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Minimizing the number of late jobs on parallel machines with
α time windows

Vincent Jeauneau · Philippe Chrétienne

Abstract We consider the problem of minimization the number of late jobs on parallel
machines in presence of α time windows (di = ri + pi + α for all jobs). We prove the NP-
completeness of this problem even when m = 2 and di = d for all jobs. We develop a lower
bound by solving a minimum cost flow problem associated to a relaxation of the problem.
A set of heuristics are presented to minimize the number of late jobs based on a job-focused
and machine-focused approach. A simulation experiment is realized to test the effectiveness
of heuristics regarding the lower bound. This simulation has been computed for 1, 2, 5, 10, 15
and 20 machines and it shows that the best heuristic has an average deviation to the bound
of 4.88%, 6.35%, 7.38%, 7.5%, 7.87% and 7.64% respectively.

Keywords Parallel machines scheduling, number of late jobs, α time windows, lower
bound

1 Introduction

Given a set of jobs J = J1, ..., Jn where each job has a release date ri, a due date di,
and a processing time pi. Given a set of parallel identical machines M = M1, ...,Mm. An
important scheduling problem is to determine a schedule that minimizes the number of late
jobs (P |ri|

∑
Ui). A late job is defined as a job which finishes its processing later than its

due date. This criterion is important since, in many case, the cost penalty incurred by a late
job depends by the fact that it is late and not how much it is. This problem is NP-hard even
when all jobs have the same release date and the number of machines is two [2] or the due
dates are common [7].

In this paper, we consider a special case of the general parallel machines scheduling
problem in which all jobs satisfy di = ri+ pi+α with α a positive constant of the problem.
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Since each job cannot delay its starting time by more than α, we call our problem the paral-
lel machines scheduling problem with α time windows. Following the standard three-field
notation proposed by Graham et al. [4], this problem is noted P |di = ri + pi + α|

∑
Ui.

For the one-machine case, Jeauneau and Chrétienne [6] extend Garey et al. works [3] and
develop a polynomial time algorithm to minimize the number of late jobs optimally.

The rest of the paper is organized as follow. In Section 2, we prove the NP-Completeness
of the problem. Section 3, presents a method to obtain a lower bound. Section 4 are dedi-
cated of the development of some heuristics. Experimental results are analyzed in Section
5. Finally, Section 6 summarizes the paper.

2 On the complexity of the parallel machines scheduling problem with α time
windows

In this section, we show that the scheduling problem of minimizing the number of late jobs
on parallel machines in which all jobs satisfy di = ri + pi + α is NP-hard. This result
come from a reduction of the NP-Hard problem PARTITION [8] to our problem. Consider
the PARTITION problem, in which we are given a finite set A of positive integers having an
overall sum 2b and are asked whether there exists a subset of A that sums exactly to b ?

From an instance of PARTITION, we generate the following instance of the parallel
machines scheduling problem with α time windows:

– m = 2,
– α = b,
– Ji such as ri = 0, pi = ai, di = pi + b for i = 1, ..., n,
– Jn+1 such as rn+1 = 0, pn+1 = b+ 1, dn+1 = 2b+ 1,
– Jn+2 such as rn+2 = 0, pn+2 = b+ 1, dn+2 = 2b+ 1.

if PARTITION has a solution
(
A

′
, A

′′)
, then there exists a schedule where the jobs

of A
′

are scheduled on the first machine and the jobs of A
′′

are scheduled on the second
machine in the interval [0, b]. Then, the two additional jobs {Jn+1, Jn+2} are scheduled in
the interval [b, 2b+ 1], one on the first machine, the other on the second (Fig. 1). If the
parallel machines scheduling problem has a solution, then the jobs {Jn+1, Jn+2} cannot
be scheduled on the same machine. Thus, one is scheduled on the first machine and the
other on the second machine. Moreover, both can be scheduled in the interval [b, 2b+ 1],
therefore the jobs scheduled in the interval [0, b] form a solution of PARTITION problem.
We prove that the parallel machines scheduling problem with α time windows is NP-hard
even when the number of machines is two and all jobs have the same release date. It should
be noted that a symmetric approach (fix the di-values instead of the ri-values) proves the
NP-Completeness of this problem even when all jobs have the same due date.

3 Lower Bound

In section 2, we have proved the NP-Completeness of the problem 1|di = ri + pi +

α|
∑
Ui. We will present some heuristics to solve it in section 4. In order to compare the

results obtained from heuristics, we develop a lower bound in this section. To compute this
lower bound, we first relax the constraint of non-preemption. This relaxed problem is noted
P |pmtn; di = ri + pi + α|

∑
Ui and every optimal solutions of this problem are less or

equal than optimal solutions of P |di = ri + pi + α|
∑
Ui.



Fig. 1: Scheduling of jobs {J1, ..., Jn+2}

Then we associate a minimum cost flow problem to the problem P |pmtn; di = ri +

pi + α|
∑
Ui such as solving the minimum cost flow problem leads to a lower bound for

the problem P |pmtn; di = ri + pi + α|
∑
Ui which is a lower for the problem P |di =

ri + pi + α|
∑
Ui too. Baker [1] solves the problem P |pmtn; ri|Lmax optimally with a

similarly approach.

Let J = {J1, ..., Jn} be an instance of the problem P |pmtr; di = ri + pi + α|
∑
Ui

order as d1 ≤ ... ≤ dn. We define a minimum cost flow problem as follow:

– Let t1 < t2 < ... < tr be the ordered sequence of all different ri-values and di-values.
– Let IK := [tk, tk+1] the intervals of length lk = tk+1 − tk for k = 1, ..., r − 1.
– A job vertex is associated to each job Ji and an interval vertex to each interval Ik.
– Let s a source and t a sink.
– There is an arc from s to each job vertex Ji of capacity pi and cost 0.
– There is an arc from each interval vertex Ik to t of capacity m× lk and cost 0.
– There exists an arc from Ji to Ik of capacity lk and cost 0 iff job Ji can be processed in
Ik (i.e ri ≤ tk and tk+1 ≤ di).

- There is an arc from each job vertex Ji to t of capacity pi and cost 1/pi.

Fig. 2 illustrate the graph G (V,E) of the minimum cost flow problem defined above,
where V is the set of vertices andE the set of arcs. Each arc is represented by a couple (x, y)

where x is the capacity and y the unary cost of the arc.

A solution of maximum flow for such a graph G (V,E) has a flow equal to
∑n

i=1 pi.
Indeed, for each job vertex Ji, there exists an arc (s, Ji) with a capacity pi and another arc
(Ji, t) with the same capacity. Since there only exits arcs from s to jobs vertices Ji, for
i = 1, 2, ..., n, then we have a maximum flow solution in which the flow of arcs (s, Ji) and
(Ji, t) are equal to pi.

For each optimal solution of the minimum cost flow problem, we can build a schedule
for the problem P |pmtr; di = ri + pi + α|

∑
Ui as follow: for each interval vertex Ik, let

xik denote the flow of arc (Ji, Ik), the job Ji executes a part of its processing time equal to
xik in the interval of times [tk, tk+1], for i = 1, 2, ..., n. Then, let θi denote the flow of arc
(Ji, t), the job Ji executes, a part of its processing equal to θi, at the end of the schedule of
an arbitrary machine, for i = 1, 2, ..., n.



Fig. 2: Graph G (V,E) of the minimum cost flow problem

The graph G (V,E) is defined such as we have:

xik ≤ lj for i = 1, 2, ..., n for k = 1, 2, ..., r − 1 (1)
n∑

i=1

xik ≤ m× lk for k = 1, 2, ..., r − 1 (2)

And from optimality of the minimum cost flow solution, we have:

r1∑
k=1

xik + θi = pi for i = 1, 2, ..., n (3)

From (1), we know that for each job vertex Ji and for each interval vertex Ik, the flow
xik is less or equal than lk. Since lk = tk+1−tk, it implies that each job Ji cannot executes a
part of its processing time greater than the length of the interval of time on which this part is
executed. From (2), we know that for each interval vertex Ik we have

∑n
i=1 xik ≤ m× lk.

Therefore, the parts of processing times of all jobs Ji to be executed in [tk, tk+1] have a
total duration less or equal to m × lk. Since we dispose of m machines, these parts can be
executed without overlapping whit another interval of time. From (3), we know that the flow
of each job vertex Ji is exactly equal to pi. Therefore, each job Ji are fully executed in the
schedule.

We deduce that our schedule is a legal schedule for the problem P |pmtn; di = ri+pi+

α|
∑
Ui and we have the following property:



Property 1 An optimal solution of the minimum cost flow problem on the graph G (V,E)

is a lower bound of the problem P |di = ri + pi + α|
∑
Ui.

Proof Let Π an optimal schedule for an instance of the problem P |di = ri + pi + α|
∑
Ui.

Let pij denote the jth unity of pi and cij its completion time in Π . We build a maximal flow
f for the graph G (V,E), associated to the problem instance, as follow:

- for each arc (s, Ji), there is a flow pi;
- for each job Ji, if cij ∈ [ri, di] then increase by one the flow of arcs (Ji, Ik) and (Ik, t)

such as cij ∈ Ik, otherwise increase by one the flow of (Ji, t).

The cost c of f is equal to
∑n

i=1 yi × 1/pi, where yi is the part of the job Ji which is
not legally scheduled in Π , i.e yi =

∑pi

j=1 pij such as cij 6∈ [ri, di]. Then, for each job Ji,
we have yi ≤ pi which imply yi × 1/pi ≤ 1. Moreover, when Ui = 0, the job Ji is not late
scheduled, therefore cij ∈ [ri, di] for j = 1, 2, ..., pi and yi = 0. Since yi 6= 0 iff Ui 6= 0, we
deduce that

∑n
i=1 yi × 1/pi ≤

∑n
i=1 Ui.

From the definition of an optimal solution for the minimum cost flow problem, we have
c∗ ≤ c where c∗ is the minimum cost of an optimal solution of maximum flow on the
graph G (V,E). We deduce that c∗ ≤

∑n
i=1 Ui and conclude that an optimal solution of

the minimum cost flow problem on the graph G (V,E) is a lower bound of the problem
P |di = ri + pi + α|

∑
Ui.

Orlin [10] proposes a polynomial time algorithm for the minimum cost flow problem.
This algorithm runs in O (V log V (E + V log V )). There is exactly n jobs vertices and at
most 2n intervals vertices in G (V,E), therefore the total number of vertices is in O (n).
There is n arcs between s and the jobs vertices, n arcs between jobs vertices and t, at most
2n between intervals vertices and t, and at most n × 2n arcs between jobs vertices and
intervals vertices. Thus the total number of arcs is in O

(
n2
)

. Therefore, the lower bound

can be computed in O
(
n3 log2 (n)

)
.

We propose an amelioration of this lower bound by reducing the processing time of some
jobs. Indeed, the value of the bound depends on the flow θi of each arc (Ji, t). The unary
cost of these arcs is equal to 1/pi. Therefore, if we are able to reduce the processing time of
a job Ji without change the flow θi, then the value of the lower bound will be increased.

We consider each interval vertex Ik, for k increasing for 1 to r−1. For each such interval
vertex, we suppose that each job vertex Ji with an arc (Ji, Ik) has a flow exactly equal to lk
(this assumption is a relaxation on the capacity of arc (Ik, t)). Fixed these flows in G (v,E)

is equivalent to build the graph G′
(
V ′, E′

)
where V ′ = V −Ik and E′ = E−I−k −I

+
k with

I−k and I+k the inputs arcs and outputs arcs respectively. The capacity of arcs (s, Ti) and
(Ti, t) for each job vertex Ji with an arc (Ji, Ik) in G (V,E) is reduced by lk in G′

(
V ′, E′

)
.

For the graph G′
(
V ′, E′

)
, the cost of arcs (Ji, t) can be updated to the reverse of their

capacities without violate the integrities constraints, i.e the flow of each job vertex Ji cannot
increase the cost by more than one. Let c′∗ and c∗ denote the cost of the minimum cost
flow solution for G′

(
V ′, E′

)
and G (V,E) respectively. If c′∗ > c∗, then the quality of the

solution for the graph G′
(
V ′, E′

)
is better than the one for the graph G (V,E) and the next

intervals vertices Ik+1, Ik+2, ..., Ir−1 are considered on G′
(
V ′, E′

)
otherwise continue on

the procedure on graph G (V,E).
Finally, the upper integer part dc∗e can be used as a lower bound. Indeed, our aim is to

minimize the number of late jobs. This objective is integer since Ui = 1 if Ji is late and
Ui = 0 otherwise. Therefore the smallest integer which is greater than c∗ define a lower
bound, noted LB. This procedure solves a minimum cost flow problem for each interval



vertex Ik. There is no more than 2n intervals vertices, so this lower bound can be computed
in O

(
n4 log2 (n)

)
.

It should be noted that this lower bound is independent of the structure of jobs and can
be used for the general problem P |ri|

∑
Ui.

4 Heuristic approaches

In this section, we use two heuristic approaches to solve the m-machines scheduling prob-
lem with α time windows. These heuristic approaches are called job-focused and machine-
focused. In the first approach, the jobs are considered separately and for each job we have to
determine which machine will process it whereas in the second approach it is the machines
which are considered separately.

4.1 Job-focused approach

The job-focused approach considers jobs one by one, while it considers all m identical
machines simultaneously. This approach involves three major decision steps:

– A job section rule to select the current job.
– A machine selection rule to select which machine has to assign the current selected job

(the first job of the ordered list).
– An interchanging/removing rule which removes or interchanges the current job, with an

already assigned job, when it is late no matter which machine is selected.

When the current job is interchanged with an already assigned job, the already assigned
job takes the place of the current job in the ordered list because maybe it can be processed
on an other machine. To ensure that the algorithm finishes, it should have no cycle between
interchanged jobs during this step. So, when a job is interchanging with another it cannot
be interchanged again while we are interchanging jobs. The schedule of assigned jobs on
a machine is determined from Jeauneau and Chrétienne works [6] which propose an al-
gorithm to solve the one machine scheduling problem with α time windows optimally in
O
(
n3
)

. We call this algorithm ATW (Alpha Time Windows). In their works, the schedule
is decomposed into blocks B = {B1, ..., Bq} such as Bi is a maximal sequence of consecu-
tive jobs (no intermediate idle time). The following notation is used to define the heuristics
procedures:

– mk The machine k.
– U The set of unscheduled jobs.
– R The set of rejected jobs.
– I The set of interchanged jobs.
– σk The set of jobs assigned on mk.
– Ci The completion time of the block containing the job Ji.
– Ck

i The completion time of the block containing the job Ji for the schedule of jobs
σk ∪ Ji

Fig. 4 details the heuristic H1E. Then, based on the first major decision step (job se-
lection rule), we introduce H1L which uses LPT ( longest processing time) rules to select
the current job. For the second decision step (machine selection), Jeauneau and Chrétienne



[6] shown that there is a strong interaction between jobs of the same block, so we choice to
compare the completion time of the block containing the current job for the machine selec-
tion. Moreover, select the machine k with the greatest Ck

c has the advantage to load at most
as possible an interval of time of a machine and provide more space of the others machines
on this interval. Hence, this strategy is most able to handle jobs having a common part of
their time windows. In the three decision step, when the current job cannot be assigned to a
machine without cause tardiness of a job, we choice to interchange the current job with the
job which will release the most space.

Step 1. Let R = ∅ and I = ∅. Let σk = ∅, for k = 1, ...,m. Place the job Ji in U for i = 1, ..., n.
Step 2. Select a job by EDD rule (earliest due date) from U , call it Jc (the current job).
Step 3. If adding the job Jc of the set σk of at least one machine k gives a feasible set of jobs (all jobs can

be scheduled before their due dates in the sequence obtained byATW (σk ∪ Jc)), then remove all jobs
of I and go to Step 5.

Step 4. Let Jxk the late job obtained by ATW (σk ∪ Jc) for the machine k. Let Jxy the job such as
Cxy −C

y
c = max1≤k≤m

{
Cxk − Ck

c |Jxk 6∈ I
}

. If the job Jxy is the same as the job Jc then put it
in R, remove all jobs of I and go to Step 6. Otherwise remove the job Jxy from σy , put it in U and put
the job Jc in I .

Step 5. Remove the job Jc from U and put it in σb, where Cb
c = max1≤k≤m

{
Ck

c

}
and σb ∪ Jc is

feasible.
Step 6. If U = ∅, then append the jobs of R in any set σk , and stop. Otherwise, go to Step 2.

Fig. 3: Heuristic H1E

Each job-focused heuristic run in O
(
mn4

)
time. Indeed, there is n jobs to schedule.

Each job call m times the ATW algorithm. As this algorithm run in O
(
n3
)

time, we have

an overall complexity for the job-focused heuristics in O
(
mn4

)
.

4.2 Machine-focused approach

The machine-focused approach is the opposite of the job-focused approach. It considers the
machine one by one, while it considers the set of unscheduled jobs simultaneously. Indeed,
this approach solves m times the one machine scheduling problem. The first one machine
scheduling problem involves all the jobs, whereas the second machine scheduling problem
is solved with the set of not yet scheduled jobs (i.e the set of jobs scheduled on the first
machine are not considered), etc. This process is repeated until there is no more machine
or no more unscheduled jobs. ATW algorithm is used to solve each of the m one machine
scheduling problems. Among all optimum solutions, this algorithm determine the one with
minimum makespan (the completion time of the scheduling is minimized). So, for each
machine we know that there is no schedule which process more early jobs, but it may exist
some schedules which process the same number of jobs with a higher load of the machine.
Hence, after running ATW , we try to interchange some jobs in order to increase the load
of the machine. Thus, after schedule a set of jobs on a machine, we try to interchange each
scheduled job with each not scheduled job having a longer processing time and we test
the feasibility of this interchanging with GTW algorithm (algorithm of Garey, Tarjan and
Wilfong [3] which determines if a set of job is feasible and, if yes, gives a solution with
minimum makespan). We obtain the heuristic H2 detailed in Fig. 4.



Step 1. Let k = 1 (The first machine). Let R = ∅ and σk = ∅, for k = 1, ...,m. Place the job Ji in U for
i = 1, ..., n.

Step 2. Set σk = ATW (U).
Step 3. If the jobs in σk are all early, then go to Step 5.
Step 4. Remove all late jobs from σk and put them in U .
Step 5. If k < m and U 6= ∅ then

Step 5.1. Order the jobs in U by LPT rule and let i = 1 the index of the first job in this reordered set.
Step 5.2. Let σ

′
k the set of jobs of σk ordered by SPT rule and let j = 1 the index of the first job in this

set.
Step 5.3. If GTW

(
σ

′
k −

{
σ

′
k [j]

}
+ {U [i]}

)
is feasible, then add U [i] in σk and remove it from

U , remove σ
′
k [j] from σk and insert it in U with respect to LPT order, and go to Step 5.2.

Step 5.4. If j < |σ′
k|, then set j = j + 1 and go to Step 5.3.

Step 5.4. If i < |U |, then set i = i+ 1 and go to Step 5.2.
Step 5.5. Set k = k + 1 and go to Step 2.

Step 6. Append the jobs in U to any machines and stop.

Fig. 4: Heuristic H2

The heuristic H2 tries to minimize the number of late jobs machine by machine. By
increasing the load on machine k, the next machine k+1 will be able to process more early
jobs. As the interchanging of jobs is used to increase the potential of processing more early
jobs for the next machine, it is not relevant to do it for the machine m (the last machine).
Therefore, we not apply it on the last machine. Moreover, when we interchange jobs, we
increase the load of the machine. So, it is not necessary to retry to interchange jobs which
have a longest processing time than the current interchanged job (if these jobs could have
been interchanged, it will be done during their interchanging steps). Therefore, in Step 5.3
of H2, we not restart the interchanging rule from Step 5.1.

The machine-focused heuristic call m times the ATW algorithm to initiate the set of
scheduled jobs on the current machine. Then, we apply the interchanging rule to this ma-
chine, it call at most n2 times the GTW algorithm. As GTW runs in at most (n logn) steps,
so H2 has an overall complexity in O

(
mn3 logn

)
time.

5 Experimental results

Table 1: Results by machine machine level

m H1E H1L H2 H3 LB Avg. Error (%)

1 4.3 4.59 4.3 4.3 4.1 4.88
2 8.04 8.26 7.76 7.7 7.24 6.35
5 19.08 18.86 17.83 17.76 16.54 7.38
10 37.92 36.63 34.96 34.85 32.42 7.5
15 55.39 52.84 50.68 50.52 46.83 7.87
20 74.66 70.71 68.16 67.89 63.07 7.64

We develop a simulation experiment and the results are presented in this section. The
number of machines is specified at six levels: 1, 2, 5, 10, 15 and 20 whereas the number of
jobs is defined by the ration n/m. This ratio is set at four levels: 5, 10, 15 and 20. Processing



times are assumed to be U (1, 99). Release dates follow U (1, np/ (mq)), where p is the
mean processing time, and q represents the level of congestion. The values of q are set at
eight levels: 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 and 5.0. Ho and Chang [5] shown that this
congestion indicator is useful in shop congestion. The shop congestion increases with q and
the number of late jobs will be higher. The positive constant α of the problem is randomly
computed from an uniform distribution (1, np/ (mq)). As each job has to satisfy the relation
di = ri+pi+α, we calculate the due date di of each job from others parameters. We generate
50 instances of each problem set. Therefore, the total number of problems generated is
9,600. The heuristics H1E, H1L, H2 and the lower bound LB are implemented in JAVA in
an Intel Core i7 2,4 GHz processor.

Table 2: Results by ratio n/m level

m n/m H1E H1L H2 H3 LB Avg. Error (%)

1 5 1.87 2.07 1.87 1.87 1.79 4.47
10 3.54 3.82 3.54 3.54 3.36 5.36
15 5.1 5.43 5.1 5.1 4.87 4.72
20 6.68 7.05 6.68 6.68 6.4 4.37

2 5 3.26 3.49 3.1 3.07 2.76 11.23
10 6.54 6.75 6.27 6.22 5.8 7.24
15 9.51 9.72 9.17 9.11 8.6 5.93
20 12.85 13.08 12.49 12.4 11.8 5.08

5 5 7.6 7.86 6.93 6.87 5.71 20.31
10 15.16 14.93 13.99 13.9 12.8 8.59
15 23.41 23.07 21.98 21.9 20.59 6.36
20 30.14 29.58 28.44 28.35 27.06 4.76

10 5 14.61 14.3 12.82 12.72 10.32 23.25
10 30.50 29.33 27.65 27.56 25.21 9.32
15 44.74 42.95 41.23 41.1 38.88 5.71
20 61.84 59.93 58.15 58 55.28 4.90

15 5 21.39 20.19 18.22 18.1 14.31 26.49
10 44.42 42.1 39.94 39.79 36.32 9.55
15 67.09 64.17 61.95 61.76 57.99 6.5
20 88.66 84.9 82.61 82.43 78.71 4.73

20 5 28.24 26.26 23.92 23.71 18.86 25.72
10 59.38 55.43 52.95 52.7 48.11 9.54
15 91.15 86.60 83.93 83.64 78.7 6.28
20 119.89 114.53 111.83 111.49 106.59 4.6

The results are given according to the number of machines (Table 1), and then detailed
according the ratio jobs/machines (Table 2) and the shop congestion level (Table 3). For each
problem, the value of the lower bound LB is computed such as the values of heuristics. An
additional heuristic H3 is proposed which takes at each times the best solution of H1E, H1L
and H2. We also calculate the average deviation of H3 to LB, i.e (H3/LB − 1)× 100%.

These results show that heuristic H2 perform better than H1E and H1L and that H1L

perform better than H1E for at most every cases.
Table 1 reveals that the average deviation of H3 to LB is equal to 4.88%, 6.35%, 7.38%,

7.5%, 7.87% and 7.64% for 1, 2, 5, 10, 15 and 20 machines respectively. It is interesting to
note that the average of H3 to LB stays stable when the number of machines increases.
Indeed, for more than 2 machines the average deviation is around 7.5%. Moreover, when
the number of machine is 1, heuristics H1E and H2 solve the problem optimally ([6]).
Therefore, in this case, we know that the lower bound LB has a deviation of 4.88% to



Table 3: Results by shop congestion level

m q H1E H1L H2 H3 LB Avg. Error (%)

1 1.5 1.36 1.48 1.36 1.36 1.19 14.28
2.0 2.59 2.79 2.59 2.59 2.39 8.37
2.5 3.59 3.87 3.59 3.59 3.39 5.9
3.0 4.38 4.7 4.38 4.38 4.18 4.78
3.5 4.92 5.25 4.92 4.92 4.74 3.8
4.0 5.47 5.83 5.47 5.47 5.28 3.6
4.5 5.87 6.24 5.87 5.87 5.67 3.53
5.0 6.2 6.58 6.2 6.2 6.01 3.16

2 1.5 2.54 2.49 2.29 2.2 1.78 23.59
2.0 4.01 3.88 3.65 3.54 3.18 11.32
2.5 6.53 6.67 6.26 6.19 5.74 7.84
3.0 8.11 8.41 7.77 7.73 7.28 6.18
3.5 9.44 9.76 9.19 9.19 8.69 5.75
4.0 10.38 10.73 10.12 10.07 9.57 5.22
4.5 11.15 11.57 10.84 10.81 10.34 4.54
5.0 12.16 12.59 11.95 11.91 11.34 5.03

5 1.5 4.41 3.73 3.63 3.43 2.63 30.42
2.0 10.93 10.02 9.5 9.33 7.96 17.21
2.5 15.43 15.03 14.25 14.15 12.93 9.43
3.0 19.05 18.82 17.78 17.74 16.55 7.19
3.5 22.29 22.21 20.99 20.94 19.69 6.35
4.0 24.69 24.83 23.41 23.37 22.1 5.75
4.5 26.81 26.9 25.35 25.35 24.07 5.32
5.0 29.01 29.34 27.74 27.73 26.4 5.04

10 1.5 8.02 6.39 6.50 6.02 4.54 32.6
2.0 19.9 17.16 16.58 16.32 14.09 15.83
2.5 30.89 29.03 27.8 27.7 25.48 8.71
3.0 38.07 36.68 34.72 34.71 32.44 7
3.5 44.95 43.67 41.47 41.43 39 6.23
4.0 50.41 49.77 47.31 47.29 44.67 5.86
4.5 53.56 52.67 50.32 50.3 47.47 5.96
5.0 57.96 57.62 55 54.98 51.68 6.35

15 1.5 11.31 8.18 8.54 7.92 5.92 33.78
2.0 27.50 22.81 22.49 22.02 19.05 15.59
2.5 44.07 40.81 39.245 39.13 35.91 8.97
3.0 55.37 52.87 50.42 50.37 47.29 6.51
3.5 64.905 62.81 59.93 59.9 56.19 6.6
4.0 73.81 72.03 68.77 68.76 64.5 6.6
4.5 81.03 79.66 76.16 76.15 71.11 7.08
5.0 85.1 83.56 79.89 79.89 74.68 6.98

20 1.5 15.44 10.94 11.50 10.69 8.32 28.49
2.0 37.25 30.3 30.76 29.65 26.17 13.3
2.5 60.65 56 54.27 54.12 49.54 9.24
3.0 74.44 70.24 67.41 67.38 63.11 6.77
3.5 90.14 86.84 83.12 83.1 78.19 6.28
4.0 99.05 96.18 91.85 91.84 86.42 6.27
4.5 107 104.47 100.14 100.13 93.83 6.71
5.0 113.34 110.69 106.2 106.18 98.90 7.36

optimum. By assumption on the fact that the quality of the lower bound not increases when
the number of machines increases, then H has a deviation ≈ 3% to optimum.

Table 2 give the results according the number of machines which are detailed for th ratio
n/m. Expected when the ratio n/m = 5, results show that the average deviation ofH to LB
is < 10%. Moreover, if the quality of the bound not increases when the number of machines



increases, then H has a deviation to optimum of ≈ 4.5%, ≈ 2% and ≈ 1% for a ratio n/m
equal to 10, 15 and 20 respectively. For n/m = 5, results show a degradation of the average
deviation when the number of machines increases. Indeed, the average deviation of H to
LB is equal to 4.47%, 11.23%, 20.31%, 23.25%, 26.49% and 25.72% for 1, 2, 5, 10, 15 and
20 machines. This degradation can be explained by: the degradation of the quality of LB
when the number of machines increases for a small n/m ratio, the medium performance of
heuristics when n/m is small. Globally, table 2 reveals the average deviation of H to LB
decreases when the number of jobs increases.

Table 3 gives the results according the number of machines which are detailed for the
shop congestion level. When q ≥ 2.5, results show that the average deviation of H to LB is
lesser than 10%. For these shop congestion levels, the gap between results of 1 machine case
and 20 machines case is≈ 4%. Therefore, if the quality quality ofLB not increases when the
number of machines increases, then we have an average deviation of H to optimum around
4%. For shop congestion levels 1.5 and 2.0, the average deviation of H to LB increases
when the number of machines increases to reach a threshold of ≈ 34% and ≈ 17%. This
threshold is obtained for 15 and 5 machines respectively and then the degradation decreases
when the number of machines increases. It should be noted that, for the one machine case,
the quality of LB is yet medium which let assume that degradation of the average deviation
is due to the poor quality of LB when the shop congestion level is low.

Table 4: Average CPU time

m CPU time of H3 (s) CPU time of LB (s)

1 0.001 0.002
2 0.003 0.024
5 0.015 0.768
10 0.069 8.114
15 0.165 37.99
20 0.308 99.08

The average CPU time needed to compute LB and H3 is presented in table 4. These
results show that the average time to compute the heuristic H3 is very low although the worth
case complexity is in O

(
mn4

)
. For example, the mean time needed to solve an instance of

20 machines and 400 jobs is 754 milliseconds. When we consider LB, results reveals that the
average time needed to compute this lower bound increases very quickly. For example, when
the number of machines is 2, LB is computed has an average CPU time of 24 milliseconds
whereas when the number of machines is 20, 99 seconds are needed in average.

6 Conclusions

We have studied the m parallel machines scheduling problem with α time windows in order
to minimize the number of late jobs. We have proved the NP-completeness of this problem
even when the number of machines is two, when all jobs have the same release date or
when all jobs have the same due date. We have developed a lower bound for this problem
which can also be used for the general parallel machines scheduling problem. To solve the
problem, we have proposed a set of heuristics. A simulation experiment is conducted to
evaluate the effectiveness of these heuristics. The results show that the average deviation to



the lower bound is equal to 4.88%, 6.35%, 7.38%, 7.5%, 7.87% and 7.64% for 1, 2, 5, 10, 15
and 20 machines respectively. These reveals that qualities of the lower bound and heuristics
are independent of the numbers of machines and globally the average deviation to the lower
bound is ≈ 7.5%. Moreover, for the one machine, heuristics solve the problem optimally.
Therefore, if the quality of the lower bound not increases when the number of machines
increases, then our solution has an average deviation to optimum around 3%. Since the
average CPU time needed to solve problems with 20 machines is around 300 milliseconds,
our approach is able to handle large problems in a real time environment.
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