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In the framework of deployable structures, we focus on the modeling of tape springs,

i.e. rod-like elastic bodies with thin-walled cross-section which develop localized folds due

to a flattening of the cross-section. A rod model with highly deformable cross-section and

few kinematics parameters is derived from a complete shell model, for large displacements,

large rotations and dynamics. The simplicity of the model is achieved by introducing an

elastica kinematics to describe the changes in the cross-section shape. This model is able

to handle the formation of localized folds which can move along the rod line, merge or

split, allowing to simulate complex scenarios of folding and deployment.

Nomenclature

a Initial length of the cross-section curve (m) u1 Translation of the cross-section along e1 (m)

h Initial thickness of the shell (m) u3 Translation of the cross-section along e3 (m)

L Initial length of the rod line (m) θ Rotation of the cross-section around e2 (rad)

s1 Longitudinal curvilinear coordinate (m) β Opening angle of the cross-section curve (rad)

s2 Transverse curvilinear coordinate (m) βe Opening angle for s2 = a/2 (rad)

t Time (s) eij Membrane strains

O Origin of the fixed orthonormal frame kij Bending strains(m-1)

G Material point on the rod line Ue Strain energy (J)

M Material point on the cross-section curve T Kinetic energy (J)

ei Fixed orthonormal frame i-th unit vector A Tensile stiffness of the shell (N)

eri Rotated orthonormal frame i-th unit vector Dk Bending stiffnesses of the shell (N.m2)

ari Rod line natural frame i-th vector ρ Density (kg.m-3)

y First coordinate in the cross-section plane (m) E Young’s modulus (Pa)

z Second coordinate in the cross-section plane (m) ν Poisson’s ratio
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I. Introduction

A major challenge for satellite manufacturers is to develop ingenious systems as compact as possible
in order to optimize the volume needed for transportation and storage. Deployable structures are one of
the means used to answer these problems. In particular, deployable elastic structures are an interesting
alternative to articulated rigid structures with hinges and bolts, thanks to their high potential of flexibility.
Indeed, they offer better compacity through folding or coiling and are capable of deploying themselves in an
autonomous way during the set-up.

Tape springs are an example of such slender elastic structures. This kind of structures has been widely
studied in the nonlinear framework 2,9,16 since they suffer from geometrical instabilities that can lead to
a sudden loss of stiffness as well as extreme deformation shapes, as shown in Figure 1. Moreover their
various applications in the aerospace field 11,12 , but also in biophysics, biomechanics or even in micro or
nanomechanics 15 are as many motivations to develop robust models 1,14 .

In its free state, a tape spring can be assimilated to a straight thin-walled beam with a circular open
cross-section of constant transverse curvature. Under progressively applied bending or compressive loads
(see Figure 1), this structure will behave at first like a beam before the sudden appearance of localized folds.
These folds indicate snap-through buckling 12 and appear thanks to a localized flattening of the cross-section
that drastically reduces the moment of inertia, leading to the concentration of the bending deformation in
the fold area. Away from the fold, the tape spring remains almost straight and undeformed. Thus the
deformed tape spring may be divided into three characteristic areas: the folding area, an undeformed area
and a transitional area. Everyone can experience with a Carpenter tape the formation of one or several folds,
their motion along the tape, as well as the splitting of a single fold into two or the merging of two folds into
one...

Figure 1. Folding of a tape spring.

The modeling of tape springs has already been addressed in literature and can be classified into two main
approaches. The first one consists in the full computation of a nonlinear shell model for large displacements
and large rotations, and produces precise results in static and dynamic for any loading configuration and
boundary conditions 13,18,8 . But this approach does not take into account the specificity of a tape spring
and leads to hard to drive calculations and heavy simulations.

The second approach consists in the use of a combination of rigid bars and nonlinear spiral springs to
model the tape and was inspired by the observation that a tape spring remains straight and undeformed
away from the folds 12 . Thus the spiral springs account for the stiffness of the fold areas, and the rigid bars
of variable lengths represent the undeformed parts. This kind of model allows the simulation of complex
deployment scenarios with very few parameters but requires the introduction of the folds ab initio, which
limits the panel of scenarios that can be simulated.

An intermediate approach would consist in modeling tape springs as rods with highly deformable cross-
section. Several methods are used to account for the deformation of the cross-section in classical beam
models, e.g. the introduction of additional degrees of freedom 17,4,10 or the discretization of the cross-
section with finite elements 19 . The model proposed herein is based on this intermediate approach but takes
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into account the possibility of large relative displacements in the cross-section with a kinematics more suited
for tape springs.

A one-dimensional continuous rod-like model is derived from a nonlinear shell model for large displace-
ments, large rotations and dynamics thanks to the introduction of kinematic and sthenic assumptions on the
behavior of the cross-section. In addition to the classical hypotheses of beam theory, the model’s originality
relies on the use of an elastica kinematics to describe the cross-section deformed shape with few parameters.
These assumptions are used to reduce the expressions of the shell energies before performing an analyti-
cal integration over the cross-section in order to obtain the one-dimensional model. Using the Hamilton’s
principle, these expressions are then directly introduced in the FE software COMSOL which performs an
automatic differentiation. The obtained model is appropriate for simulating complex folding and deployment
scenarios 6,7 .

II. The rod model

II.A. Kinematic description and basic assumptions

We consider a tape spring regarded as a rod, and made of a planar circular cross-section curve extruded
along an initially straight rod line as shown in Figure 2. A fixed orthonormal frame (O, e1, e2, e3) is chosen
such that the axis (O, e1) is directed along the rod line and that the plane (O, e1, e3) is the plane of symmetry
of the cross-section curve.

Figure 2. Parametrization of a tape spring.

A curvilinear coordinate system (s1, s2) ∈ [0, L] × [−a/2, a/2] is then introduced to describe the geometry
of the tape spring, with L the initial length of the rod line and a the initial length of the cross-section curve.
In the deformed configuration, the position of a material point M is given by:

OM(s1, s2, t) = OG(s1, t) +GM(s1, s2, t) (1)

where G is the point of the cross-section attached to the rod line.

Given the load cases we will consider, we restrict our study to the plane case. Thus the motion of the rod
line is restrained to the plane (O, e1, e3) whereas the cross-section curve, initially symmetric with respect
to this plane, is assumed to remain symmetric in any deformed configuration. The cross-section position is
then given by:

OG(s1, t) = [s1 + u1(s1, t)] e1 + u3(s1, t) e3 (2)

where u1(s1, t) and u3(s1, t) are the translations of the material point G.

The proposed rod model kinematics relies on three assumptions:

(i) the cross-section curve remains in a plane after deformation,
(ii) the section plane is orthogonal to the tangent vector of the rod line in the deformed configuration,
(iii) the cross-section curve is considered inextensible.

3 of 10



The two first assumptions are classical hypotheses of Euler-Bernoulli beam theory. Assumption (i) makes it
possible to introduce a rotated frame (G, er1, e

r
2, e

r
3), image of the frame (G, e1, e2, e3) through the rotation

of angle θ(s1, t) around the axis e2: er1 is a unit vector orthogonal to the section plane in the deformed
configuration, er2 is set to e2 and er3 = er1× er2. Assumption (ii) implies that the vector er1 is collinear to the
natural rod line tangent vector ar1 and introduces a constraint between u1, u3 and θ.

The coordinates of the material point M in the local frame (G, er2, e
r
3) are given by y(s1, s2, t) and

z(s1, s2, t). Thus assumption (iii), which is equivalent to introducing an elastica to describe the kinematics
of the cross-section curve, leads to the following relation:

||GM,2(s1, s2, t)|| − ‖G0M0,2(s2)‖ = (y,2(s1, s2, t))
2 + (z,2(s1, s2, t))

2 − 1 = 0 (3)

where X,i stands for the partial derivative of X with respect to si. By introducing the angle β(s1, s2, t)
between the tangent to the cross-section curve and the vector er2 (see Figure 2), we get:

{

y,2(s1, s2, t) = cosβ(s1, s2, t)

z,2(s1, s2, t) = sinβ(s1, s2, t)
(4)

When making assumption (iii), we suppose that the most important effect governing the changes in the
cross-section shape is the adjustment of the overall bending inertia of the rod in order to minimize its elastic
energy: the flattening of the cross-section concentrates the bending deformation and makes the formation of
localized folds possible. In doing so we suppose that transverse strains can be neglected when calculating the
tape spring bending inertia and that the inextensibility assumption is enough to describe the overall shape
of the cross-section curve. It is thus possible to use only one kinematic parameter β(s1, s2, t) to describe
the behavior of the cross-section for large displacements and large rotations. This way of parametrizing the
cross-section curve is clearly inspired by the Elastica theory 3,5 .

Moreover, we suppose that the cross-section curve stays circular with a curvature radius function of s1
only, and we introduce the opening angle of the cross-section curve βe(s1, t) = β(s1, s2 = a/2, t). Thus the
angle between e2 and the tangent to the cross-section curve can be written as a function of s2:

β(s1, s2, t) =
2 s2
a

βe(s1, t) (5)

Finally, the expression of βe(s1, t) makes it possible to go back from y,2 and z,2 to the local coordinates y
and z:















y(s1, s2, t) =

∫ s2

0

cosβ(s1, ξ, t) dξ =
a

2 βe(s1, t)
sin

(

2 s2
a

βe(s1, t)

)

z(s1, s2, t) =

∫ s2

0

sinβ(s1, ξ, t) dξ =
a

2 βe(s1, t)

(

1− cos

(

2 s2
a

βe(s1, t)

)) (6)

Thus the tape spring kinematics is totally described by four kinematic parameters attached to the rod line
and functions of s1 and t only:

(i) the translations u1 and u3 of the reference point of the cross-section,
(ii) the rotation θ of the cross-section plane around e2,
(iii) and the angle βe characterizing the opening of the cross-section.

The approach presented herein for relatively simple cross-section shape and kinematics may be generalized
to more complex shapes or kinematics by choosing an appropriate discretization (e.g. Ritz, FE...) of the
angle β(s1, s2, t) with respect to the transverse coordinate s2 and by adding some kinematic parameters.

II.B. Strains measures and strain energy

At the beginning the tape spring is regarded as a thin shell. The strain energy is thus calculated using
the membrane and bending strains defined respectively by the Green-Lagrange tensor and by the difference
between the initial and actual curvature tensors of the shell. All tensors are expressed thanks to the kinematic
parameters u1, u3, θ and βe.
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Since the shell thickness h is very small compared to the length of the cross-section curve a, local and
global buckling will prevent large strains to occur, making the assumption of small membrane strains possible.
Moreover only the tensile membrane strain e11 is needed due to further assumptions that will be exposed
later on. The simplified expressions for the membrane strains and bending curvatures are then:



















e11 = er + z kr + es

k11 = −kr cosβ + ks11
k22 = ks22
k12 = ks12

where

{

er = u1,1 +
1
2

(

u2
1,1 + u2

3,1

)

kr = θ,1
and



















es = 1
2

(

y2,1 + z2,1
)

ks11 = z,11 cosβ − y,11 sinβ

ks22 = β,2 − β0,2

ks12 = β,1

(7)

Expression (7) shows strains induced by the global rod kinematics (usual tensile strain er and bending
curvature kr for large displacements and large rotations) and strains induced by the cross-section evolution
(es and ksαβ only depending on the angle β) which constitute the originality of the model.

The strain energy of an elastic shell is set to its usual expression:

Ue (u1, u3, θ, β) =

∫ L

0

∫ a/2

−a/2

1

2
(eαβ Nαβ + kαβ Mαβ) ds2 ds1. (8)

where Nαβ and Mαβ are respectively the membrane stresses and bending moments. Since the shell width a
is small compared to the tape spring length L, we suppose that N22 = N12 = 0 according to classical beam
theory assumptions. Moreover the shell is considered elastic and orthotropic without any membrane-bending
coupling. Thus the constitutive equations of the shell are written:

N11 = Ae11 M11 = D1 k11 +D3 k22 M22 = D3 k11 +D2 k22 M12 = D4 (2 k12)

with A, D1, D2, D3 and D4 the elastic constants of the shell.

Finally, the strain energy can be split into three parts:

Ue(t) = U r
e (t) + Us

e (t) + U rs
e (t)































U r
e (t) =

∫ L

0

1

2

(

Aa (er)
2
+
(

Az2 +D1 cos2 β
)

(kr)
2
+ 2Az er kr

)

ds1

Us
e (t) =

∫ L

0

1

2

(

A (es)
2
+D1 (ks11)

2
+D2 (ks22)

2
+ 2D3 ks11 k

s
22 + 4D4 (ks12)

2
)

ds1

U rs
e (t) =

∫ L

0

(

Aer es +Akr z es − kr
(

D1 cosβ ks11 +D3 cosβ ks22
))

ds1

(9)

where the overline denotes an integration with respect to s2: X(s1, t) =

∫ a/2

−a/2

X(s1, s2, t) ds2.

For the model presented in this section all these integrals can be calculated analytically, providing an
explicit expression of the strain energy density depending on the kinematic parameters and geometric char-
acteristics of the tape spring. The first term U r

e corresponds to the classical strain energy of a rod with a
coupling between axial stretching and bending which appears because the rod line does not pass through the
cross-section centroid. The second term Us

e only depends on the variable β and represents the strain energy
due to the variation of the cross-section shape, independently from the overall rod behavior. The last term
U rs
e introduces a coupling between the overall rod behavior and the variation of the cross-section shape.
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II.C. Kinetic energy

Starting from the kinetic energy of the initial shell model and neglecting the rotation inertia, we introduce
the chosen kinematics and obtain the following expression for the kinetic energy:

T (t) = T r(t) + T s(t) + T rs(t)

with































T r(t) =

∫ L

0

1

2

(

a ρs
(

u̇2
1 + u̇2

3

)

+ ρs z2 θ̇2
)

ds1

T s(t) =

∫ L

0

1

2
ρs

(

ẏ2 + ż2
)

ds1

T rs(t) =

∫ L

0

ρs
(

−u̇1

˙̂
(z sin θ) + u̇3

˙̂
(z cos θ)

)

ds1

(10)

where the notation Ẋ stands for the time derivative of X .

III. Numerical results

III.A. Numerical Implementation

For the numerical simulations we use the FE software COMSOL to solve the weak formulation of the
elastodynamic problem obtained from our one-dimensional model applying the Hamilton principle. Indeed
COMSOL offers the possibility to introduce directly the expressions for the elastic and kinetic energies and
is able to proceed to an analytical differentiation of these expressions. Only the kinetic energy T requires an
explicit calculus of variations because an integration by parts with respect to time is needed. A Lagrange
multiplier (fifth degree of freedom) is used to constrain the translations u1 and u3 and the rotation θ. Finally,
a finite element discretization of the rod line is done before solving this constraint problem for the stationary
points of the Hamiltonian.

Length Width Thickness Initial Young Poisson Density

L a h angle βe
0 modulus E ratio ν ρ

1170 mm 60 mm 0.15 mm 0.6 rad 210 000 MPa 0.3 7800 kg.m−3

Table 1. Tape spring properties

The results presented hereafter demonstrate the ability of the model to account for complex scenarios
of folding, coiling and deployment in dynamics, showing very fast phenomenons like pendulum or inertia
effects. The geometric and material properties of the studied tape spring are presented in Table 1. In the
following figures, the 3D deformed shapes have been rebuilt from the one-dimensional rod model solution
and the kinematics exposed in Section II. Other examples may be found in the following references 6,7 .

III.B. Static test - Splitting of a fold into two

1 2 3

4 5 6

Figure 3. Folding of a tape spring followed by the splitting of the fold into two.
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This first example (see Figure 3) illustrates the capacity of the model to account for large rotations as
well as the creation of a fold and its parting into two. The left end of the tape spring being clamped, a first
fold is created by imposing a flattening moment (associated to the kinematic parameter βe) on the central
cross-section (see deformed shape 2 ). A rotation θ of the cross-section is then applied at the other end until
both arms of the tape are collinear, the flattening moment being released at the same time (see deformed
shape 3 ). From Figure 4 we notice several characteristics of a tape spring folding area :

(i) cross-sections are flat in the fold area (see Figure 4 (a)),
(ii) and the fold radius is constant, equal to the slope of the curve of θ function of s1 (see Figure 4 (b))

as well as equal to the transverse curvature radius of the undeformed cross-section.

Displacements u1 and u3 are then fixed at both ends and opposite increments of rotation are imposed
leading to the splitting of the fold into two new folds (see deformed shapes 4 and 5 ) which move along

the tape until both arms become vertical (see deformed shape 6 ). During the first spacing step (deformed

shapes 4 and 5 ) the flat area (i.e. the fold region) spreads along the tape and localized axial compression
occurs along the straight parts of the tape spring because the global buckling induces axial compression
along the tape longitudinal edges. This leads to a buckling mode in which the cross-section shape oscillates
to relieve the compression and results in oscillations (see Figure 4 (a)) of the value of the opening angle βe

of the cross-section curve.

0.6

0.5

0.4

0.3

0.2

0.1

0
0 200 400 600 800 1000

(mm)

(r
a
d
)

3

4

6

-5

-4

-3

-2

-1

0

1

2

(r
a
d
)

(mm)
0 200 400 600 800 1000

(a) (b)

4

3

6

Figure 4. Evolution of βe and θ during the loading.

The snapthrough that happens between states 4 and 5 makes the compressive stresses disappear and
leads to the creation of a second fold. In Figure 4 (a), we observe the beginning of the snapthrough with
a small reclosing of the cross-section at the middle of the tape (see curve 4 ) and we see that the region

between the two folds regains its initial transverse curvature (see curves 3 and 6 ). Looking at Figure 4 (b)
we also notice that the flat area of both folds have the same length and folding radius. Moreover this coiling
radius is almost equal to the transverse curvature radius of the undeformed tape spring, which is in perfect
agreement with the geometrical properties characterizing the fold area exposed by Seffen & Pellegrino 12 .

III.C. Dynamic test - Uncoiling of a partially coiled tape spring

This second example shows one of the uncoiling modes of a tape spring as described in 12 . In the studied
case (see Figure 5), the tape is partially coiled with a coiling radius equal to the curvature radius of the
cross-section in the undeformed configuration. When the end cross-section of the straight part of the tape
is released, the coiled part keeps a constant coiling radius during the whole deployment phase. This would
not be the case if the coiling radius was not equal to the curvature radius, indeed the coiling radius would
have increased during the deployment, making the uncoiling of the tape spring less regular.
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Figure 5. Uncoiling of a partially coiled tape spring and evolution of βe during the deployment.

III.D. Experimental comparison - Deployment of a tape spring with a folded part

In this last example we compare our numerical results to experimental ones obtained by Seffen & Pellegrino
in 1999 12 . The tape, subjected to gravity, is vertical and clamped at the bottom end whereas the other end is
folded on half the total length (see Figure 6). The folded end is then released instantaneously without initial
speed. During the first step of deployment, the fold moves down along the tape as the free end straightens up
progressively. The clamped boundary condition prevents the bottom cross-section from flattening, causing
the fold to rebound when it arrives at the bottom of the tape. As the fold moves up, the free arm of the
tape goes through the vertical position and the inertia effects cause the formation of a new fold of opposite
curvature in the fold area before its complete disappearance. This new fold is also going to move along the
tape before the tape recovers its undeformed shape. We also observe compressive stresses in both arms of
the tape spring during the second step of deployment.

1 2 3 4

Figure 6. Deployment of a tape spring with a folded part.

This test was first simulated without any damping (see Figure 7 (a)). In this case, our model gives
correct results in the beginning but becomes less accurate after the first rebound of the fold against the
clamped boundary condition (see deformed shapes 3 and 4 ). By adding a weak damping to our model,
the results obtained for the same test are now accurate until the second rebound of the fold (see Figure
7 (b)). Furthermore, after the 2nd rebound three-dimensional effects occurs in the experimental case that
cannot be taken into account with our planar model, thus it is not pertinent to compare our results to the
experimental case after this 2nd rebound. Since the damping in the experimental case seems to come mainly
from the rebound of the fold on the clamped boundary condition, the damping in our model has been applied
to the kinematic variable βe which is the most affected by the rebound.
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(a)

t (s) t (s)

Figure 7. Evolution of θ and λ during the deployment. Dots and crosses refer to experiment, black lines refer to Seffen

& Pellegrino discrete model 12 , red and green lines refer to our model 7 .

IV. Conclusion

In this work a rod model with highly deformable cross-section suitable for thin-walled and curved cross-
sections has been exposed. This model accounts for large displacements, large rotations and dynamics.
The equations and results submitted in this paper are for the limiting case of symmetric (i.e. in-plane)
displacements but the case of non-symmetric displacements including out-of-plane bending and torsion is
currently being studied. In both cases the approach used is the same. Starting from a classical shell model,
an elastica kinematics is introduced to account for the changes of the cross-section shape. Moreover beam-
like assumptions are made, e.g. by neglecting the transverse membrane stresses when compared to the axial
membrane stresses. The elastic and kinetic energies are then derived and the model is implemented in the
FE software COMSOL, allowing to use the Hamilton principle to solve the elastodynamic problem.

The one-dimensional model with only four degrees of freedom (in-plane displacements case) has been used
to model several sequences of folding, coiling and deployment of a tape spring. It has proved its ability to
account for several phenomena such as the sudden creation of a fold, the splitting of a fold into two, the
inertia or pendulum effects... Its generalization to the out-of-plane case should allow the modeling of the
deployment and the stability of more complex structures, made for example of an assembly of tape springs.
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6F. Guinot, Déploiement régulé de structures spatiales : vers un modèle unidimensionnel de mètre ruban composite,
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