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Abstract—This paper presents a flexible shape-based texture
method by investigating the co-occurrence patterns of shapes.
More precisely, a texture image is represented by a tree of shapes,
each of which is associated with several attributes. The modeling
of texture is thus converted to characterize the tree of shapes. To
this aim, we first learn a set of co-occurrence patterns of shapes
from texture images, then establish a bag-of-words model on the
learned shape co-occurrence patterns (SCOPs), and finally use
the resulted SCOPs distributions as features for texture analysis.
In contrast with existing work, the proposed method not only
inherits the strong ability to depict geometrical aspects of textures
and the high robustness to variations of imaging conditions
from the shape-based texture method, but also provides a more
flexible way to consider shape relationships and high-order statics
on the tree. To our knowledge, this is the first time to use
co-occurrence patterns of explicit shapes as a tool for texture
analysis. Experiments of texture retrieval and classification on
various databases report state-of-the-art results and demonstrate
the efficiency of the proposed method.

I. INTRODUCTION

As a fundamental ingredient of image structures, texture
conveys important cues in numerous processes of human visual
perception. While, due to the high complexity of the structures
in natural images, the modeling of texture is a challenging
problem in image analysis and understanding. Over the past
decades, tremendous investigations have been made in texture
analysis, see e.g. [1]-[8], among which an active topic is
developing texture models which can efficiently depict both
the statistical and the geometrical aspects of textures and are
robust to the variations of imaging condition as well.

In order to represent the structural aspects of textures, some
mathematical tools, such as Gabor or wavelet-like analysis, are
used to probe the atomic texture elements such as elongated
blobs and terminators in images, and the marginal/joint distri-
butions of the resulted responses are subsequently utilized to
describe the statistical arrangement of texture [1], [2], [9]. The
strong ability of such mathematical tools to handle multi-scale
and oriented structures has made them one of the most popular
tool for texture analysis. However, how to efficiently represent
the highly geometrical aspects of textures, e.g. sharp transitions
and elongated contours, is an open problem. To solve this prob-
lem, alternative wavelet-like approaches, e.g. Grouplet [10] and
scattering transform [8], have been elaborated to enable more
efficient representations of structured textures. In contrast with
explicit models, patch-based method [11] provides another
possibility for describing the structured aspects of textures,
but it is not trivial to capture the multi-scale nature of textures
by this kind of approaches.

Next, for meet the requirement of invariance with respect
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Fig. 1. The proposed texture analysis method with shape co-occurrence
patterns (SCOPs). First images are represented by tree of shapes via Fast Level
Set Transform (FLST) [12]. The branches of the trees are then collected and
partitioned into different clusters, called SCOPs. An image is finally encoded
by the learned SCOPs and the corresponding histograms are used as the texture
model for analysis.

to viewpoint and illumination changes, many invariant texture
descriptors have been proposed in the literature, including the
rotation invariant local binary pattern (joint distribution of gray
values on circular local neighborhoods) [13], the multi-fractal
analysis method [14], etc.. Recently, several approaches rely on
the extraction of local features that are individually invariant
to some geometric transforms, such as scaling, rotating and
shearing [3]. Compared with previous works dealing with
invariant texture analysis, such locally invariant methods do not
need any learning of the deformations. Alternatively, by relying
on morphological operations, the shape-based invariant texture
analysis (SITA) method [4] represents a texture by a tree of
explicit shapes and shape attributes are locally normalized to
achieve invariant texture description. SITA reported superior
performance on invariant texture recognition. One limitation
of this work, however, lies in its difficult to take into account
high-order statistics of shapes, which has been reported as a
crucial factor for texture discrimination [4].



Following the work of SITA [4], this paper contributes a
more flexible shape-based texture analysis framework by inves-
tigating the co-occurrence patterns of shapes. The flowchart is
illustrated in Figure 1. More precisely, given a texture, we first
decompose it into a tree of shapes relying on a fast level set
transformation [12], where each shape is associated with some
attributes. We then learn a set of co-occurrence patterns of
shapes from texture images, e.g. by K-means algorithm. Taking
the learnt shape co-occurrence patterns as visual words, a bag-
of-words model is finally established to describe the texture. In
contrast with SITA [4], the proposed method provides a more
flexible way to consider complex shape relationships and high-
order statics on the tree. Moreover, as we shall see, SITA can
be regarded as a special case of the proposed one, where only
marginal distributions and simple statistics of pair of shapes
were taken into account. To our knowledge, the work in this
paper is the first time to use explicit shape co-occurrence
patterns for the analysis of textures. Several experiments on
texture recognition demonstrate the efficiency of the proposed
analysis method on various databases.

In the rest of the paper, we will briefly recall the back-
ground and related work in Section II. Next, in Section III we
present the proposed SCOPs-based texture analysis method in
detail. In Section IV, the ability of these features to classify
and retrieve textures is demonstrated on various databases.
Section IV concludes the paper with some remarks.

II. BACKGROUND AND RELATED WORK

The proposed texture analysis method relying on shape co-
occurrence patterns is inspired both by the shape-based tex-
ture analysis scheme and texture models using co-occurrence
matrix, and is also closely related to the texton-based texture
modeling paradigm. In what follows, we briefly recall these
backgrounds.

1) Co-occurrence patterns in textures: Co-occurrence ma-
trices [15], [16] is still a popular approach for texture analysis.
It characterizes image textures with a set of sufficient non-
parametric and low-order statistics of pixels. The preliminary
use of co-occurrence matrices involved in statistics of pairwise
pixel relationships in several predefined fashions. Local Binary
Pattern (LBP) [17] extended the concept of co-occurrence
by developing a framework for studying the statistics of co-
occurrent binary patterns. Though, this kind of approaches
demonstrated strong capability to characterize random and near
random textures [17], one limitation of them is, however, a lack
of consideration for large-scale and geometrical structures in
texture images.

2) Texton-based texture analysis paradigm: Julesz [18]
found that the first-order statistics of “a few local conspicuous
features”, called texton, are significant for texture discrimi-
nation. The texton theory in fact led to a kind of structural
approaches to texture description, which first probe texture
primitives as local features and then investigates their orga-
nization. An implicit way to implement the texton theory is to
use wavelet-like analysis, such as Gabor filter banks, to probe
atomic texture elements in texture images and then utilize the
resulted filtering responses to describe the underlying statistical
texture features [1], [2], [8].

An alterative implementation is to explicitly detect atomic
texture elements beforehand and model the spatial arrange-
ments of such textons. For instance, Zhu et al. [9] detected
textons by using a number of image bases with deformable
spatial configurations, which are learned from static texture
images. Lafarge et al. [19] first defined a set of geometric
objects, e.g. segment, line, circle, band etc., as texture elements
and then detected those elements and studied their organization
through Markov Point Process (MPP). Note that a more
general manner is to extract small image patches from texture,
cluster them into textons and finally investigate the underlying
statistics. Lazebnik et al. [3] extended this idea by removing
the redundancy between patch-based textons through utilizing
interest regions in images. Compared with the former implicit
models, the explicit models can more easily handle structured
parts in texture, such as edges and bars, which emerge in
high-resolution image textures. However, the computation or
detection of such textons is not trivial. It is also worth noticing
that modeling the interactions between textons may involve
heavy computation.

3) Shape-based invariant texture analysis: The shape-
based invariant texture analysis scheme, called SITA in brief,
is first proposed in [4]. It is based on a complete morphological
image representation, called topographical map [20], which is
made of all the connected components of the level lines of
images. The idea is to decompose an images into a tree of
shapes (by using fast level set transformation (FLST) [12])
and then develop texture features from the shape ensembles
and their relationships. Note that SITA is also a texton-based
texture analysis method, if we regard the explicit shapes to be
textons in the paradigm. As the analysis scheme use explicit
shapes to characterize textures, it demonstrated strong ability
to depict the geometrical aspects of texture images, and thanks
to the flexible normalization of geometrical transformations
from individual shapes, it showed high efficiency for achieving
geometric invariant texture features and reported superior per-
formance on invariant texture recognition task. However, the
scheme simply assumed that the shape attributes are indepen-
dent and modeled textures by several marginal distributions.
One limitation of such a scheme lies in its difficulty to
handle the relationships of shapes, corresponding to high-order
statistics on the tree, which is reported to be important for
texture discriminations, see [4] for more details, where only
the scale ratio between pair of shapes were considered and
performed better than other attributes.

As mentioned before, this paper tries to combine the shape-
based texture analysis scheme and the co-occurrence patterns
methods in the texton-based paradigm. It can inherit, from the
shape-based texture method, both the strong ability to model
the geometrical aspects of textures and the high robustness to
imaging conditions changes, but also provides a more flexible
way to consider high-order statics on the tree by investigating
the co-occurrence patterns of shapes.

III. TEXTURE MODELS WITH SCOPs

This section presents the proposed texture analysis method
using shape co-occurrence patterns (SCOPs) in detail, follow-
ing a short recall on the basis of SITA [4].



A. Texture modeling by SITA

1) Topographic map: For a gray-scale image u, the upper
and lower level sets are defined respectively as xa(u) = {x €
Q; w(@) > A} and xMu) = {z € Q; u(x) < A}, for
A € R. The topographic map [20] of the image u is made
of the connected components of the topological boundaries of
the upper level sets of the image (they could be equivalently
defined from the lower level sets). Observe that the connected
components of upper level sets (respectively of the lower level
sets) are naturally embedded in a tree structure. Monasse and
Guichard combined these two redundant tree structures, by
drawing on the notion of shape, and developed an efficient
way to compute a hierarchical representation of images [12],
named FLST' as mentioned before. A shape is defined as the
interior of a level line (the boundary of a level set). Figure 2
shows examples of the topographic map representation of a
synthetic image and a texture.

(a) Representation of a synthetic image by its topographic map. Left: an
original digital image; Right: representation of the image by its tree of
shapes, where (A, B, ..., I) denote the corresponding shapes.

(b) Representation of a texture image by its topographic map.

Fig. 2. Topographic map representation, i.e. tree of shapes, of images.

2) SITA [4]: As the topographic map provides a complete
representation of images, the modeling of texture u is con-
verted to the modeling of the tree of shapes. The invariant
texture features first rely on classical shape moments, then
make use of the hierarchical structure of the topographic map.

The (p+ ¢)th order central moments of shape s is defined

as
Hpq = //(x —T)P(y — ) dady, (1

where (Z,7) are the center of mass of s. Denote \; and A
as the two eigenvalues of the normalized inertia matrix of s,
with A\; > Ao, a as its area, p as its perimeter, u(s) to be
the gray value of the pixels only contained by s, us and oy
as the mean and the standard deviation of gray values of all

IThe codes of FLST are included in the free software MegaWave, and can
be downloaded at http://megawave.cmla.ens-cachan.fr/.

pixels inside s, s",r € [1,--- , M] to be the r-order ancestor
of shape s in the tree, and G4z, Amin to be two thresholds
on shape area, the attributes used for characterizing shape s
are given in Table I. As a summarization, the shape attributes
of s can be written as,

f(S) = [67’4267%0’7’0576]’ (2)

each component of which is invariant or robust to different
geometrical variations remarked in Table I, respectively.

TABLE 1. ATTRIBUTES FOR CHARACTERIZING A SHAPE s. FOR THE
NOTATION OF SYMBOLS, PLEASE REFER TO THE TEXT FOR DETAILS.

attribute computation invariance

Elongation €= X2/ similarity
Ellipse-compactness ke = a/(4mV/A1A2) affine

Circle-compactness ke = 4mp? /a similarity
Contrast v = (u(s) — ps)/os affine
Scale ratio a=Ma/(XM, a(s™)) affine
Normalized area | 0 = (Ina — Inamin)/(INGmaz — 1N Amin) affine

SITA uses the marginal distributions of these attributes of
all the shapes contained in an image as features for texture
analysis.

B. Shapes co-occurrence patterns (SCOPs)

As explained in previous section, shapes relationship on the
hierarchical structure of the topographic map plays an impor-
tant role in texture analysis. In spatial domain, such shapes’
relationship corresponds to local co-occurrence structures in
an image. In the topographic map, a hierarchical tree, the
main relationships are sibling and conclusion, corresponding
to small branches on the tree. If we take such small branches
as textons, texture modeling is then to investigate the branches
arrangement laws on the tree.

In our context, we define shape co-occurrence patterns
as simple and local common branches on the tree of shapes,
which reflects specific spatial organization in the topographic
map. Observe that, though the shape co-occurrence patterns are
local on the tree of shapes, they may correspond to large spatial
areas of pixels in the images, which enables us to consider
highly geometrical and complex texture elements, such as co-
occurred elongated or sharp edges.

1) Common SCOPs: Denoting s as the r-order ancestor
of shape s on the tree, s’ as the sibling of s and s” to be the
grand-ancestor of s with 7 > 7, in this paper, we use following
four common SCOPs as

single shape (P) : s,
shape-ancestor (P) : s — s",
shape-ancestor-grandancestor (P3) : s — s — s7,
shape-ancestor-sibling (Py) : s — s” « ',

respectively.

Fig.3 illustrates two common SCOPs P; and P, which
are very popular and efficient in texture presentation as they
encode rich spatial co-occurrence information.

Two parameters for constructing the SCOPs are the interval
order r between the shape and its ancestor, and the levels of
the interval 7 .
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s — s" — s7 (b).

a) The interval r: The interval r controls the correlation
between two adjacent shapes in the tree. Observe that a too
small r makes no sense as the two adjacent shapes will be
almost the same, while a too big r will not be local enough and
results in weak descriptive ability. In our context, we proposed
to use r, that the difference between the areas of the pair of
shapes are lager than the perimeter p of shape s,

—as > p(s)}, 3

where s’ denotes the i-th order ancestor of the shape s.

r = min{é; a

Note that r in fact approximates the number of blur around
objects in nature images. The final choice of the interval r is
the average value given by Eq. (3) on all shapes in the images,
which corresponds to the averaging blur in textures.

b) The number of cascaded ancestors T: T has similar
effect for texture description as 7. Considering the casual
relationship between two cascaded shapes in the tree structure,
T is set to be integer times of r. In our experiments, 7 is set
to be 27 to achieve better performances.

2) Learn SCOPs with K-means: As alocal common branch
on the tree, each SCOP Py, actually contains tremendous image
or shape realizations described by branch attributes. For the
common SCOPs (Py)i=1.... 4, the attributes are

attributes of Pj : f(s),

attributes of Ps : [f(s), f(s7)]
attributes of Ps : [f(s), f(s"), f (57)],
attributes of Py : [f(s), f(s"), f(s")],

where f(s) is the attribute associated to s.

In order to simplify the problem, we need to quantize
the shape realizations of each SCOP into limited number of
clusters, named words of a SCOP. Such words can be learned
from the tree of shapes of a given set of texture images, as
illustrated in Figure 1. In this paper, we use K-means clustering
algorithm to achieve this goal. Figure 4 shows several learned
words for each SCOP.

C. Texture Descriptor from SCOPs

So far, we have the learned dictionary of visual words for
several common SCOPs, in what follows, we then develop
texture descriptor from them.

Following the bag-of-words strategy, each texture can be
modeled by encoding the ensemble of branches of shapes it

L
A ’ o e
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A= 2 ‘
)

Fig. 4. 4 common SCOPs with several learned words in corresponding row.

contained in the images according to he learned dictionary of
SCOPs. Thus the model of a texture t is,

t ~ [WH(Py), (), -, h'(Pg)],

where h'(Py) is the histogram of the SCOP P of texture
image t, and K = 4 in our case.

As a summary, the whole pipeline of SCOP-based texture
analysis method is illustrated in Figure 1.

IV. EXPERIMENTAL RESULTS

This section first explains the experimental setting and
how to compare texture images using the model introduced
in the previous section. We then investigate the performances
of the resulting comparison scheme by confronting it with
state-of-the-art texture descriptors [3], [4], [8], [14], on two
challenging texture data sets for invariant texture recognition.
We replicate, as closely as possible, the experiments described

y [3], [4], [8], [14]. These consist of two tasks, retrieval
and classification, applied to two data sets UIUC [3] and
UMD [21].

A. Experimental setup

1) Comparing textures: Given two texture samples u and v,
associated with models h" = [R*(Py), h*(P2),--- , h*(Pk)]
and h¥ = [hY(P1),h"(P), - ,h"(Pk)] respectively, we
choose to compare histograms through the histogram intersec-
tion kernel (HIK), which is widely used for comparing bag-
of-words model,

K ng

Dist(h",h") = Zme

k=11=1

where h"(Py)[i] is the i-th bin of the histogram h*(P) and
ny, is the number of bins.

)il h* (Pe)li]). (4

Moreover, we also use the approximated geodesic distance
to compare two texture samples, as it has demonstrated its
capability to improve recognition performances [4]. More
precisely, based on the computed pairwise distance matrix
using HIK as in Eq. (4), we construct the k-nearest neighbor
graph of the samples (two vertices are connected if one is
among the k-nearest neighbors of the other). The geodesic
distance between two points is then approximated by the
shortest path between them on the graph. This shortest path
may for instance be computed using Dijkstra’s algorithm.



2) Data sets: We use two dataset, the UIUC [3] database
and the UMD database [21]. Both of them contain 25 texture
classes, each one being composed of 40 samples (i.e. 1000
samples altogether). The UIUC database is of size 640 x 480,
and the samples are subject to drastic viewpoint changes,
contrast changes or even non-rigid deformations inside each
class. See Figure 6 for an example. In contrast, the UMD
Database shows strong viewpoint and scale changes, and
significant contrast differences. A significant proportion of
this database is made of textures consisting in the repetition
of objects. Moreover, the resolution of the images in UMD
Database is 1280 x 960.

3) Parameters setting: In our experiments, the parameter
r is estimated and set to be 5 and 7 = 2r for both the two
texture data sets. The minimal area a,,;, and maximal area
Gmaz Of the shapes are chosen as 3 and 8000 respectively.
For the 4 common SCOPs, the numbers of clusters in K-
means algorithm are set to be {100, 200, 300, 300} in the bag-
of-words strategy, which are used to construct the histogram
representation of each texture sample.

B. Retrieval experiments

The retrieval experiment consists in using one sample of
the database as a query to retrieve the /V,, most similar samples
in the data set. For evaluation, the average number of correctly
retrieved samples (generally called recall) when the query
spans the whole database is drawn as a function of Nr.

Figures 5 (a) and (b) show the retrieval results of the pro-
posed SCOPs-based descriptors with geodesic (SCOP+Geo) on
the UIUC and UMD database. Observe that the performances
of SCOPs+Geo are largely better than those of [4], [8] on
both data sets. More precisely, when the recall number is 39
the retrieval rates of the proposed method are respectively
89.4% and 89.3% on the UTUC and UMD database, comparing
with 61.2% and 66.1% of the scattering transform features
with geodesics (ST+GEO) and 78.5% and 87.0% of the SIAT
approach with geodesics (SITA+Geo).

It is interesting to note that the proposed SCOP+Geo
method achieve extremely high retrieval rates on textures with
3-D deformations, for instance 100% it can retrieve the Plaid
class in UIUC data set with 100% precision, which is reported
to be very difficult to handle, see Figure 6 for an example’.

C. Classification experiments

For the classification experiment, the SVM classifiers with
the histogram intersection kernel (HIK) is be used to classify
the images. Different number of samples (5, 10 and 20 in our
experiments) are extracted from each class in the dataset and
used as a training set for classification. The final classification
rate are the average of that achieved by 200 times random
splitting of the data sets.

On the UIUC data set, when the training size is 20,
the scattering transform with “log, scale average, multi-scale
train” strategy outperforms other methods, while the proposed
SCOP gives comparable results. However, when the training
size decreases (e.g. from 20 to 5), our SCOP-based method

2More results can be founded in the supplemental materials.

performs much better than all other existing approaches (about
4%). Similar performances are obtained on UMD data set.
A quantitative comparison on classification performances of
several recent texture analysis methods are given in Table II.

TABLE II. COMPARISON OF CLASSIFICATION ACCURACY ON
UIUC [3] DATABASE AND UMD DATABASE [14].

UIUC UMD
Training size 5 10 20 5 10 20
Lazebnik [3] | 872 92,6 960 | 847 89.1 925
WMES [14] | 934 97.0 986 | 934 97 98.7
SITA[4] | 915 950 975 | 951 987 99.1
ST [8] | 933 978 994 | 963 989  99.7
SCOP | 958 979 989 | 97.1 987 994
SCOP+Geo | 97.7 984 987 | 979 988 993

So far, we can conclude that the proposed texture analysis
approach with SCOPs can achieve comparable classification
performance with the-state-of-the-art texture analysis methods
when using a large number of training samples, while, it
largely outperforms all existing texture analysis approaches
when a small set of training samples are available, especially
for image retrieval, where only one training sample is at hand.

V. CONCLUSION

This paper introduced a texture analysis framework by
investigating the co-occurrence patterns of shapes via bag-
of-words strategy. The proposed method inherits the good
properties from the shape-based texture method, and provides
a more flexible way to consider shape relationships and high-
order statics on the tree. The experiments of texture retrieval
and classification on two challenging texture databases demon-
strate that the proposed method has strong ability to depict
geometrical aspects of textures and is very robustness to the
changes of viewpoints and illuminations. Remark that the
SITA [4] is actually an special case of the proposed method,
where the shape attributes are supposed to be independent
and only their marginal distributions are adopted for texture
characterization. As the method shows great potentials in
depicting the geometrical aspects of textures as well as being
robust to scale and illumination changes, it may be a good tool
for analyzing high-resolution remote sensing images, where
thousands of objects with various sizes and colors emerge in
the same scene [22]. Another possible work in the future is to
use the proposed texture features as visual cues for achieving
image segmentation.
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