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Introduction

In the multiphysical modeling of anisotropic behaviors [START_REF] Thionnet | A new constructive method using the theory of invariants to obtain material behavior laws[END_REF] it is interesting to have prior information on the general characteristics of the sought model. The knowledge, for a given material anisotropy, of the number of independent coefficients in the tensorial law is interesting since, for example, it determines the number of elementary tests one needs to perform in a micro-macro homogenization procedure [START_REF] Trinh | Evaluation of generalized continuum substitution models for heterogeneous materials[END_REF]. These results are also important to develop strategies for the experimental identification of constitutive laws [START_REF] Francois | Une nouvelle analyse des symétries d'un matéeriau élastique anisotrope. Exemple d'utilisation à partir de mesures ultrasonores[END_REF][START_REF] Francois | Determination of the symmetries of an experimentally determined stiffness tensor: application to acoustic measurements[END_REF]. If in the case of classical elasticity these results are well-known [START_REF] Cowin | Eigentensors of linear anisotropic elastic materials[END_REF][START_REF] Forte | Symmetry classes for elasticity tensors[END_REF], their extension to other situations is not straightforward. However, due to a growing interest in the modeling of size and non-local effects in materials and structures, the need for generalized continuum theories becomes evident [START_REF] Fleck | Strain gradient plasticity[END_REF][START_REF] Alibert | Truss modular beams with deformation energy depending on higher displacement gradients[END_REF][START_REF] Sciarra | Second gradient poromechanics[END_REF]. This note, and following a path already developed in some previous contributions [START_REF] Auffray | Démonstration du théoréme d'Hermann é partir de la méthode Forte-Vianello[END_REF][START_REF] Auffray | Décomposition harmonique des tenseurs -Méthode spectrale[END_REF][START_REF] Auffray | Analytical expressions for anisotropic tensor dimension[END_REF], aims at providing some tools that can help the modeling of these non-conventional behaviors.

In the present paper, and following a previous one [START_REF] Auffray | Analytical expressions for anisotropic tensor dimension[END_REF] in which only even-order tensors were considered, we provide analytical formulas that give the generic dimension of any anisotropic odd-order tensor1 . To avoid any misunderstanding, it is worth noting that the present method does not solve the symmetry classification for a physical tensor, but only provide a way to compute, once the classification has been done, the number of generic coefficients for each anisotropic system. The solution of the classification problem can be found in the following references [START_REF] Olive | Symmetry classes for even-order tensors[END_REF][START_REF] Olive | Symmetry classes for odd-order tensors[END_REF]. As an illustration, the obtained formula are applied to the space of third-order piezoelectric tensor [START_REF] Weller | Etude des symétries et modèles de plaques en piézoélectricité linéarisée[END_REF][START_REF] Weller | Piezomagnetic tensors symmetries: an unifying tentative approach[END_REF], and to the fifth-order coupling tensor of Mindlin's strain-gradient elasticity [START_REF] Mindlin | On first strain-gradient theories in linear elasticity[END_REF].

This note is organized as follows, in Section 2 basic definitions about symmetries are summed up (see, e.g. [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF] for an extended discussion). The decompositions of a tensor space into orthogonal elementary components and the notion of G-invariant space are developed in Section 3, and our main formula are provided there. Finally, physical illustrations are proposed in Section 4.

Physical and material symmetries

Hereafter E 3 will be the 3D euclidean physical space. Let G be a closed subgroup of O(3) the orthogonal group in 3D, that is the group of isometries of E 3 . Let us define a material M as an open subset of E 3 . The set of operations Q ∈ O(3) leaving M invariant is defined as

G M = {Q ∈ O(3), Q M = M}
where stands for the Q action upon M. This set, denoted G M , is known as the material symmetry group. Now consider a physical property P defined on M, the set of operations leaving P invariant is the physical symmetry group G P = {Q ∈ O(3), Q P = P} P is described, in the present paper, by a n th -order tensor T (n) ∈ T (n) . In that case the action of O(3) on T (n) is defined by the Rayleigh product:

: O(3) × T (n) → T (n) : (Q, T (n) ) → Q T (n) := Q i1j1 . . . Q injn T (n) j1...jn (1) 
The material and the physical symmetry groups are related by the mean of the Curie-Neumann's principle [START_REF] Zheng | The description, classification, and reality of material and physical symmetries[END_REF]: G M ⊆ G P meaning that each operation leaving the material invariant leaves the physical property invariant. Nevertheless, as shown for tensorial properties using Hermann's theorems [START_REF] Auffray | Décomposition harmonique des tenseurs -Méthode spectrale[END_REF], physical properties can be more symmetrical than the material.

In E 3 G P is conjugate to an O(3)-closed subgroup [START_REF] Zheng | The description, classification, and reality of material and physical symmetries[END_REF][START_REF] Forte | Symmetry classes for elasticity tensors[END_REF]. Classification of O(3)-closed subgroups is a classical result that can be found in many references, e.g. [START_REF] Sternberg | Group theory and physics[END_REF]: Lemma 2.1 Every closed subgroup of O(3) is conjugate to precisely one group of the following list, which has been divided into three classes:

(i) Closed subgroups of SO(3): 1, Z n , D n , T , O, I, SO(2), O(2), SO(3); (ii) K := K ⊕ Z c
2 , where K is a closed subgroup of SO(3) and Z c 2 = {1, -1}; (iii) Closed subgroups not containing -1 and not contained in SO(3):

Z - 2n (n ≥ 1), D v n (n ≥ 2), D h 2n (n ≥ 2), O -or O(2) -
Let us now give a brief description of these different subgroups:

Type I subgroups Among SO(3)-closed subgroups we can distinguish: Let us detail first the set of planar subgroups. We fix a base (i; j; k) of R 3 , and denote by

Planar groups : {1, Z n , D n , SO(2), O (2) 
Q(v; θ) ∈ SO(3) the rotation about v ∈ R 3 , with angle θ ∈ [0; 2π) we have • 1, the identity; • Z n (n ≥ 2)
, the cyclic group of order n, generated by the n-fold rotation Q(k; θ = 2π n ), which is the symmetry group of a chiral polygon;

• D n (n ≥ 2), the dihedral group of order 2n generated by Z n and Q(i; π), which is the symmetry group of a regular polygon;

• SO(2), the subgroup of rotations Q(k; θ) with θ ∈ [0; 2π). It is the symmetry group of an oriented cone.

• O(2), the subgroup generated by SO(2) and Q(i; π). It is the symmetry group of an twisted cylinder.

The classes of exceptional subgroups are: T the tetrahedral rotation group of order 12 which fixes a tetrahedron, O the octahedral rotation group of order 24 which fixes an octahedron (or a cube), and I the rotation group of order 60 which fixes an icosahedron (or a dodecahedron).

Type II subgroups

Type II subgroups are of the form K := K ⊕ Z c 2 , where K is a closed subgroup of SO(3). Therefore we directly know the collection of type II subgroups.

Type III subgroups

The construction of type III subgroups is more involved, and a description of their structure is provided in [START_REF] Sternberg | Group theory and physics[END_REF]. As for type I subgroups, we can introduce subgroups of type III. Let σ u ∈ O(3) denotes the reflection through the plane normal to u axis.

• Z - 2 the order 2 reflection group generated by σ i ;

• Z - 2n (n ≥ 2) the group of order 2n, generated by the 2n-fold rotoreflection

Q(k; θ = π n ) • σ k ; • D h 2n (n ≥ 2)
the prismatic group of order 4n generated by Z - 2n and Q(i, π). When n is odd it is the symmetry group of a regular prism, and when n is even it is the symmetry group of a regular antiprism;

• D v n (n ≥ 2)
the pyramidal group of order 2n generated by Z n and σ i , which is the symmetry group of a regular pyramid;

• O(2) -is the limit group of D v n for continuous relation, it is therefore generated by Q(k; θ) and σ i . It is the symmetry group of a cone;

• O -which is achiral tetrahedral symmetry of order 24. This group has the same rotation axes as T , but with six mirror planes, each through two 3-fold axes.

In order to have a better physical understanding of these subgroups, we reported in Appendix A the tables making correspondences between group notations and the classical crystallographic ones (Hermann-Mauguin, Schoenflies).

To study the symmetry classes of a tensor we need to decompose it into O(3)-elementary parts.

Structure of tensor spaces

Harmonic decomposition

The O(3)-invariant decomposition of a tensor is known as harmonic decomposition, it is an higherdimensional analogue of the Fourier decomposition. It allows to decompose any finite-order tensor into a sum of irreducible ones [START_REF] Zou | Orthogonal Irreducible Decompositions of Tensors of High Orders[END_REF][START_REF] Jerphagnon | The description of the physical properties of condensed matter using irreducible tensors[END_REF]. Formally, this decomposition can be written:

T n = k,τ D(n) k,τ
where tensors D(n) k,τ are components of the irreducible decomposition, k denotes the order of the harmonic tensor embedded in D(n) and τ separates same order terms. This decomposition establishes an isomorphism between T n and a direct sum of harmonic tensor spaces H k [6]:

T n ∼ = k,τ H k,τ
but, as explained, in [START_REF] Golubitsky | Singularities and Groups in Bifurcation Theory[END_REF] this decomposition may not be unique. Grouping together irreducible spaces of the same order, one obtains the O(3)-isotypic decomposition of a representation which is unique [START_REF] Kosmann-Schwarzbach | Groupes et symétries. Groupes finis, groupes et algébres de Lie, représentations[END_REF]:

T n ∼ = n k=0 α k H k
where α k is the multiplicity of the irreducible space H k in the decomposition and n is the order of the highest-order irreducible space of the decomposition. H k is the space of kth-order harmonic tensors, that is the space of totally symmetric, traceless tensors of order k. It is a vector space of dimension 2k + 1 in R 3 . The series {α k } is function of the order and the intrinsic symmetries of the tensor space. Various methods exist to compute this family [START_REF] Jerphagnon | The description of the physical properties of condensed matter using irreducible tensors[END_REF][START_REF] Zou | Orthogonal Irreducible Decompositions of Tensors of High Orders[END_REF][START_REF] Auffray | Démonstration du théoréme d'Hermann é partir de la méthode Forte-Vianello[END_REF].

Before closing this rather short introduction, it is important to note that in the decomposition of an even-order (resp. odd-order) tensor, odd-order (resp. even order) components are pseudo-tensors 2 , i.e change sign if the space orientation is reversed.

Dimension of G-invariant harmonic spaces

Let G be any subgroup of O(3). The set of tensors T ∈ T which are fixed by G Fix T (G) := {T ∈ T | g.T = T for all g ∈ G} , is called the fixed point set 3 . It is the biggest linear subspace of T that contains G-invariant tensors. Elements of Fix T (G) only defined in terms of G-invariance without any further constraint will be referred to as generic. Since non-generic elements constitute a null set they will not be considered here.

It is worth noting that the dimension of type II invariant subspaces is always 0. And for O(3)-subgroups of types I and III we have the following results 4 concerning harmonic tensor spaces.

Type I subgroups 5 dim Fix H k (Z p ) = 2 k p + 1 ; dim Fix H k (D p ) =    k p + 1 for k even k p for k odd dim Fix H k (T ) = 2 k 3 + k 2 -k + 1 ; dim Fix H k (O) = k 4 + k 3 + k 2 -k + 1 dim Fix H k (I) = k 5 + k 3 + k 2 -k + 1 Type III subgroups dim Fix H k (Z - 2p ) = 2 k + p 2p ; dim Fix H k (D v p ) =    k p if k = 2n k p + 1 if k = 2n + 1 dim Fix H k (D h 2p ) = k + p 2p ; dim Fix H k (SO(2) -) = 0 k = 2n 1 k = 2n + 1 dim Fix H k (O -) = k 3 - k 4 
These elementary results, combined with the knowledge of the isotypic decomposition of a tensor space (3.1), allow to determine the dimension of any G-invariant tensor subspaces. Analytical expressions are constructed according to that procedure.

2. The related tensors are multiplied by the Levi-Civita symbol ijk .

3. As G as a action on the space T, there is an homeomorphism ψ from G to GL(T). Hence the notation g.T should be understand as a classical shortcut to the more rigorous one ψ(g).T.

4. More details can be found in [START_REF] Golubitsky | Singularities and Groups in Bifurcation Theory[END_REF][START_REF] Auffray | Analytical expressions for anisotropic tensor dimension[END_REF]. 5. The formulas for type I subgroup were already provided in [START_REF] Auffray | Analytical expressions for anisotropic tensor dimension[END_REF]. They are summed-up here for the sake of completeness.

G-invariant tensor subspaces

Applying this process the following formulas are obtained:

Type I subgroups • Z p -invariance dim Fix T (Z p ) = 2 n k=0 α k k p + n k=0 α k
When p > k we obtain k p = 0 and so

β oth = n k=0
α k is the number of oriented transverse hemitropic coefficients. β oth is the dimension of a SO(2)-invariant tensor.

•D p -invariance dim Fix T (D p ) = n k=0 α k k p + n 2 k=0 α 2k
When p > k we obtain k p = 0 and so

β tti = n k=0
α k is the number of twisted transverse isotropic coefficients. β tti is the dimension of an O(2)-invariant tensor.

• T , O and I-invariance

dim Fix T (T ) = n k=0 α k (2 k 3 + k 2 -k + 1) ; dim Fix T (O) = n k=0 α k ( k 4 + k 3 + k 2 -k + 1) dim Fix T (I) = n k=0 α k ( k 5 + k 3 + k 2 -k + 1)
Type III subgroups

• Z - 2p -invariance dim Fix T (Z - 2p ) = 2 n k=0 α k k + p 2p
When p > k we obtain k+p 2p = 0 and therefore the tensor is null. In such a case, the tensor is obviously

O(3)-invariant. • D h 2p -invariance dim Fix T (D h 2p ) = n k=0 α k k + p 2p = 1 2 dim Fix T (Z - 2p )
When p > k we obtain k+p 2p = 0 and therefore the tensor is null. In such a case, the tensor is obviously

O(3)-invariant. • D v p -invariance dim Fix T (D v p ) = n k=0 α k k p + n-1 2 k=0 α 2k+1
When p > k we obtain k p = 0 and so

β th = n-1 2 k=0
α 2k+1 is the number of non-oriented transverse hemitropic coefficients. β th is the dimension of an O(2) --invariant tensor.

• O --invariance

dim Fix T (O -) = n k=0 α k k 3 - k 4 

Physical results

In order to illustrate the practical interest of these formulas two examples will be considered: the thirdorder tensor of piezoelectricity and the fifth-order coupling tensor of Mindlin's strain gradient elasticity.

Piezoelectricity

Let us consider Piez the vector space of piezoelectricity tensors, its elements are symmetric under the permutation of their two first indices: P (ij)k , where (..) stands for the minor symmetry. It has been shown [START_REF] Weller | Etude des symétries et modèles de plaques en piézoélectricité linéarisée[END_REF][START_REF] Weller | Piezomagnetic tensors symmetries: an unifying tentative approach[END_REF] that this vector space is isomorphic to:

Piez ∼ = 2H 1 ⊕ H 2 ⊕ H 3
where the notation indicates a pseudo-tensor. And so Piez is defined by the following {α k } family:{0, 2, 1, 1}. As determined in [START_REF] Weller | Etude des symétries et modèles de plaques en piézoélectricité linéarisée[END_REF][START_REF] Weller | Piezomagnetic tensors symmetries: an unifying tentative approach[END_REF][START_REF] Olive | Symmetry classes for odd-order tensors[END_REF] the space of piezoelectric tensors can be divided into the following anisotropic systems:

[Piez] = {[1], [Z 2 ], [Z 3 ], [D v 2 ], [D v 3 ], [Z - 2 ], [Z - 4 ], [D 2 ], [D 3 ], [D h 4 ], [D h 6 ], [SO(2)], [O(2)], [O(2) -], [O -]}

Straightforward applications of our formula give

•Type I subgroups

[Piez] [1] [Z 2 ] [Z 3 ] [SO(2)] [D 2 ] [D 3 ] [O(2)] dim 18 8 6 4 3 2 1
•Type III subgroups

[Piez] [Z - 2 ] [Z - 4 ] [D v 2 ] [D v 3 ] [O -(2)] [D h 4 ] [D h 6 ] [O -] dim 10 4 5 4 3 2 1 1
where the number of coefficients for each physical symmetry class have been determined 6 . These results are obviously in agreement with the ones in the literature [START_REF] Weller | Etude des symétries et modèles de plaques en piézoélectricité linéarisée[END_REF][START_REF] Weller | Piezomagnetic tensors symmetries: an unifying tentative approach[END_REF][START_REF] Zou | Symmetry types of the piezoelectric tensor and their identification[END_REF].

6. A precise definition of symmetry classes can be found in the following references [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF][START_REF] Olive | Symmetry classes for even-order tensors[END_REF][START_REF] Olive | Symmetry classes for odd-order tensors[END_REF].

Mindlin strain-gradient elasticity

Let us consider Ela M the vector space of the coupling tensors in Mindlin strain gradient elasticity. It is the vector space of fifth-order tensors endowed with the following index symmetries [START_REF] Mindlin | On first strain-gradient theories in linear elasticity[END_REF]: M (ij)(kl)m . It has been shown [START_REF] Auffray | Décomposition harmonique des tenseurs -Méthode spectrale[END_REF] that this vector space decomposed as follows :

Ela M ∼ = H 0 ⊕ 6H 1 ⊕ 5H 2 ⊕ 5H 3 ⊕ 2H 4 ⊕ H 5
and so Ela M is defined by the following {α k } family:{1, 6, 5, 5, 2, 1}. As determined in [START_REF] Olive | Symmetry classes for odd-order tensors[END_REF] the space Ela M can be divided into the following anisotropic systems:

[Ela M ] = {[1], [Z 2 ], • • • , [Z 5 ], [D v 2 ], • • • , [D v 5 ], [Z - 2 ], • • • , [Z - 8 ], [D 2 ], • • • , [D 5 ], [D h 4 ], • • • , [D h 10 ], [SO(2)], [O(2)], [O(2) -], [T ], [O -], [O], [SO(3)], [O(3)]}
Therefore Ela M is divided into 28 symmetry classes 7 .This large number of symmetry classes has to be compared with the 8 symmetry classes of classical elasticity [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF], and the 17 symmetry classes of second order elasticity [START_REF] Auffray | Matrix representations for 3D strain-gradient elasticity[END_REF][START_REF] Olive | Symmetry classes for even-order tensors[END_REF]. Straightforward applications of our formula now give •Type I subgroups •Type III subgroups 

[Ela M ] [1] [Z 2 ] [Z 3 ] [Z 4 ] [Z 5 ] [SO(2)] [D 2 ] [D 3 ] [D 4 ] [D 5 ] [O(2)] [T ] [O] [SO (3) 
[Ela M ] [Z - 2 ] [Z - 4 ] [Z - 6 ] [Z - 8 ] [D v 2 ] [D v 3 ] [D v 4 ] [D v 5 ] [O -(2)] [D h 4 ] [D h 6 ] [D h 8 ] [D h 10 ] [O -] dim 56 26 

Conclusion

In this note, analytical formulas giving the dimension of a subspace left fixed under O(3)-subgroups action have been provided and applied to the symmetry classes of some physical tensor spaces. To be applied, the only things that has to be known are the O(3)-isotypic decomposition of the studied tensor space, and the symmetry classes of the tensors spaces. Using the method proposed in [START_REF] Jerphagnon | The description of the physical properties of condensed matter using irreducible tensors[END_REF][START_REF] Auffray | Décomposition harmonique des tenseurs -Méthode spectrale[END_REF], this decomposition is easily obtained, and the determination of the symmetry classes is completely solved in [?,23]. We believe that these simple formulas can be of great help to develop, for example, higher-order constitutive laws [START_REF] Dell'isola | Generalized Hooke's law for isotropic second gradient materials[END_REF][START_REF] Alibert | Truss modular beams with deformation energy depending on higher displacement gradients[END_REF] and to design micro-macro homogenization procedure for anisotropic materials [START_REF] Trinh | Evaluation of generalized continuum substitution models for heterogeneous materials[END_REF]. 

  }, which are O(2)-closed subgroups; Exceptional groups : {T , O, I, SO(3)}, which are the rotation groups of chiral Platonic polyhedrons completed by the rotation group of the sphere.

7 .

 7 Or 29, if the class [O(3)] of null tensors is taken into account. But this point is only a question of convention O(3) type I closed-subgroups Hermann-Maugin Schonflies Group

For a given group G ∈ O(3), by generic G-invariant tensors we mean tensors that only satisfy G-invariance and no other constraint. This is the case of almost all G-invariant tensors.