞), we have the
following equivalences:

ηi(0)− ηi(zi) ≥ 0 (14)

⇔ (s(zi, yi))
2 ηi(0)−

(
(s(zi, yi − 1))2 − s(zi, yi)s(zi, yi − 2)

)
≥ 0

⇔
∞∑

m=0

∞∑

n=0

zm+n
i

m!n!

(
e

−(yi−m)2−(yi−n)2

2σ2 ηi(0)− e
−(yi−1−m)2−(yi−1−n)2

2σ2 + e
−(yi−m)2−(yi−2−n)2

2σ2

)
≥ 0

⇔
∞∑

m=0

∞∑

n=0

zm+n
i

m!n!
e

−(yi−n)2−(yi−m)2+4yi−2

2σ2

{(
1− e−

n+m

σ2

)
+ e−

1
σ2

(
e−

2n
σ2 − 1

)}
≥ 0

⇔
∞∑

m=0

m−1∑

n=0

zm+n
i

m!n!
e

−(yi−n)2−(yi−m)2+4yi−2

2σ2

{
2
(
1− e−

n+m
σ2

)
+ e−

1
σ2

(
e−

2n
σ2 + e−

2m
σ2 − 2

)}

+
∞∑

m=0

z2mi
(m!)2

e
−(yi−m)2+2yi−1

σ2 (1− e−
2m
σ2 )(1− e−

1
σ2 ) ≥ 0

⇔
∞∑

m=0

m−1∑

n=0

zm+n
i

m!n!
e

−(yi−n)2−(yi−m)2+4yi−2

2σ2

{
2
(
1− e−

n+m

σ2

)(
1− e−

1
σ2

)
+ e−

1
σ2

(
e−

n
σ2 − e−

m
σ2

)2}

+
∞∑

m=0

z2mi
(m!)2

e
−(yi−m)2+2yi−1

σ2 (1− e−
2m
σ2 )(1− e−

1
σ2 ) ≥ 0.

1A differentiable function f : R
N → R is said to be µ-Lipschitz differentiable on a subset C ⊂ R

N if its
gradient ∇f is such that, for every (x, y) ∈ C2, ‖∇f(x)−∇f(y)‖ ≤ µ‖x− y‖.



5The latter inequality holds, since the left-hand side is a sum of nonnegative terms. Hence,
the expression of the Lipschitz constant µ in (13) is obtained by searching the maximum value
of ηi(0) for all possible values of i ∈ {1, . . . , Q}.

The next convexity result can be regarded as an extension to the one presented in [9].

Theorem 2. The neg-log-likelihood Φ(β) of a mixture of Generalized-Gaussian and Poisson
variables defined over the positive orthant as

(
∀x ∈ [0,+∞)N

)
Φ(β)(x) =

Q∑

i=1

Φ
(β)
i ([Hx]i) (15)

where, for every i ∈ {1, . . . , Q} and u ∈ [0,+∞),

Φ
(β)
i (u) = − log




+∞∑

n=0

une−u

n!

β

2
√
2σΓ( 1β )

e
−

(
|yi−n|√

2σ

)β

 (16)

is convex if β ≥ 1. It is strictly convex if β > 1 and H is injective.

Proof. It is sufficient to show that, for every i ∈ {1, · · · , Q},

(∀a ∈ (0,+∞))

{
Φ̈
(β)
i (a) > 0 if β > 1,

Φ̈
(β)
i (a) ≥ 0 if β = 1,

(17)

where

Φ̈
(β)
i (a) =

((
s(β)(a, yi − 1)

)2
− s(β)(a, yi)s

(β)(a, yi − 2)

)
/
(
s(β)(a, yi)

)2
,

and, for every b ∈ R,

s(β)(a, b) =
+∞∑

n=0

an

n!
ζ
(β)
b (n), (18)

with ζ
(β)
b (·) = e

−
(

|·−b|√
2σ

)β

. The proof reduces to studying the sign of the numerator of Φ̈
(β)
i . For

every a ∈ [0,+∞), b ∈ R and β ∈ (0,+∞), the following equivalences hold:

(
s(β)(a, b− 1)

)2
− s(β)(a, b)s(β)(a, b− 2) ≥ 0 (19)

⇔
∞∑

m=0

∞∑

n=0

an+m

n!m!

(
ζ
(β)
b (m+ 1)ζ

(β)
b (n+ 1)− ζ

(β)
b (m)ζ

(β)
b (n+ 2)

)
≥ 0

⇔
∞∑

m=0

∞∑

n=1

an+m−1

n!m!
n
(
ζ
(β)
b (m+ 1)ζ

(β)
b (n)− ζ

(β)
b (m)ζ

(β)
b (n+ 1)

)
≥ 0

⇔
∞∑

m=0

∞∑

n=0

an+m−1

n!m!
n
(
ζ
(β)
b (m+ 1)ζ

(β)
b (n)− ζ

(β)
b (m)ζ

(β)
b (n+ 1)

)
≥ 0

⇔
∞∑

m=0

{
m∑

n=0

an+m−1

n!m!
n
(
ζ
(β)
b (m+ 1)ζ

(β)
b (n)− ζ

(β)
b (m)ζ

(β)
b (n+ 1)

)

+
∞∑

n=m

an+m−1

n!m!
n
(
ζ
(β)
b (m+ 1)ζ

(β)
b (n)− ζ

(β)
b (m)ζ

(β)
b (n+ 1)

)}
≥ 0
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⇔

∞∑

m=0

{
m∑

n=0

an+m−1

n!m!
n
(
ζ
(β)
b (m+ 1)ζ

(β)
b (n)− ζ

(β)
b (m)ζ

(β)
b (n+ 1)

)

+
m∑

n=0

an+m−1

n!m!
m
(
ζ
(β)
b (n+ 1)ζ

(β)
b (m)− ζ

(β)
b (n)ζ

(β)
b (m+ 1)

)}
≥ 0

⇔
∞∑

m=0

m∑

n=0

an+m−1

n!m!
(n−m) (ζβ(m+ 1)ζβ(n)− ζβ(m)ζβ(n+ 1)) ≥ 0

⇔
∞∑

m=0

m∑

n=0

an+m−1

n!m!
(m− n)

(
ζ
(β)
b (n+ 1)ζ

(β)
b (m)− ζ

(β)
b (n)ζ

(β)
b (m+ 1)

)
≥ 0. (20)

Furthermore, for all a ∈ (0,+∞), b ∈ R, and (n,m) ∈ N
2 with m > n,

an+m−1

n!m!
(m− n)

(
ζ
(β)
b (n+ 1)ζ

(β)
b (m)− ζ

(β)
b (n)ζ

(β)
b (m+ 1)

)
≥ 0

⇔ ζ
(β)
b (n+ 1)ζ

(β)
b (m)− ζ

(β)
b (n)ζ

(β)
b (m+ 1) ≥ 0

⇔ exp

(
−
( |b− n− 1|

σ

)β
−
( |b−m|

σ

)β)
− exp

(
−
( |b− n|

σ

)β
−
( |b−m− 1|

σ

)β)
≥ 0

⇔ |b− n|β − |b− n− 1|β − (|b−m|β − |b−m− 1|β) ≥ 0. (21)

The above inequality holds if the function

π(β) : R → R

u 7→ |u|β − |u− 1|β (22)

is increasing. To prove this fact, let us study the sign of the derivative of the function π(β) over
its domain. The singularity points, i.e. u ∈ {0, 1}, can be excluded from the study due to the
continuity of π(β). Then, for β ≥ 1 and u ∈ R \ {0, 1} the derivative is given by

∂π(β)(u)

∂u
= β (sign(u) |u|β−1 − sign(u− 1) |u− 1|β−1), (23)

=

{
β (|u|β−1 + |u− 1|β−1) if u ∈ (0, 1) ,

β sign(u)(|u|β−1 − |u− 1|β−1) if u ∈ (−∞, 0) ∪ (1,∞),

where sign denotes the signum function, and

sign

(
∂π(β)(u)

∂u

)
=





sign
(
1− |u/(u− 1)|β−1

)
if u ∈ (−∞, 0) ,

sign
(
|u/(u− 1)|β−1 + 1

)
if u ∈ (0, 1) ,

sign
(
|u/(u− 1)|β−1 − 1

)
if u ∈ (1,+∞) .

(24)

Hence, it is positive (resp. nonnegative) for β > 1 (resp. β = 1), so that π(β) is strictly
increasing (resp. increasing).

The Poisson-Generalized Gaussian offers more flexibility than the Poisson-Gaussian model,
but it has not been yet studied in the area of image processing. The results obtained above
should be of potential use for future applications. In the rest of the paper we concentrate on
Poisson-Gaussian model (β = 2), which is of main interest of this paper.
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Name Expression

Convexity Lipschitz

condition constant

Generalized Anscombe Φ̃i(u) =
1
2
(ν(yi)− ν(u))2,

yi + 3/8 + σ2 ≥ 0Transform (GAST) [59] ξ̃i(u) =
2ν(yi)
ν(u)

− 1 (3/8 + σ2)−3/2 ν(yi)
2

with ν(u) = 2
√

u+ 3/8 + σ2

Exponential Φ̃i(u) = u− 1/2−yi−σ2

e
Ei

(
σ2−1/2+yi

σ2+u

)

yi + σ2 − 1/2 ≥ 0
2yi+2σ2−1

2σ4 exp
(
2yi−1
2σ2

)
(EXP) [9] −(σ2 + u)e

− 1/2−yi+u

σ2+u ,

ξ̃i(u) = exp
(
− 1+2u−2yi

2u+2σ2

)

Shifted Poisson Φ̃i(u) = η(u)− η(yi) log η(u),
yi + σ2 ≥ 0 yi+σ2

σ4(SPoiss) [17] ξ̃i(u) =
η(yi)
η(u)

with η(u) = u+ σ2

Weighted least squares Φ̃i(u) =
1
2

(yi−u)2

σ2+u
,

−−− (yi+σ2)2

σ6

(WL2) [9, 41, 55, 64] ξ̃i(u) =
(yi+σ2)2

4(u+σ2)2
+ 3

4

Table 1: Various approximations Φ̃(x) =
∑Q

i=1 Φ̃i([Hx]i) (up to an additive constant) of the
Poisson-Gaussian neg-log-likelihood Φ(x) proposed in the literature, together with their gradient
∇Φ̃(x) = H⊤(1 − (ξ̃i([Hx]i)1≤i≤Q). Ei denotes the exponential integral function. We provide

conditions on (yi)1≤i≤Q for Φ̃ to be convex as well as the expression of coefficients (µi)1≤i≤Q
involved in the Lipschitz constant µ = ‖H‖2maxi∈{1,...,Q} µi of ∇Φ̃.

Table 1 summarizes several data fidelity terms that have been proposed in the literature as
approximations of (6), with the aim to solve image restoration problems with data corrupted
by Poisson-Gaussian noise. All these approximations are convex (up to some assumptions on
y), and Lipschitz differentiable.

For the optimization methods developed in the next section, it is important to note that the
definition of the negative log-likelihood (6) can be extended to the whole space R

N by setting,
for every x ∈ R

N ,
Φ(x) = h(x) + ι[0,+∞)N (x), (25)

where

h(x) =

Q∑

i=1

ϕi([Hx]i), (26)

ι[0,+∞)N (x) =

{
0 if x ∈ [0,+∞)N ,

+∞ otherwise.
(27)

For every i ∈ {1, . . . , Q}, function ϕi identifies with Φi on the positive half line, while a quadratic
extension is used on the negative one, guaranteeing that the resulting function is twice differ-
entiable at 0, and Lipschitz differentiable on R with minimum Lipschitz constant, i.e.

ϕi : R → R

u 7→
{
Φi(u) if u ∈ [0,+∞] ,
1
2ηi(0)u

2 + (1− ξi(0))u+Φi(0) otherwise,
(28)

where functions Φi, ξi and ηi are defined in (7), (10) and (11) respectively. We note that for

a = 0 the infinite sum (12) simplifies to the first term, i.e. s(0, b) = e−
b2

2σ2 . Hence, for every
i ∈ {1, . . . , Q}, the expressions of ξi(0) and ηi(0) in (28) read

ξi(0) = e
1

2σ2 (2yi−1), (29)



8
ηi(0) =

(
1− e−

1
σ2

)
e

1
σ2 (2yi−1). (30)

Consequently, h is a convex function with a µ-Lipschitzian gradient on R
N . The positivity

constraint in the original problem is imposed by the indicator function (27).

3 Proposed optimization method

3.1 Minimization problem

According to the analysis carried out in Section 2, the objective function has the following form

(∀x ∈ R
N ) f(x) = h(x) + ψ0(x) +

R∑

r=1

ψr(Vrx), (31)

where the regularization term is split into a sum of simpler functions. More precisely, it will
be assumed that ψ0 ∈ Γ0(R

N ) and, for every r ∈ {1, . . . , R}, ψr ∈ Γ0(R
Pr) and Vr ∈ R

Pr×N .2

Note that (31) covers a large range of penalization strategies. For instance, a sparsity prior
in an analysis frame with frame operator Vr is introduced by taking ψr equal to λr‖ · ‖1 with
λr > 0 [34]. Block sparsity measures [35] can also be easily addressed in the proposed frame-
work. Another popular example in image restoration is the total variation penalization [66].3

In this case, Pr = 2N , Vr =
[
(∆h)⊤ (∆v)⊤

]⊤
, where ∆h ∈ R

N×N (resp. ∆v ∈ R
N×N ) cor-

responds to a horizontal (resp. vertical) gradient operator, and, for every x ∈ R
N , ψr(Vrx) =

λr
∑N

n=1

(
([∆hx]n)

2 + ([∆vx]n)
2
)1/2

with λr > 0. Another interesting choice is the Hessian-

based penalization [40], [54] i.e., Pr = 3N and Vr = [
(
∆hh

)⊤ √
2
(
∆hv

)⊤
(∆vv)⊤]⊤ where

∆hh ∈ R
N×N , ∆hv ∈ R

N×N and ∆vv ∈ R
N×N model the second-order partial finite difference

operators between neighbooring pixels as described in [54, Sec.III-A] and, for every x ∈ R
N ,

ψr(Vrx) = λr
∑N

n=1

(
([∆hhx]n)

2 + 2([∆hvx]n)
2 + ([∆vvx]n)

2
)1/2

with λr > 0. Another example
is the non-local total variation (NLTV) [42]. NLTV is associated with image-driven gradient
directions i.e. directions are chosen for all n ∈ {1, . . . , N} independently, based on a similar-
ity score between pixel intensity in a local neighborhood, e.g. patch based score [15]. In this
case Pr =

∑N
n=1Dn, Vr = [ω1

1∆
1
1, . . . , ω

D1
1 ∆D1

1 , ω1
2∆

1
2, . . . , ω

D2
2 ∆D2

2 , . . . , ω1
N∆

1
N , . . . , ω

DN
N ∆DN

N ]⊤,
where, or every n ∈ {1, . . . , N} and d ∈ {1, . . . , Dn}, ∆d

n ∈ R
1×N , Dn ∈ N states for the

number of gradient directions and ωdn is a positive weight and, for every x ∈ R
N , ψr(Vrx) =

λr
∑N

n=1

(∑Dn
d=1(∆

d
nx)

2
)1/2

with λr > 0. The above penalties can be considered individually

(R = 1) or combined in a hybrid manner (R > 1) [62]. Finally, following (25), ψ0 should be the
indicator function ι[0,+∞)N . However, to take into account the dynamic range of the expected
output image, it can be more generally chosen equal to the indicator function ιC of a nonempty
closed convex subset C of [0,+∞)N .

3.2 Primal-dual splitting algorithm

Problem (5) where f takes the form (31) can be efficiently addressed using proximal splitting
algorithms [14, 23, 26, 63]. The solution is obtained iteratively by evaluating the individual
proximity operators of the functions (ψr)0≤r≤R, provided that they have an explicit expression.
We first require the notion of proximity operator.

2Following standard notation in convex analysis [7], Γ0(R
N ) designates the class of lower-semicontinuous,

proper, convex functions from R
N to (−∞,+∞].

3Total variation and the Hessian-based penalization correspond to improper priors.



9Definition 1. [58, 65] The value at x ∈ R
N of the proximity operator of a function f ∈ Γ0(R

N ),
denoted by proxf : RN 7→ R

N , is the unique solution to the following minimization problem:

(∀x ∈ R
N ) proxf (x) := argmin

p∈RN

f(p) +
1

2
‖x− p‖2 . (32)

The proximity operator is firmly nonexpansive, i.e. for every (x, x′) ∈ R
N × R

N ,

(
proxf (x)− proxf (x

′)
)⊤

(x− x′) ≥
∥∥proxf (x)− proxf (x

′)
∥∥2 (33)

and its fixed points are the minimizers of function f . Numerous convex optimization algorithms
are based on this concept (see [24, 61] for tutorials) due to these properties. In the context of
the minimization of (31), we are interested in algorithms which incorporate functions h and
(ψr)0≤r≤R either via their proximity operators or via their gradients. The presence of a smooth
term is of paramount importance as we have shown our data fidelity term h to be µ-Lipschitz
differentiable, while its proximity operator does not have a closed form expression. Note that
not all proximal methods offer the required flexibility to address the minimization of (31).
More precisely, in the case when R = 0, one can employ either the forward-backward (FB) [27]
[6, Chapter 3] or the forward-backward-forward (FBF) algorithms [69]. Conversely, celebrated
algorithms such as Douglas-Rachford’s [22, 56], the Alternating Direction Method of Multipliers
[2, 43, 66], or the generalized Forward-Backward [63] would be difficult to implement. In the
case when R 6= 0, one can resort to primal-dual techniques proposed in [10, 26] and [21, 28, 70]4

which can be regarded as extensions of the FBF and FB algorithms, respectively.
We are now ready to present our primal-dual splitting algorithm. The main advantage of the

chosen primal-dual splitting algorithm is that it allows us to solve (5) for any Lipschitz differen-
tiable function h while allowing arbitrary linear operators (Vr)1≤r≤R. Another strong point of
this algorithm is that it does not require any matrix inversion to be performed. Our primal-dual
method is summarized in Algorithm 1. It corresponds to an instance of the algorithm proposed
in [26] under a generic form.

Algorithm 1 Proposed algorithm.

Let γ ∈ (0,+∞). Let (ck)k∈N and (ek)k∈N be some sequences of elements of RN corresponding
to possible errors in the computation of the gradient of h.
Initialization:

Set x0 ∈ R
N , and (∀r ∈ {1, . . . , R}) vr,0 ∈ R

Pr .
Iterations:

For k = 0, . . .

y1,k = xk − γ
(
∇h(xk) +

∑R
r=1 V

⊤
r vr,k

)
+ ck

p1,k = proxγψ0
(y1,k)

For r = 1, . . . , R

y2,r,k = vr,k + γVrxk
p2,r,k = y2,r,k − γproxγ−1ψr

(γ−1y2,r,k)

q2,r,k = p2,r,k + γVrp1,k
vr,k+1 = vr,k − y2,r,k + q2,r,k

q1,k = p1,k − γ
(
∇h(p1,k) +

∑R
r=1 V

⊤
r p2,r,k

)
+ ek

xk+1 = xk − y1,k + q1,k

4The latter algorithms are generalizations of the primal-dual technique developed in [18, 36, 45].



103.3 Convergence result

The convergence of the proposed primal-dual proximal splitting algorithm is guaranteed by the
following result deduced from Theorem 1 and [26, Theorem 4.2]:

Theorem 3. Given the following assumptions:

(i) f is coercive, i.e. lim‖x‖→+∞ f(x) = +∞,

(ii) for every r ∈ {1, . . . , R}, ψr is finite valued,

(iii) γ ∈ [ǫ, (1− ǫ)/δ] where ǫ ∈ (0, 1/(δ + 1)) and

δ = µ+

√√√√
R∑

r=1

‖Vr‖2,

(iv) (ck)k∈N and (ek)k∈N are absolutely summable sequences,

then there exists a minimizer x̂ of (31) such that the sequences (xk)k∈N and (p1,k)k∈N produced
by Algorithm 1 converge to x̂.

3.4 Implementation issues

Algorithm 1 is tolerant to numerical errors (ck)k∈N and (ek)k∈N. This feature is essential in our
context, as the gradient of the Poisson-Gaussian negative log-likelihood given by (8) involves
infinite sums. We propose finite summation bounds depending on the current estimate of x
that allow to compute practically accurate approximations of these sums. Let us firstly rewrite
s(a, b) defined in (12) as s(a, b) =

∑+∞
n=0Π(a, b, n) with

Π(a, b, n) =
an

n!
e
−
(

b−n√
2σ

)2

. (34)

Then, the approximation accuracy is guaranteed by the following result deduced from [50,
Proposition A.2]:

Proposition 1. Let ∆ > 0 and set

n− = ⌊n∗ −∆σ⌋, n+ = ⌈n∗ +∆σ⌉ (35)

with n∗ given by

n∗ = σ2W
( a
σ2
eb/σ

2
)
, (36)

where W(·) denotes the Lambert function. Then,
∑n+

n=max(1,n−)Π(a, b, n) constitutes a lower

approximation to
∑+∞

n=1Π(a, b, n) with maximum error value

√
2πσΠ(a, b, n∗)

(
1− erf

( ∆√
2

))
. (37)

where erf denotes the error function.

One can observe in Fig. 1 that the bounds defined in (35) can be quite precise. On the
contrary, the summation bounds n− = 0 and n+ = b + 4σ proposed in [9, 53] are not always
guaranteed to include all the significant coefficients or to be very effective. Note that efficient
numerical methods exist to compute the Lambert function [39].

In order to secure convergence of the proposed algorithm, the errors made when computing
the gradient terms need to summable so that ∆ should be increased at each iteration. In
the experimental study conducted in the next section, we will show that a good numerical
performance of Algorithm 1 is obtained even with a fixed, sufficiently large, parameter ∆.
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Figure 1: Approximation bounds for a = 100, b = 30 and σ2 = 50: (a) Approximation n∗

from (36) (solid blue) to the maximizer of function n 7→ Π(a, b, n) (dashed green), (b) function
n 7→ Π(a, b, n) (dashed green), summation bounds resulting from (35) with ∆ = 3 (solid blue)
and from [9, 53] (dash-dotted red). The values of a and b are indicated with black and magenta
dotted lines, respectively.

4 Simulations

We now demonstrate the practical performance of Algorithm 1 for the restoration of images
corrupted with blur and Poisson-Gaussian noise. More specifically, our study aims at illustrating
the usefulness of our approach and at comparing the merits of the various approximations of
the Poisson-Gaussian likelihood, in the context of low-count confocal microscopy images with
fairly low initial signal to noise ratio (SNR).

The considered ground truth images, i.e. x1 of size 190×190, x2 of size 128×128, x3 of size
350 × 350 and x4 of size 256 × 256, are illustrated in Fig. 2(top). The first two images result
from the time series noise identification procedure described in [50] applied to real data acquired
with a macro confocal laser scanning microscope (Leica TCS-LSI). The third and fourth images
are publicly free confocal microscopy images available respectively at http://meyerinst.com/
confocals/ tcs-spe/index.htm and www.gensat.org/ imagenavigator.jsp?imageID=29109 [1]. The
intensities of these original images have been rescaled so as to impose a given pixel value range
[x−, x+], with x− = 0 and x+ ∈ (0,+∞).5 The images are then degraded with a convolution
operator H modeling a spatially invariant blur, and further corrupted with Poisson and zero-
mean additive white Gaussian noise, with standard-deviation σ > 0, according to model (2).
The resulting images are displayed in Fig. 2(bottom).

4.1 Method settings

The restored images are obtained by applying Algorithm 1 to Problem (31), where the defi-
nition of h, (ψr)0≤r≤R and (Vr)1≤r≤R depends on the retained data fidelity and regularization
strategies. More precisely, we present restoration results obtained for a data fidelity term either
derived from the Gaussian likelihood, the Poisson likelihood, or the GAST, EXP, SPoiss, WL2
or (6) functions described in Table 1. For the regularization term, we consider the sum of ιC ,
the indicator function of C = [x−, x+]N with a TV-like prior, defined either as the standard
isotropic TV prior with weight λ > 0, as the NLTV prior with weight λ > 0, or as a hybrid

5In the limit case, problems with unknown x+ result in the standard use of the non-negative orthant.
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x1 (size 190× 190, x+ = 12) x2 (size 128× 128, x+ = 30) x3 (size 350× 350, x+ = 20) x4 (size 256× 256, x+ = 100)

y1 (kernel size = 25× 25, y2 (kernel size = 25× 25, y3 (kernel size = 5× 5, y4 (kernel size = 9× 9,

kernel std = 1.6, σ2 = 9, kernel std = 1.6, σ2 = 12, kernel size = 5, σ2 = 9, kernel std = 0.5, σ2 = 36,

MAE = 61, SNR = 2.2 dB) MAE = 35, SNR = 10.1 dB) MAE = 49, SNR = 7.6 dB) MAE = 26, SNR = 9.4 dB)

Figure 2: Original (top) and degraded (bottom) images with either a truncated Gaussian blur
(y1, y2 and y4) or a uniform blur (y3), and Poisson-Gaussian noise, with Gaussian noise variance
σ2.

penalization being the sum of the Hessian prior from [54] with TV penalty, with respective
weights λH > 0 and λTV > 0. In all our experiments, the regularization weights are tuned
manually so as to minimize the Mean Absolute Error (MAE) between the original image x̄ and
its final estimate x̂. Moreover, the linear operators involved in the NLTV prior are computed
from an initial Wiener filter restoration using code provided by Bresson [13].6.

The Gaussian likelihood, and the GAST, EXP, WL2, (6) functions are Lipschitz differen-
tiable, so that the resulting optimization problem takes the form (31) where h is the considered
data fidelity term, ψ0 = ιC , the indicator function of C = [x−, x+]N , and (ψr)1≤r≤R, (Vr)1≤r≤R
model the TV-like prior. GAST is thus handled in a manner similar to [32], i.e. by taking
advantage of Lipschitz-differentiability properties of the function Φ̃ presented in the first line
of Table 1. In the cases of the non-Lipschitz differentiable SPoiss and Poisson likelihoods, the
optimization problem is written under the form (31) where h ≡ 0, ψ0 is the considered data
fidelity term, ψ1 = ιC , and (ψr)2≤r≤R, (Vr)2≤r≤R model the TV-like prior. Note that, in both
cases, the proximity operators of the involved functions (ψr)0≤r≤R have explicit forms [25].

In order to guarantee the convergence of Algorithm 1, the parameter γ involved in the algo-
rithm is chosen so as to take the maximum possible value satisfying Theorem 3 (iii). Moreover,
in the cases of the Poisson, SPoiss, WL2 and GAST data fidelity terms, a data truncation
is performed as a pre-processing step on the observed images in order to satisfy the required
convexity conditions (see Table 1).

6http://www.cs.cityu.edu.hk/∼xbresson/codes.html



134.2 Restoration results

We start this section with a study, in Table 2, of the influence of the choice of parameter ∆ in
the restoration quality of image x1, when the exact Gaussian-Poisson likelihood (6) is used as
data fidelity term. One can observe that the restoration performance is stable for ∆ ≥ 3. This
setting will be adopted for the remaining experiments.

Tables 3, 4, 5, and 6 present the evaluation scores MAE (Mean Absolute Error), SNR and
SSIM [71] for the initial and restored images using the various data fidelity criteria. Note that
the provided relative MAE values are normalized with a factor 255/x+.

∆ 0.33 0.5 1 2 3 4 5

MAE 10.99 9.30 7.69 7.53 7.53 7.53 7.53

SNR 17.43 18.51 19.73 19.82 19.81 19.81 19.81

SSIM 0.989 0.993 0.996 0.996 0.996 0.996 0.996

Table 2: Influence of ∆ on restoration results of image x̄1 using Hessian-TV prior.

One can observe that the exact model always leads to the best qualitative results. Conversely,
Poisson, WL2 and GAST strategies lead to relatively poor performance. Although Gaussian
and EXP data fidelity terms may be competitive in some situations (see, for instance, Table 3),
the performance gain in terms of SNR between the exact and EXP data fidelity term reaches
up to 0.25 dB (see Table 4). Complementary to these numerical results, Fig. 3 illustrates
the visual differences resulting from various data fidelity terms in the case of image x1. One
can observe that a high number of low intensity components are lost when using a data fidelity
term derived from Poisson statistics. Similarly, the shape of low intensity components is not well
reconstructed when using a WL2 data fidelity term. Most artifacts are corrected when using
the GAST data fidelity term while even better results are obtained with the Gaussian and
SPoiss. Finally, one can hardly notice a visual difference between the EXP approximation and
the exact data fidelity term. Finally, we indicate in the caption of Fig. 3 the computational time
required to reach the algorithm convergence (typically, when the difference in norm between
two consecutive iterates becomes small), when tests are performed on a quad-CPU, 32-core
Intel Xeon L7555 1.8 GHz with 144 GB of RAM running RedHat Enterprise Linux 6.5 using a
Matlab code implementation. One can observe that the best tradeoff between image quality and
convergence time is reached by the EXP model. The computational time difference between
Exact and EXP data fidelity term may result from: i) the relatively high value of Lipschitz
constant and ii) the gradient of the data fidelity which is computationally more expensive. The
latter issue could be alleviated by a better optimized implementation. Finally, one can observe
by inspecting the final MAE relative values and the SNR improvements for the four images
that the hybrid Hessian-TV regularization strategy leads to very good results (see Tables 3, 4,
5, and 6). This can be also validated by a visual inspection of Fig. 4 (bottom) which shows
that this penalization allows a reduction of the undesired staircase effect visible in the TV
result (Fig. 4 (top)). The NLTV regularization strategy should also have reduced the undesired
staircase effect visible in the TV result. However, one can see that this penalization does not
always lead to an improvement with respect to TV or Hessian-TV (Fig. 4 (middle)). This reflects
the fact that the similarity between local image features is essentially lost in the observed images
characterized with a very low SNR, such as y1, so that the NLTV weights cannot be adjusted
properly in that cases.



145 Conclusion

We have shown that Poisson-Gaussian neg-log-likelihood is a convex, Lipschitz-differentiable
function. The provided convexity result is actually more general as it applies to the neg-log
likelihood of a mixture of Generalized-Gaussian and Poisson variables. Building upon these
results, we have proposed a new variational approach for solving data recovery problems in
the presence of Poisson-Gaussian noise. We have developed a practical implementation of an
efficient primal-dual algorithm, which is particularly flexible, i.e. for which a large range of
penalization strategies and data fidelity terms are applicable. Among those we employed, the
hybrid TV-Hessian prior was shown to produce naturally looking, high quality results for low
count microscopy image restoration problems in the presence of Poisson-Gaussian noise. We
have shown the good performance of our restoration algorithm using the exact data fidelity term
and various approximations. In addition, we also conclude that the EXP and SPoiss fidelity
terms provide good results compared to the exact solution. In a future work we would like to
extend our approach to encompass the case of Generalized Gaussian-Poisson noise and to study
the performance of other regularization strategies than those we have considered here. Although
only TV, NLTV and hybrid TV-Hessian priors were analyzed in this work, the versatility of our
approach should allow us to address a variety of applications by making use of various forms
of convex penalty functions. The extension of the proposed method to β 6= 2 would require
to prove that the corresponding neg log likelihood is Lipschitz differentiable, which remains an
open problem.
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Poiss. Gauss. GAST EXP SPoiss WL2 Exact

T
V

λ 0.338 0.218 0.155 0.156 0.153 0.133 0.154

MAE 11.70 8.79 9.76 8.68 8.78 12.90 8.66

SNR 16.73 18.74 17.73 18.80 18.72 16.18 18.81

SSIM 0.758 0.788 0.783 0.790 0.787 0.770 0.790

N
L
T
V

λ 0.243 0.164 0.115 0.114 0.117 0.101 0.138

MAE 12.03 9.25 10.15 9.26 9.31 13.20 9.25

SNR 16.57 18.38 17.50 18.36 18.33 15.92 18.38

SSIM 0.733 0.759 0.755 0.757 0.757 0.739 0.758

T
V
H

λTV 0.016 0.004 0.016 0.012 0.013 0.051 0.008

λH 0.609 0.472 0.293 0.297 0.292 0.119 0.296

MAE 10.89 7.62 8.70 7.53 7.63 12.46 7.53

SNR 17.30 19.72 18.60 19.81 19.72 16.58 19.81

SSIM 0.815 0.845 0.839 0.846 0.844 0.812 0.846

Table 3: Restoration results for image x1

Poiss. Gauss. GAST EXP SPoiss WL2 Exact

T
V

λ 0.164 0.197 0.093 0.096 0.095 0.099 0.093

MAE 10.71 9.42 9.73 9.49 9.50 10.05 9.14

SNR 20.21 20.79 20.55 20.79 20.79 20.57 21.15

SSIM 0.814 0.859 0.858 0.858 0.858 0.846 0.864

N
L
T
V

λ 0.105 0.121 0.060 0.055 0.059 0.054 0.052

MAE 9.60 8.47 8.75 8.53 8.56 9.22 8.47

SNR 21.14 21.60 21.39 21.61 21.61 21.25 21.72

SSIM 0.839 0.878 0.875 0.875 0.874 0.864 0.875

T
V
H

λTV 0.043 0.075 0.027 0.031 0.030 0.037 0.031

λH 0.148 0.136 0.070 0.072 0.070 0.059 0.070

MAE 8.99 7.93 8.18 7.92 7.93 8.70 7.90

SNR 21.09 21.54 21.30 21.59 21.60 21.25 21.61

SSIM 0.861 0.899 0.899 0.899 0.899 0.887 0.900

Table 4: Restoration results for image x2
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Poiss. Gauss. GAST EXP SPoiss WL2 Exact

T
V

λ 0.127 0.124 0.062 0.062 0.062 0.058 0.061

MAE 22.73 22.87 22.73 22.42 22.44 22.91 22.39

SNR 13.68 13.69 13.66 13.76 13.75 13.63 13.77

SSIM 0.929 0.930 0.930 0.931 0.931 0.928 0.931

N
L
T
V

λ 0.067 0.066 0.032 0.032 0.032 0.029 0.032

MAE 21.77 21.85 21.69 21.54 21.53 22.19 21.51

SNR 14.06 14.05 14.03 14.10 14.11 13.96 14.12

SSIM 0.934 0.936 0.936 0.936 0.936 0.934 0.937

T
V
H

λTV 0.041 0.052 0.028 0.029 0.028 0.027 0.029

λH 0.050 0.039 0.018 0.018 0.017 0.017 0.017

MAE 21.94 21.99 21.95 21.68 21.68 22.11 21.65

SNR 14.09 14.09 14.06 14.15 14.15 14.02 14.16

SSIM 0.935 0.937 0.936 0.937 0.937 0.935 0.937

Table 5: Restoration results for image x3

Poiss. Gauss. GAST EXP SPoiss WL2 Exact

T
V

λ 0.299 0.116 0.078 0.078 0.078 0.075 0.077

MAE 13.55 11.89 11.79 11.69 11.73 11.80 11.69

SNR 14.41 15.42 15.39 15.48 15.46 15.49 15.49

SSIM 0.724 0.759 0.762 0.766 0.764 0.767 0.766

N
L
T
V

λ 0.301 0.118 0.078 0.077 0.077 0.074 0.076

MAE 12.28 12.21 11.79 11.77 11.78 11.91 11.75

SNR 15.10 15.16 15.40 15.44 15.45 15.43 15.45

SSIM 0.742 0.742 0.759 0.759 0.758 0.760 0.759

T
V
H

λTV 0.050 0.037 0.052 0.030 0.046 0.046 0.027

λH 0.127 0.054 0.052 0.034 0.027 0.020 0.030

MAE 11.97 11.33 11.44 11.29 11.30 11.45 11.29

SNR 15.24 15.76 15.64 15.77 15.79 15.73 15.82

SSIM 0.760 0.775 0.768 0.782 0.778 0.779 0.781

Table 6: Restoration results for image x4
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x̂1 (Poisson fidelity, MAE x̂1 (Gaussian fidelity, MAE x̂1 (GAST fidelity, MAE x̂1 (EXP fidelity, MAE

= 10.89, SNR = 17.30 dB = 7.62, SNR = 19.72 dB = 8.70, SNR = 18.60 dB = 7.53, SNR = 19.81 dB

NbIt = 4500, t = 284 s ) NbIt = 2000, t = 122 s ) NbIt = 2000, t = 132 s) NbIt = 3000, t = 286 s)

x̂1 (SPoiss fidelity, MAE x̂1 (WL2 fidelity, MAE x̂1 (Exact fidelity, MAE

= 7.63, SNR = 19.72 dB = 12.46, SNR = 16.58 dB = 7.53, SNR = 19.81 dB

NbIt = 9000, t = 564 s) NbIt = 2000, t = 132 s) NbIt = 5500, t = 983 s)

Figure 3: Restoration results of image x1 for TV+Hessian regularization strategy and several
choices for the data fidelity term.

x̂1 (TV prior, MAE = 8.66, x̂2 (TV prior, MAE = 9.14, x̂3 (TV prior, MAE = 22.39, x̂4 (TV prior, MAE = 11.69,

SNR = 18.81 dB) SNR = 21.15 dB) SNR = 13.77 dB) SNR = 15.49 dB)

x̂1 (NLTV prior, MAE = x̂2 (NLTV prior, MAE = x̂3 (NLTV prior, MAE = x̂4 (NLTV prior, MAE =

9.25, SNR = 18.38 dB) 8.47, SNR = 21.72 dB) 21.51, SNR = 14.12 dB) 11.75, SNR = 15.45 dB)

x̂1 (TVH prior, MAE = x̂2 (TVH prior, MAE = x̂3 (TVH prior, MAE = x̂4 (TVH prior, MAE =

7.53, SNR = 19.81 dB) 7.91, SNR = 21.61 dB) 21.65, SNR = 14.16 dB) 11.29, SNR = 15.82 dB)

Figure 4: Restoration results of images x1, x2, x3 and x4 using exact Gaussian-Poisson data
fidelity term associated with either TV (top), NLTV (middle) or hybrid TV+Hessian (bottom)
regularization strategy.


