Vincent Jeauneau
email: vincent.jeauneau@thalesgroup.com

Philippe Chrétienne
email: philippe.chretienne@lip6.fr

Minimizing the number of late jobs on parallel machines with α time windows

Keywords: Parallel machines scheduling, number of late jobs, α time windows, lower bound

We consider the problem of minimization the number of late jobs on parallel machines in presence of α time windows (d i = r i + p i + α for all jobs). We prove the NPcompleteness of this problem even when m = 2 and d i = d for all jobs. We develop a lower bound by solving a minimum cost flow problem associated to a relaxation of the problem. A set of heuristics are presented to minimize the number of late jobs based on a job-focused and machine-focused approach. A simulation experiment is realized to test the effectiveness of heuristics regarding the lower bound. This simulation has been computed for 1, 2, 5, 10, 15 and 20 machines and it shows that the best heuristic has an average deviation to the bound of 4.88%, 6.35%, 7.38%, 7.5%, 7.87% and 7.64% respectively.

Introduction

Given a set of jobs J = J 1 , ..., Jn where each job has a release date r i , a due date d i , and a processing time p i . Given a set of parallel identical machines M = M 1 , ..., Mm. An important scheduling problem is to determine a schedule that minimizes the number of late jobs (P |r i | U i). A late job is defined as a job which finishes its processing later than its due date. This criterion is important since, in many case, the cost penalty incurred by a late job depends by the fact that it is late and not how much it is. This problem is NP-hard even when all jobs have the same release date and the number of machines is two [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP Completeness[END_REF] or the due dates are common [START_REF] Kahlbacher | Parallel machine scheduling to minimize costs and number of tardy jobs[END_REF].

In this paper, we consider a special case of the general parallel machines scheduling problem in which all jobs satisfy d i = r i + p i + α with α a positive constant of the problem.

Since each job cannot delay its starting time by more than α, we call our problem the parallel machines scheduling problem with α time windows. Following the standard three-field notation proposed by Graham et al. [START_REF] Graham | Optimization and approximation in deterministic sequencing and scheduling: a survey[END_REF], this problem is noted P |d i = r i + p i + α| U i . For the one-machine case, Jeauneau and Chrétienne [START_REF] Jeauneau | An O n 3 algorithm for the one machine scheduling problem with α Time windows to minimize the number of late jobs[END_REF] extend Garey et al. works [START_REF] Garey | One-processor scheduling with Symmetric Earliness and Tardiness[END_REF] and develop a polynomial time algorithm to minimize the number of late jobs optimally.

The rest of the paper is organized as follow. In Section 2, we prove the NP-Completeness of the problem. Section 3, presents a method to obtain a lower bound. Section 4 are dedicated of the development of some heuristics. Experimental results are analyzed in Section 5. Finally, Section 6 summarizes the paper.

2 On the complexity of the parallel machines scheduling problem with α time windows

In this section, we show that the scheduling problem of minimizing the number of late jobs on parallel machines in which all jobs satisfy d i = r i + p i + α is NP-hard. This result come from a reduction of the NP-Hard problem PARTITION [START_REF] Karp | Reducibility among combinatorial problems[END_REF] to our problem. Consider the PARTITION problem, in which we are given a finite set A of positive integers having an overall sum 2b and are asked whether there exists a subset of A that sums exactly to b ?

From an instance of PARTITION, we generate the following instance of the parallel machines scheduling problem with α time windows:

-m = 2, -α = b, -J i such as r i = 0, p i = a i , d i = p i + b for i = 1, ..., n, -J n+1 such as r n+1 = 0, p n+1 = b + 1, d n+1 = 2b + 1, -J n+2 such as r n+2 = 0, p n+2 = b + 1, d n+2 = 2b + 1.
if PARTITION has a solution A , A , then there exists a schedule where the jobs of A are scheduled on the first machine and the jobs of A are scheduled on the second machine in the interval [0, b]. Then, the two additional jobs {J n+1 , J n+2 } are scheduled in the interval [b, 2b + 1], one on the first machine, the other on the second (Fig. 1). If the parallel machines scheduling problem has a solution, then the jobs {J n+1 , J n+2 } cannot be scheduled on the same machine. Thus, one is scheduled on the first machine and the other on the second machine. Moreover, both can be scheduled in the interval [b, 2b + 1], therefore the jobs scheduled in the interval [0, b] form a solution of PARTITION problem. We prove that the parallel machines scheduling problem with α time windows is NP-hard even when the number of machines is two and all jobs have the same release date. It should be noted that a symmetric approach (fix the d i -values instead of the r i -values) proves the NP-Completeness of this problem even when all jobs have the same due date.

Lower Bound

In section 2, we have proved the NP-Completeness of the problem 1|d i = r i + p i + α| U i . We will present some heuristics to solve it in section 4. In order to compare the results obtained from heuristics, we develop a lower bound in this section. To compute this lower bound, we first relax the constraint of non-preemption. This relaxed problem is noted P |pmtn; d i = r i + p i + α| U i and every optimal solutions of this problem are less or equal than optimal solutions of P |d i = r i + p i + α| U i . Then we associate a minimum cost flow problem to the problem P |pmtn; d i = r i + p i + α| U i such as solving the minimum cost flow problem leads to a lower bound for the problem P |pmtn; d i = r i + p i + α| U i which is a lower for the problem P |d i = r i + p i + α| U i too. Baker [START_REF] Baker | Introduction to sequencing and scheduling[END_REF] solves the problem P |pmtn; r i |Lmax optimally with a similarly approach.

Let J = {J 1 , ..., Jn} be an instance of the problem P |pmtr; d i = r i + p i + α| U i order as d 1 ≤ ... ≤ dn. We define a minimum cost flow problem as follow:

-Let t 1 < t 2 < ... < tr be the ordered sequence of all different r i -values and d i -values.

-

Let I K := [t k , t k+1] the intervals of length l k = t k+1 -t k for k = 1, ..., r -1.
-A job vertex is associated to each job J i and an interval vertex to each interval I k .

-Let s a source and t a sink.

-There is an arc from s to each job vertex J i of capacity p i and cost 0.

-There is an arc from each interval vertex I k to t of capacity m × l k and cost 0.

-There exists an arc from J i to I k of capacity l k and cost 0 iff job J i can be processed in I k (i.e r i ≤ t k and t k+1 ≤ d i). -There is an arc from each job vertex J i to t of capacity p i and cost 1/p i . Fig. 2 illustrate the graph G (V, E) of the minimum cost flow problem defined above, where V is the set of vertices and E the set of arcs. Each arc is represented by a couple (x, y) where x is the capacity and y the unary cost of the arc.

A solution of maximum flow for such a graph G (V, E) has a flow equal to n i=1 p i . Indeed, for each job vertex J i , there exists an arc (s, J i) with a capacity p i and another arc (J i , t) with the same capacity. Since there only exits arcs from s to jobs vertices J i , for i = 1, 2, ..., n, then we have a maximum flow solution in which the flow of arcs (s, J i) and (J i , t) are equal to p i .

For each optimal solution of the minimum cost flow problem, we can build a schedule for the problem P |pmtr; d i = r i + p i + α| U i as follow: for each interval vertex I k , let x ik denote the flow of arc (J i , I k), the job J i executes a part of its processing time equal to x ik in the interval of times [t k , t k+1], for i = 1, 2, ..., n. Then, let θ i denote the flow of arc (J i , t), the job J i executes, a part of its processing equal to θ i , at the end of the schedule of an arbitrary machine, for i = 1, 2, ..., n. The graph G (V, E) is defined such as we have:

x ik ≤ l j for i = 1, 2, ..., n for k = 1, 2, ..., r -1

(1)

n i=1 x ik ≤ m × l k for k = 1, 2, ..., r -1 (2)
And from optimality of the minimum cost flow solution, we have:

r1 k=1 x ik + θ i = p i for i = 1, 2, ..., n (3)
From (1), we know that for each job vertex J i and for each interval vertex I k , the flow x ik is less or equal than l k . Since l k = t k+1 -t k , it implies that each job J i cannot executes a part of its processing time greater than the length of the interval of time on which this part is executed. From (2), we know that for each interval vertex I k we have n i=1 x ik ≤ m × l k . Therefore, the parts of processing times of all jobs J i to be executed in [t k , t k+1] have a total duration less or equal to m × l k . Since we dispose of m machines, these parts can be executed without overlapping whit another interval of time. From (3), we know that the flow of each job vertex J i is exactly equal to p i . Therefore, each job J i are fully executed in the schedule.

We deduce that our schedule is a legal schedule for the problem P |pmtn; d i = r i + p i + α| U i and we have the following property:

Property 1 An optimal solution of the minimum cost flow problem on the graph G (V, E) is a lower bound of the problem

P |d i = r i + p i + α| U i .
Proof Let Π an optimal schedule for an instance of the problem P |d i = r i + p i + α| U i . Let p ij denote the j th unity of p i and c ij its completion time in Π. We build a maximal flow f for the graph G (V, E), associated to the problem instance, as follow:

-for each arc (s, J i), there is a flow p i ; -for each job J i , if c ij ∈ [r i , d i] then increase by one the flow of arcs (J i , I k) and (I k , t) such as c ij ∈ I k , otherwise increase by one the flow of (J i , t).

The cost c of f is equal to n i=1 y i × 1/p i , where y i is the part of the job J i which is not legally scheduled in Π, i.e

y i = pi j=1 p ij such as c ij ∈ [r i , d i].
Then, for each job J i , we have

y i ≤ p i which imply y i × 1/p i ≤ 1. Moreover, when U i = 0, the job J i is not late scheduled, therefore c ij ∈ [r i , d i] for j = 1, 2, ..., p i and y i = 0. Since y i = 0 iff U i = 0, we deduce that n i=1 y i × 1/p i ≤ n i=1 U i .
From the definition of an optimal solution for the minimum cost flow problem, we have c * ≤ c where c * is the minimum cost of an optimal solution of maximum flow on the graph G (V, E). We deduce that c * ≤ n i=1 U i and conclude that an optimal solution of the minimum cost flow problem on the graph G (V, E) is a lower bound of the problem

P |d i = r i + p i + α| U i .
Orlin [START_REF] Orlin | A faster strongly polynomial minimum cost flow algorithm[END_REF] proposes a polynomial time algorithm for the minimum cost flow problem. This algorithm runs in O (V log V (E + V log V)). There is exactly n jobs vertices and at most 2n intervals vertices in G (V, E), therefore the total number of vertices is in O (n). There is n arcs between s and the jobs vertices, n arcs between jobs vertices and t, at most 2n between intervals vertices and t, and at most n × 2n arcs between jobs vertices and intervals vertices. Thus the total number of arcs is in O n 2 . Therefore, the lower bound

can be computed in O n 3 log 2 (n) .
We propose an amelioration of this lower bound by reducing the processing time of some jobs. Indeed, the value of the bound depends on the flow θ i of each arc (J i , t). The unary cost of these arcs is equal to 1/p i . Therefore, if we are able to reduce the processing time of a job J i without change the flow θ i , then the value of the lower bound will be increased.

We consider each interval vertex I k , for k increasing for 1 to r-1. For each such interval vertex, we suppose that each job vertex J i with an arc (J i , I k) has a flow exactly equal to l k (this assumption is a relaxation on the capacity of arc (I k , t)). Fixed these flows in

G (v, E) is equivalent to build the graph G V , E where V = V -I k and E = E -I - k -I + k with I - k and I +
k the inputs arcs and outputs arcs respectively. The capacity of arcs (s, T i) and (T i , t) for each job vertex J i with an arc

(J i , I k) in G (V, E) is reduced by l k in G V , E .
For the graph G V , E , the cost of arcs (J i , t) can be updated to the reverse of their capacities without violate the integrities constraints, i.e the flow of each job vertex J i cannot increase the cost by more than one. Let c * and c * denote the cost of the minimum cost flow solution for G V , E and G (V, E) respectively. If c * > c * , then the quality of the solution for the graph G V , E is better than the one for the graph G (V, E) and the next intervals vertices I k+1 , I k+2 , ..., I r-1 are considered on G V , E otherwise continue on the procedure on graph G (V, E).

Finally, the upper integer part c * can be used as a lower bound. Indeed, our aim is to minimize the number of late jobs. This objective is integer since U i = 1 if J i is late and U i = 0 otherwise. Therefore the smallest integer which is greater than c * define a lower bound, noted LB. This procedure solves a minimum cost flow problem for each interval vertex I k . There is no more than 2n intervals vertices, so this lower bound can be computed in O n 4 log 2 (n) .

It should be noted that this lower bound is independent of the structure of jobs and can be used for the general problem P |r i | U i .

Heuristic approaches

In this section, we use two heuristic approaches to solve the m-machines scheduling problem with α time windows. These heuristic approaches are called job-focused and machinefocused. In the first approach, the jobs are considered separately and for each job we have to determine which machine will process it whereas in the second approach it is the machines which are considered separately.

Job-focused approach

The job-focused approach considers jobs one by one, while it considers all m identical machines simultaneously. This approach involves three major decision steps:

-A job section rule to select the current job.

-A machine selection rule to select which machine has to assign the current selected job (the first job of the ordered list). -An interchanging/removing rule which removes or interchanges the current job, with an already assigned job, when it is late no matter which machine is selected.

When the current job is interchanged with an already assigned job, the already assigned job takes the place of the current job in the ordered list because maybe it can be processed on an other machine. To ensure that the algorithm finishes, it should have no cycle between interchanged jobs during this step. So, when a job is interchanging with another it cannot be interchanged again while we are interchanging jobs. The schedule of assigned jobs on a machine is determined from Jeauneau and Chrétienne works [START_REF] Jeauneau | An O n 3 algorithm for the one machine scheduling problem with α Time windows to minimize the number of late jobs[END_REF] which propose an algorithm to solve the one machine scheduling problem with α time windows optimally in O n 3 . We call this algorithm AT W (Alpha Time Windows). In their works, the schedule is decomposed into blocks B = {B 1 , ..., Bq} such as B i is a maximal sequence of consecutive jobs (no intermediate idle time). The following notation is used to define the heuristics procedures:

m k The machine k.

-U The set of unscheduled jobs.

-R The set of rejected jobs.

-I The set of interchanged jobs.

σ k The set of jobs assigned on m k . -C i The completion time of the block containing the job J i .

-C k i The completion time of the block containing the job J i for the schedule of jobs

σ k ∪ J i
Fig. 4 details the heuristic H1E. Then, based on the first major decision step (job selection rule), we introduce H1L which uses LPT (longest processing time) rules to select the current job. For the second decision step (machine selection), Jeauneau and Chrétienne [START_REF] Jeauneau | An O n 3 algorithm for the one machine scheduling problem with α Time windows to minimize the number of late jobs[END_REF] shown that there is a strong interaction between jobs of the same block, so we choice to compare the completion time of the block containing the current job for the machine selection. Moreover, select the machine k with the greatest C k c has the advantage to load at most as possible an interval of time of a machine and provide more space of the others machines on this interval. Hence, this strategy is most able to handle jobs having a common part of their time windows. In the three decision step, when the current job cannot be assigned to a machine without cause tardiness of a job, we choice to interchange the current job with the job which will release the most space.

Step 1. Let R = ∅ and I = ∅. Let σ k = ∅, for k = 1, ..., m. Place the job J i in U for i = 1, ..., n.

Step 2. Select a job by EDD rule (earliest due date) from U , call it Jc (the current job).

Step 3. If adding the job Jc of the set σ k of at least one machine k gives a feasible set of jobs (all jobs can be scheduled before their due dates in the sequence obtained by AT W (σ k ∪ Jc)), then remove all jobs of I and go to Step 5.

Machine-focused approach

The machine-focused approach is the opposite of the job-focused approach. It considers the machine one by one, while it considers the set of unscheduled jobs simultaneously. Indeed, this approach solves m times the one machine scheduling problem. The first one machine scheduling problem involves all the jobs, whereas the second machine scheduling problem is solved with the set of not yet scheduled jobs (i.e the set of jobs scheduled on the first machine are not considered), etc. This process is repeated until there is no more machine or no more unscheduled jobs. AT W algorithm is used to solve each of the m one machine scheduling problems. Among all optimum solutions, this algorithm determine the one with minimum makespan (the completion time of the scheduling is minimized). So, for each machine we know that there is no schedule which process more early jobs, but it may exist some schedules which process the same number of jobs with a higher load of the machine. Hence, after running AT W , we try to interchange some jobs in order to increase the load of the machine. Thus, after schedule a set of jobs on a machine, we try to interchange each scheduled job with each not scheduled job having a longer processing time and we test the feasibility of this interchanging with GT W algorithm (algorithm of Garey, Tarjan and Wilfong [START_REF] Garey | One-processor scheduling with Symmetric Earliness and Tardiness[END_REF] which determines if a set of job is feasible and, if yes, gives a solution with minimum makespan). We obtain the heuristic H2 detailed in Fig. 4.

Step 1. Let k = 1 (The first machine). Let R = ∅ and σ k = ∅, for k = 1, ..., m. Place the job J i in U for i = 1, ..., n.

Step 2. Set σ k = AT W (U).

Step 3. If the jobs in σ k are all early, then go to Step 5.

Step 4. Remove all late jobs from σ k and put them in U .

Step 5. If k < m and U = ∅ then

Step 5.1. Order the jobs in U by LPT rule and let i = 1 the index of the first job in this reordered set.

Step 5.2. Let σ k the set of jobs of σ k ordered by SPT rule and let j = 1 the index of the first job in this set.

Step 5.3. The heuristic H2 tries to minimize the number of late jobs machine by machine. By increasing the load on machine k, the next machine k + 1 will be able to process more early jobs. As the interchanging of jobs is used to increase the potential of processing more early jobs for the next machine, it is not relevant to do it for the machine m (the last machine). Therefore, we not apply it on the last machine. Moreover, when we interchange jobs, we increase the load of the machine. So, it is not necessary to retry to interchange jobs which have a longest processing time than the current interchanged job (if these jobs could have been interchanged, it will be done during their interchanging steps). Therefore, in Step 5.3 of H2, we not restart the interchanging rule from Step 5.1.

If GT W σ k -σ k [j] + {U [i]} is feasible, then add U [i] in
The machine-focused heuristic call m times the AT W algorithm to initiate the set of scheduled jobs on the current machine. Then, we apply the interchanging rule to this machine, it call at most n 2 times the GT W algorithm. As GT W runs in at most (n log n) steps, so H2 has an overall complexity in O mn 3 log n time. We develop a simulation experiment and the results are presented in this section. The number of machines is specified at six levels: 1, 2, 5, 10, 15 and 20 whereas the number of jobs is defined by the ration n/m. This ratio is set at four levels: 5, 10, 15 and 20. Processing times are assumed to be U (1, 99). Release dates follow U (1, np/ (mq)), where p is the mean processing time, and q represents the level of congestion. The values of q are set at eight levels: 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 and 5.0. Ho and Chang [START_REF] Ho | Heuristics for minimizing mean tardiness for m parallel machines[END_REF] shown that this congestion indicator is useful in shop congestion. The shop congestion increases with q and the number of late jobs will be higher. The positive constant α of the problem is randomly computed from an uniform distribution (1, np/ (mq)). As each job has to satisfy the relation d i = r i +p i +α, we calculate the due date d i of each job from others parameters. We generate 50 instances of each problem set. Therefore, the total number of problems generated is 9,600. The heuristics H1E, H1L, H2 and the lower bound LB are implemented in JAVA in an Intel Core i7 2,4 GHz processor. The results are given according to the number of machines (Table 1), and then detailed according the ratio jobs/machines (Table 2) and the shop congestion level (Table 3). For each problem, the value of the lower bound LB is computed such as the values of heuristics. An additional heuristic H3 is proposed which takes at each times the best solution of H1E, H1L and H2. We also calculate the average deviation of H3 to LB, i.e (H3/LB -1) × 100%.

Experimental results

These results show that heuristic H2 perform better than H1E and H1L and that H1L perform better than H1E for at most every cases.

Table 1 reveals that the average deviation of H3 to LB is equal to 4.88%, 6.35%, 7.38%, 7.5%, 7.87% and 7.64% for 1, 2, 5, 10, 15 and 20 machines respectively. It is interesting to note that the average of H3 to LB stays stable when the number of machines increases. Indeed, for more than 2 machines the average deviation is around 7.5%. Moreover, when the number of machine is 1, heuristics H1E and H2 solve the problem optimally ([START_REF] Jeauneau | An O n 3 algorithm for the one machine scheduling problem with α Time windows to minimize the number of late jobs[END_REF]). Therefore, in this case, we know that the lower bound LB has a deviation of 4.88% to optimum. By assumption on the fact that the quality of the lower bound not increases when the number of machines increases, then H has a deviation ≈ 3% to optimum. Table 2 give the results according the number of machines which are detailed for th ratio n/m. Expected when the ratio n/m = 5, results show that the average deviation of H to LB is < 10%. Moreover, if the quality of the bound not increases when the number of machines increases, then H has a deviation to optimum of ≈ 4.5%, ≈ 2% and ≈ 1% for a ratio n/m equal to 10, 15 and 20 respectively. For n/m = 5, results show a degradation of the average deviation when the number of machines increases. Indeed, the average deviation of H to LB is equal to 4.47%, 11.23%, 20.31%, 23.25%, 26.49% and 25.72% for 1, 2, 5, 10, 15 and 20 machines. This degradation can be explained by: the degradation of the quality of LB when the number of machines increases for a small n/m ratio, the medium performance of heuristics when n/m is small. Globally, table 2 reveals the average deviation of H to LB decreases when the number of jobs increases.

Table 3 gives the results according the number of machines which are detailed for the shop congestion level. When q ≥ 2.5, results show that the average deviation of H to LB is lesser than 10%. For these shop congestion levels, the gap between results of 1 machine case and 20 machines case is ≈ 4%. Therefore, if the quality quality of LB not increases when the number of machines increases, then we have an average deviation of H to optimum around 4%. For shop congestion levels 1.5 and 2.0, the average deviation of H to LB increases when the number of machines increases to reach a threshold of ≈ 34% and ≈ 17%. This threshold is obtained for 15 and 5 machines respectively and then the degradation decreases when the number of machines increases. It should be noted that, for the one machine case, the quality of LB is yet medium which let assume that degradation of the average deviation is due to the poor quality of LB when the shop congestion level is low. The average CPU time needed to compute LB and H3 is presented in table 4. These results show that the average time to compute the heuristic H3 is very low although the worth case complexity is in O mn 4 . For example, the mean time needed to solve an instance of 20 machines and 400 jobs is 754 milliseconds. When we consider LB, results reveals that the average time needed to compute this lower bound increases very quickly. For example, when the number of machines is 2, LB is computed has an average CPU time of 24 milliseconds whereas when the number of machines is 20, 99 seconds are needed in average.

Conclusions

We have studied the m parallel machines scheduling problem with α time windows in order to minimize the number of late jobs. We have proved the NP-completeness of this problem even when the number of machines is two, when all jobs have the same release date or when all jobs have the same due date. We have developed a lower bound for this problem which can also be used for the general parallel machines scheduling problem. To solve the problem, we have proposed a set of heuristics. A simulation experiment is conducted to evaluate the effectiveness of these heuristics. The results show that the average deviation to the lower bound is equal to 4.88%, 6.35%, 7.38%, 7.5%, 7.87% and 7.64% for 1, 2, 5, 10, 15 and 20 machines respectively. These reveals that qualities of the lower bound and heuristics are independent of the numbers of machines and globally the average deviation to the lower bound is ≈ 7.5%. Moreover, for the one machine, heuristics solve the problem optimally. Therefore, if the quality of the lower bound not increases when the number of machines increases, then our solution has an average deviation to optimum around 3%. Since the average CPU time needed to solve problems with 20 machines is around 300 milliseconds, our approach is able to handle large problems in a real time environment.

Fig. 1 :

 1 Fig. 1: Scheduling of jobs {J 1 , ..., J n+2 }

Fig. 2 :

 2 Fig. 2: Graph G (V, E) of the minimum cost flow problem

Step 4 .

 4 Let Jx k the late job obtained by AT W (σ k ∪ Jc) for the machine k. Let Jx y the job such as Cx y -C y c = max 1≤k≤m Cx k -C k c |Jx k ∈ I . If the job Jx y is the same as the job Jc then put it in R, remove all jobs of I and go to Step 6. Otherwise remove the job Jx y from σy, put it in U and put the job Jc in I. Step 5. Remove the job Jc from U and put it in σ b , where C b c = max 1≤k≤m C k c and σ b ∪ Jc is feasible. Step 6. If U = ∅, then append the jobs of R in any set σ k , and stop. Otherwise, go to Step 2.

Fig. 3 :

 3 Fig. 3: Heuristic H1E

2 . 5 . 4 .

 254 σ k and remove it from U , remove σ k [j] from σ k and insert it in U with respect to LPT order, and go to Step 5.Step If j < |σ k |, then set j = j + 1 and go to Step 5.3.Step 5.4. If i < |U |, then set i = i + 1 and go to Step 5.2.Step 5.5. Set k = k + 1 and go to Step 2.Step 6. Append the jobs in U to any machines and stop.

Fig. 4 :

 4 Fig. 4: Heuristic H2

Table 1 :

 1 Results by machine machine level

	m	H1E	H1L	H2	H3	LB	Avg. Error (%)
	1	4.3	4.59	4.3	4.3	4.1	4.88
	2	8.04	8.26	7.76	7.7	7.24	6.35
	5	19.08	18.86	17.83	17.76	16.54	7.38
	10	37.92	36.63	34.96	34.85	32.42	7.5
	15	55.39	52.84	50.68	50.52	46.83	7.87
	20	74.66	70.71	68.16	67.89	63.07	7.64

Table 2 :

 2 Results by ratio n/m level

	m	n/m	H1E	H1L	H2	H3	LB	Avg. Error (%)
	1	5	1.87	2.07	1.87	1.87	1.79	4.47
		10	3.54	3.82	3.54	3.54	3.36	5.36
		15	5.1	5.43	5.1	5.1	4.87	4.72
		20	6.68	7.05	6.68	6.68	6.4	4.37
	2	5	3.26	3.49	3.1	3.07	2.76	11.23
		10	6.54	6.75	6.27	6.22	5.8	7.24
		15	9.51	9.72	9.17	9.11	8.6	5.93
		20	12.85	13.08	12.49	12.4	11.8	5.08
	5	5	7.6	7.86	6.93	6.87	5.71	20.31
		10	15.16	14.93	13.99	13.9	12.8	8.59
		15	23.41	23.07	21.98	21.9	20.59	6.36
		20	30.14	29.58	28.44	28.35	27.06	4.76
	10	5	14.61	14.3	12.82	12.72	10.32	23.25
		10	30.50	29.33	27.65	27.56	25.21	9.32
		15	44.74	42.95	41.23	41.1	38.88	5.71
		20	61.84	59.93	58.15	58	55.28	4.90
	15	5	21.39	20.19	18.22	18.1	14.31	26.49
		10	44.42	42.1	39.94	39.79	36.32	9.55
		15	67.09	64.17	61.95	61.76	57.99	6.5
		20	88.66	84.9	82.61	82.43	78.71	4.73
	20	5	28.24	26.26	23.92	23.71	18.86	25.72
		10	59.38	55.43	52.95	52.7	48.11	9.54
		15	91.15	86.60	83.93	83.64	78.7	6.28
		20	119.89	114.53	111.83	111.49	106.59	4.6

Table 3 :

 3 Results by shop congestion level

	m	q	H1E	H1L	H2	H3	LB	Avg. Error (%)
	1	1.5	1.36	1.48	1.36	1.36	1.19	14.28
		2.0	2.59	2.79	2.59	2.59	2.39	8.37
		2.5	3.59	3.87	3.59	3.59	3.39	5.9
		3.0	4.38	4.7	4.38	4.38	4.18	4.78
		3.5	4.92	5.25	4.92	4.92	4.74	3.8
		4.0	5.47	5.83	5.47	5.47	5.28	3.6
		4.5	5.87	6.24	5.87	5.87	5.67	3.53
		5.0	6.2	6.58	6.2	6.2	6.01	3.16
	2	1.5	2.54	2.49	2.29	2.2	1.78	23.59
		2.0	4.01	3.88	3.65	3.54	3.18	11.32
		2.5	6.53	6.67	6.26	6.19	5.74	7.84
		3.0	8.11	8.41	7.77	7.73	7.28	6.18
		3.5	9.44	9.76	9.19	9.19	8.69	5.75
		4.0	10.38	10.73	10.12	10.07	9.57	5.22
		4.5	11.15	11.57	10.84	10.81	10.34	4.54
		5.0	12.16	12.59	11.95	11.91	11.34	5.03
	5	1.5	4.41	3.73	3.63	3.43	2.63	30.42
		2.0	10.93	10.02	9.5	9.33	7.96	17.21
		2.5	15.43	15.03	14.25	14.15	12.93	9.43
		3.0	19.05	18.82	17.78	17.74	16.55	7.19
		3.5	22.29	22.21	20.99	20.94	19.69	6.35
		4.0	24.69	24.83	23.41	23.37	22.1	5.75
		4.5	26.81	26.9	25.35	25.35	24.07	5.32
		5.0	29.01	29.34	27.74	27.73	26.4	5.04
	10	1.5	8.02	6.39	6.50	6.02	4.54	32.6
		2.0	19.9	17.16	16.58	16.32	14.09	15.83
		2.5	30.89	29.03	27.8	27.7	25.48	8.71
		3.0	38.07	36.68	34.72	34.71	32.44	7
		3.5	44.95	43.67	41.47	41.43	39	6.23
		4.0	50.41	49.77	47.31	47.29	44.67	5.86
		4.5	53.56	52.67	50.32	50.3	47.47	5.96
		5.0	57.96	57.62	55	54.98	51.68	6.35
	15	1.5	11.31	8.18	8.54	7.92	5.92	33.78
		2.0	27.50	22.81	22.49	22.02	19.05	15.59
		2.5	44.07	40.81	39.245	39.13	35.91	8.97
		3.0	55.37	52.87	50.42	50.37	47.29	6.51
		3.5	64.905	62.81	59.93	59.9	56.19	6.6
		4.0	73.81	72.03	68.77	68.76	64.5	6.6
		4.5	81.03	79.66	76.16	76.15	71.11	7.08
		5.0	85.1	83.56	79.89	79.89	74.68	6.98
	20	1.5	15.44	10.94	11.50	10.69	8.32	28.49
		2.0	37.25	30.3	30.76	29.65	26.17	13.3
		2.5	60.65	56	54.27	54.12	49.54	9.24
		3.0	74.44	70.24	67.41	67.38	63.11	6.77
		3.5	90.14	86.84	83.12	83.1	78.19	6.28
		4.0	99.05	96.18	91.85	91.84	86.42	6.27
		4.5	107	104.47	100.14	100.13	93.83	6.71
		5.0	113.34	110.69	106.2	106.18	98.90	7.36

Table 4 :

 4 Average CPU time

	m	CPU time of H3 (s)	CPU time of LB (s)
	1	0.001	0.002
	2	0.003	0.024
	5	0.015	0.768
	10	0.069	8.114
	15	0.165	37.99
	20	0.308	99.08

Acknowledgements This research was supported by French MoD DGA/MRIS and by Thales Air Systems. We also graceful to F. Barbaresco to give us the opportunity to work on this topic and to follow us during this study.