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Abstract — This work is focused on the modeling of rod-like elastic iesdwith thin-walled curved
cross-sections such as tape springs, which develop leddiids due to a flattening of the cross-section.
Starting from a complete nonlinear elastic shell modeldamodel with highly deformable cross-section
is derived for large displacements, large rotations andaayos, by introducing an elastica kinematics
to describe the in-plane changes of the cross-section sHdye model is able to handle the formation
of localized folds which can move along the rod line, mergemit, allowing simulation of complex
scenarios of coiling, folding and deployment.

Key-words— rod, tape spring, fold, dynamics.

1 Introduction

A major challenge for satellites manufacturers is to dgvetgenious compact (for transport and
storage) systems capable of deploying themselves in an@utmus way during the set up. Since they
offer better compacity (folding, coiling), deployable stia structures are an interesting alternative to
articulated rigid structures with hinges and bolts. In finésnework, Thales Alenia Space is working
on new concepts based on structures using tape springsieBlelatic structures, of which tape springs
are only an example, have been widely studied in the nonliinamework because they can suffer from
geometrical instabilities that can lead to a sudden lossiféiesss and extreme deformation shapes. The
various applications of such structures not only in the sgoe field [9] [10], but also in biophysics,
biomechanics or even in micro or nanomechanics [14] are ay mativations to develop robust models
of nonlinear elastic structures [1] [12].
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Figure 1: Folding of a tape spring.

In its free state, a tape spring can be assimilated to a ktréim-walled beam with a circular open
cross-section of constant transverse curvature. Undgressively applied bending or compressive loads
(see Figure 1), this structure behaves at first like a beanrdéfie sudden appearance of localized folds,
indicating snap-through buckling [10]. These folds areated thanks to a localized flattening of the
cross-sections which drastically reduces the moment dfignend concentrates the bending deformation
in the fold area. We shall note that away from the fold the tspéng remains almost straight and



undeformed. Playing with a carpenter’s measure tape, aneasily experience the formation of one or
several folds, the motion of a fold along the tape, the spjtof a single fold into two or the merging of
two folds into one...

The modeling of tape springs in particular has already bddregsed in literature and can be classified
into two main approches. The first one consists in the full potation of the nonlinear shell model in
the framework of large displacements, large rotations amauehics [7] [11] [15]. This approach leads
to hard to drive calculations and heavy simulations but joless accurate static and dynamic solutions
for any loading configurations and boundary conditions. ¥Wae the first approach does not account
for tape spring specificities, the second one is based onhbkereation that away from the fold the
spring remains straight and undeformed. In this approaehdape is therefore modeled using discrete
articulated bars [10]: spiral springs, of appropriate motwetation characteristic, render the stiffness of
the fold areas and rigid bars, of variable length, representegions that remain straight. This kind of
model makes the simulation of a large panel of deploymentasaes easy but requires the introduction
of the foldsab initio.

The model proposed herein is intermediate between thosapwmaches. It is derived from a non-
linear shell model which has been reduced to a one dimensiomatinuous rod-like model
including cross-section changes by taking into accountspiang specificities (overall rod-like shape,
creation of localized folds). Beam models with deformabtess-sections have already been published in
literature [13] [8] [3]. The main idea is always to incorpta&inematic parameters to describe in-plane
and out-of-plane (wraping) relative displacements. Ties@nt work follows theses approaches but takes
into account the possibility of large relative displacetsen the cross-section with a kinematics more
suitable for modeling tape spring behavior. The model ole@j which can manage the creation of new
folds, is appropriate for simulating complex folding anglbdyment scenarios [5] [6].

2 Therod mod€

2.1 Kinematic description and basic assumptions

A tape spring is regarded as a rod, and is represented by tailynstraight rod line and a planar
circular cross-section curve, as shown in Figure 2. The fordftbnormal framéO, e;, e,, €3) is chosen
such that the axi§O, e;) contains the rod line and that the plaf@, e;, e3) is the plane of symmetry of
the cross-section curve.
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Figure 2: Representation of a tape spring.

We introduce a curvilinear coordinate systéms,) € [0,L] x [—a/2,a/2] to describe the geometry
of the tape, withL the initial length of the rod line and the initial length of the cross-section curve. In
the deformed configuration, the position of a material pMns given by:

OM = 0G +GM, (1)

whereG is the point of the cross-section attached to the rod line.
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For simplicity, we restricted our study to the plane case:rtotion of the rod line is restrained to the
plane(O, e, e3) and the cross-section curve, initially symmetric with esgo this plane, is assumed to
remain symmetric in any deformed configuration. Thus thesgection position is given by:

OG = [s1+ Uy (s1,t)] €1 + Uz (s1,t) €3, 2

whereu; (s1,t) andus (s1,t) are the translations of the material pot

The proposed rod model kinematics relies on three assungptio

() the cross-section curve remains in a plane after deftoma
(i) the section plane is orthogonal to the tangent vectdhefrod line in the deformed configuration,
(iif) the cross-section curve is considered inextensible.

The two first assumptions are classical hypotheses of Bdanoulli beam theory. Assumption (i)
makes it possible to introduce a rotated frafﬁﬁe&,%,%), image of the framéG, ey, e, e3) through
the rotation of angl® (s;,t) around the axig, ( €] is a unit vector orthogonal to the section plane in the
deformed configuratiorg, is set toe, ande; = €] x €, ). Whereas assumption (ii) implies that the vector
€ is colinear to the natural rod line tangent vecibr

The coordinates of the material poilt in the local frame(G,eg,e%) are given byy(s;,s,t) and
z(s1,%,t). Thus assumption (iii), which amounts to introducingedasticato describe the kinematics
of the cross-section curve, leads to the following relation

(GM) - (GM) , = (V2)*+(22)* = (Yo2)* + (202)° = 1, 3

whereX; stands for the partial derivative &f with respect tos. By introducing the angI@ (si,s,t)
between the tangent to the cross-section curve and ther&digee Figure 2), we get:

yo=cosl and zp=sinp. 4)

When making assumption (i), we suppose that the most itapbeffect governing the changes in
the cross-section shape is the adjustment of the overatlibgrnertia of the rod in order to minimize
its elastic energy: the flattening of the cross-section entrates the bending deformation and makes the
formation of localized folds possible. In doing so we alspmse that transverse strains can be neglected
and that the inextensibility assumption is enough to dbsdtie overall shape of the cross-section curve.
It is thus possible to use only one kinematic parampiai, s,t) to describe the behavior of the cross-
section for large displacements and large rotations. Thig W parametrize the cross-section curve is
clearly inspired by thé&lasticatheory [2] [4].

Moreover, we suppose that the cross-section curve staydanir Therefore the curvature radius can
be written as a linear function &$:

Blsts2) = 2 (5wt ©

wherep®(si,t) =B (sl,sQ = 5%,t).

This expression off makes it possible to go back from the expressiony oandz, to the local
coordinatey andz

Visus2t) = [ Va(susat)d& = [ cosp(e1.8.0) 68 = 5o sin(2°% ).
©
a

2s90) = [ Za(su )06 = [ sinp(sy, &) d = o (1-cos(28°Z) ).



Finally the tape spring kinemtatics is totally describedobyy four kinematic parameters attached to
the rod line and functions &, s, andt:

(i) the translationsl; andug of the cross-section,
(i) the rotation® of the cross-section aroursg,
(i) and the angle3 characterizing the shape of the cross-section.

The approach presented herein for a cross-section shape kindmatics relatively simple may be
generalized to more complex shapes or kinematics by chpesirappropriate discretization (e.g. Ritz,
FE, etc.) of the angl§d(s;,,t) with respect to the transverse coordinateand by adding some
kinematic parameters. At this time we are working on geimngl our approach to non-symmetric
displacements including out-of-plane bending and totsion

2.2 Strainsmeasures and strain energy

The tape spring is first regarded as a thin shell. The strarggns thus calculated using the membrane
esp and bending,g strains defined respectively by the Green-Lagrange temmbibg the difference
between the initial and actual curvature tensors of thel.skdl tensors are expressed thanks to the
kinematic parametens, uz, 6 andp.

The strain energy is therefore set to its usual expressioa $bell:

L ra/2 1
Ue(us,Us:8.8) = | [ = (eupNap + kapMag) dspdls. (7)
0 J-ap2?2
whereNyg andMgg are respectively the membrane stresses and bending moments

Since the shell widtha is small compared to the tape spring lendth we suppose that
N2> = N12 = 0 according to classical beam theory assumptions. Mordbeeshell is considered elastic
and orthotropic without any membrane-bending couplingusTtihe constitutive equations of the shell
are written:

Ni1=Aen; M11 = D1ki1+ D3zkoo M22 = D3ki1+ Dokoo M1z = Da (2ki2)

with A, D1, D2, D3 andD4 the elastic constants of the shell.

The shell thickness is also very small compared to the lenfjthe cross-section curve. Thus local
and global buckling will prevent large strains to occur, ingkthe assumption of small membrane strains
possible. Moreover only the tensile membrane steainis needed due to the previous assumptions on
N12 andNyo. The simplified expressions for the membrane strains andibgmrurvatures are then:

epn=€ +zK+¢€
ki1 = —k COSB+ kil
koo = K5,

klzzkiz

(8)

1
1/, esz§<y,21+z,21)
where { ¢ =t 2 (ul‘fl * u371> and ki1 =Z11c08B —y11SinB
K'=81 k3, = B2 — Bo.2
ki, =B1

Expression 8 shows strains (exponeninduced by the global rod kinematics - usual tensile steain
and bending curvatur for large displacements and large rotations - and straxpso(eents) induced
by the cross-section evolutiore®* and kgB only depending on the ang[e- which constitute the model
originality.



Finally, the strain energy can be split into three partsitegatb Ue = Ug +UZ+ U, with:

( Ug:/()L%(Aa(é)2+(A?+Dlm) (kf)2+2Azékf) dsi

L 1 - _
Us— /0 > (A(€)°+ D1 (k) + D2 (k3,)” + 2D3k§; K5, +4Ds (i) ) dsy 9)

uls = /OL (Aé§+Akrﬁ— K’ (chos(B) k3, + Dscos(B) k§2>> ds

— a/2
where the overline denotes an integration with respesf:tX (s;,t) = X(s1,5,t) dsp.
2

7a/

In the model presented in Section 2 all these integrals cacaloeillated analytically, leading to an
explicit expression of the strain energy density dependinghe kinematic parameters and geometric
characterisitcs of the tape spring. The first t&dfncorresponds to the classical strain energy of a rod
with a coupling between axial streching and bending whigbeaps because the rod line does not pass
through the cross-section centroid. The second téfionly depends on the variabieand represents the
strain energy due to the variation of the cross-sectioneshiadependently of the overall rod behavior.
The last termJ® introduces a coupling between the overall rod behavior badvariation of the cross-
section shape.

2.3 Kinetic energy

Starting from the kinetic energy of the initial shell modeMhich the rotation inertia is neglected and
introducing the chosen kinematics, we find the followingresgion for the kinetic energy:

r L1 S -2 -2 s2n2
T :/0 E(pa(u1+u3)+pze)dsl

L1 —_—
T (U, Us,8,) = TM + TS+ TS with TS:/O -0° (¥+7) ds (10)

L - —
TfS:/ 0° (—Ul(zsin9)+03(20059)> ds
0

where the notatiolX stands for the time derivative of.

3 Numerical implementation

For the numerical simulations we used the FE software COM&D$olve the weak formulation
of the elastodynamic problem obtained from our 1D model yapglthe Hamilton principle. Indeed,
COMSOL offers the possibility to introduce directly the Wwedarm of the expressions for the elastic and
kinetic energy densities and is able to proceed to an analydifferentiation of these expressions. Only
the kinetic energyl has required an explicit calculus of variations becausenyiation by parts with
respect to time was needed to obtain its weak form. A Lagramgiiplier (5th degree of freedom) is
used to constrain the relation between the translatipr@dusz and the rotatio®. And a finite element
discretisation of the rod line is done before solving thiestoaint problem for the stationnary points of
the Hamiltonian.

4 Numerical results
In the following, three tests are presented to illustrate model ability to account for complex

scenarios of folding, coiling and deployment, in staticsl @lynamics. The geometrical and material
properties used for these tests are given in Tables 1 and 2.
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Table 1: Geometrical properties of the tape spring.

LengthL | Width a | Thicknessh | Initial angle(3;
1170 mm| 60 mm | 0.15mm 0.6 rad

Table 2: Material properties of the tape spring.

Young's modulus | Poisson’s rativ | Densityp
210 000 MPa 0.3 7800 kg.n7°

For all the following results, the mesh of the rod line was mati60 Hermite quintic finite elements
(1210 degrees of freedom) and the default implicit timeetelent solver of COMSOL (BDF solver) was
used with a variable time-step and a numerical damping kedralitomatically. The three-dimensional
deformed shapes presented hereafter are reconstrucheptiuisikinematics exposed at Section 2.1 from
the results ofuy(s1), us(s1), 6(s1) and®(s;) obtained with the 1D extended rod model. And the color
plots, which illustrate the curvature of the cross-sectiorve, are those of angfe

4.1 Coiling of atape spring

This first test illustrates the model simplicity in terms @figlation driving. Indeed, with this model
it becomes very intuitive to drive the opening and the rotaif a cross-section. Direct access to the
variablep® in COMSOL allows localized openings as well as various dgvscenarios for cross-section
rotation through direct application of an appropriate ingdrelative to this variable. The easiness in
driving the cross-section opening and rotation makes isiptessto reach many folded configurations.

(a) (b)
0.6 1 0
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5 (mm) 5 (mm

Figure 3: Coiling of a tape spring.

It is thus very simple to simulate the coiling of a tape spiimgtatics as shown in Figure 3. We only
need to flatten and maintain flattened one of the tape spritigreities, before imposing a rotation on
the associated cross-section. Figure 3 (b) shows that tiregslls up with a constant and uniform
radius. Curv of Figure 3 (a) shows that when the coiled part arrives neafrée extremity, the left
end cross-section tends to open. If we carry on the test, drateeslackening of the applied load entails



a rough deployment of the tape spring. It is thus necessaakéinto account the inertial effects within
the framework of dynamics. Therefore the 3rd test preseimtedis paper will illustrate the dynamic
aspect of the model.

4.2 Compressive buckling of a ssimply supported tape spring

In this second test, the tape spring is submitted to statigpeessive buckling with both ends free in
rotation. The two translational degrees of freedom aretcaingd at one end whereas the other end is
submitted to an horizontal displacement while the vertiiaplacement is set to zero. The transverse
curvature is constrained at both extremities, thus the smpimg is not free to flatten at the ends. To
enable the buckling initiation, it is necessary to imposeeagxisting defect. In our case a vertical force
of intensity 104 N is applied at the center of the spring.

Figure 4 (a) illustrates the model ability to account for gmap-through phenomena that occur for
this kind of loading [10]. On Figure 4 (b) we compare the shap@® along the tape spring just before
the appearance of the snap-through phenomenon for budilingexion and by compression. This
comparison places emphasis on the difference between twoddnd of snap-through phenomena. In
the case of compressive buckling, we notice a localizatioime cross-section opening at the center of
the tape spring whereas the cross-section keeps its idégke of closure near the extremities.

09 r —— Flexion

b Compression | |
0.7t
= 06

0 200 400 600 800 1000
S1(mm)

Figure 4: Compressive buckling with both ends free in rotati

4.3 Deployment of a tape spring with a small folded part

This last example brings to light the effects of inertia anavgy on the deployment of a tape spring
in dynamics. The tape, subjected to gravity, is vertical elachped at the bottom end whereas the other
end is folded on a small length (see Figure 5). The folded smelé¢ased instantaneously without inital
speed. During the first step of deployment, the fold movesrdalong the tape whereas the free end
straigthens up progressively. When the tape goes througbetttical position, the inertial effects cause
the formation of a new fold of opposite curvature in the faldaabefore its complete disappearance. This
new fold is also going to move along the tape before it reiteundeformed shape after a snap-through
and a few oscillations around its final position.



Figure 5: Deployment of a tape spring with a folded part.

We also observe compressive stresses in the vertical arto doe undulations it undergoes during the
second step of deployement. These compressive stresaéisrrescillations of the value 8¢ near the
clamped end (see Figure 6 (a)). It is the tape spring inefti@wprovokes thoses compressive stresses
when the free arm goes through the vertical position andesaas explained before the creation of a
new fold. Shortly before going through the vertical positiave also notice a closing of the tape spring
cross-sections in the fold area (see Figure 6 (a) d@/)ewhere the fold of opposite curvature is going
to appear.

0 200 400 600 800 1000 0 200 400 600 800 1000
3y(ram) s(ramn)

Figure 6: Evolution of3¢ during the deployment test.

5 Conclusion

A planar rod model with highly deformable cross-section haen suggested in this paper. This
model is suitable for thin-walled and curved cross-sestiand accounts for large displacements, large
rotations and dynamics. The equations and results presbetein are for the limiting case of in-plane
motions but the case of three-dimensional motions inclydint-of-plane bending and torsion is
currently being studied. In both case the approach usedeissdime. Starting from an energetic
approach of a classical nonlinear shell modelgasticakinematics is introduced to account for large
changes of the cross-section shape with appropriate shapetidns. Moreover beam-like
assumptions are done, e.g. by neglecting the transversebrapenstresses with respect to the axial
membrane stresses, when expressing the tape spring erengifies. Finally the elastic and kinetic
energies are derived, the model is implemented in the FEvatCOMSOL and the Hamilton principle
is used to solve the elastodynamic problem.

The obtained 1D model, which has only four kinematic paranseffor the limiting case of
in-plane motions), has been applied to a tape spring andd@sused to simulate several sequences of



folding, coiling and deployment. Through these simulatioit has proved its ability to account for
several phenomena such as the sudden creation of a foldplitieng of a fold into two, the inertial
or pendulum effects, etc. The generalization of the modéhéoout-of-plane case, on which we are
currently working, should allow to treat more complex folglj coiling and deployment scenarios as well
as the planar equal sens folding which requires the coraidarof twisting. An extended model may
also be used to study the deployment and the stability of rmomgplex structures, made for example of
an assembly of tape springs.
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