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Abstract — This work is focused on the modeling of rod-like elastic bodies with thin-walled curved
cross-sections such as tape springs, which develop localized folds due to a flattening of the cross-section.
Starting from a complete nonlinear elastic shell model, a rod model with highly deformable cross-section
is derived for large displacements, large rotations and dynamics, by introducing an elastica kinematics
to describe the in-plane changes of the cross-section shape. This model is able to handle the formation
of localized folds which can move along the rod line, merge orsplit, allowing simulation of complex
scenarios of coiling, folding and deployment.
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1 Introduction

A major challenge for satellites manufacturers is to develop ingenious compact (for transport and
storage) systems capable of deploying themselves in an autonomous way during the set up. Since they
offer better compacity (folding, coiling), deployable elastic structures are an interesting alternative to
articulated rigid structures with hinges and bolts. In thisframework, Thales Alenia Space is working
on new concepts based on structures using tape springs. Slender elatic structures, of which tape springs
are only an example, have been widely studied in the nonlinear framework because they can suffer from
geometrical instabilities that can lead to a sudden loss of stiffness and extreme deformation shapes. The
various applications of such structures not only in the aerospace field [9] [10], but also in biophysics,
biomechanics or even in micro or nanomechanics [14] are as many motivations to develop robust models
of nonlinear elastic structures [1] [12].

Figure 1: Folding of a tape spring.

In its free state, a tape spring can be assimilated to a straight thin-walled beam with a circular open
cross-section of constant transverse curvature. Under progressively applied bending or compressive loads
(see Figure 1), this structure behaves at first like a beam before the sudden appearance of localized folds,
indicating snap-through buckling [10]. These folds are created thanks to a localized flattening of the
cross-sections which drastically reduces the moment of inertia and concentrates the bending deformation
in the fold area. We shall note that away from the fold the tapespring remains almost straight and
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undeformed. Playing with a carpenter’s measure tape, one can easily experience the formation of one or
several folds, the motion of a fold along the tape, the splitting of a single fold into two or the merging of
two folds into one...

The modeling of tape springs in particular has already been addressed in literature and can be classified
into two main approches. The first one consists in the full computation of the nonlinear shell model in
the framework of large displacements, large rotations and dynamics [7] [11] [15]. This approach leads
to hard to drive calculations and heavy simulations but provides accurate static and dynamic solutions
for any loading configurations and boundary conditions. Whereas the first approach does not account
for tape spring specificities, the second one is based on the observation that away from the fold the
spring remains straight and undeformed. In this approach the tape is therefore modeled using discrete
articulated bars [10]: spiral springs, of appropriate moment-rotation characteristic, render the stiffness of
the fold areas and rigid bars, of variable length, representthe regions that remain straight. This kind of
model makes the simulation of a large panel of deployment scenarios easy but requires the introduction
of the foldsab initio.

The model proposed herein is intermediate between those twoapproaches. It is derived from a non-
linear shell model which has been reduced to a one dimensional continuous rod-like model
including cross-section changes by taking into account thespring specificities (overall rod-like shape,
creation of localized folds). Beam models with deformable cross-sections have already been published in
literature [13] [8] [3]. The main idea is always to incorporate kinematic parameters to describe in-plane
and out-of-plane (wraping) relative displacements. The present work follows theses approaches but takes
into account the possibility of large relative displacements in the cross-section with a kinematics more
suitable for modeling tape spring behavior. The model obtained, which can manage the creation of new
folds, is appropriate for simulating complex folding and deployment scenarios [5] [6].

2 The rod model

2.1 Kinematic description and basic assumptions

A tape spring is regarded as a rod, and is represented by an initially straight rod line and a planar
circular cross-section curve, as shown in Figure 2. The fixedorthonormal frame(O,e1,e2,e3) is chosen
such that the axis(O,e1) contains the rod line and that the plane(O,e1,e3) is the plane of symmetry of
the cross-section curve.

Figure 2: Representation of a tape spring.

We introduce a curvilinear coordinate system(s1,s2) ∈ [0,L] × [−a/2,a/2] to describe the geometry
of the tape, withL the initial length of the rod line anda the initial length of the cross-section curve. In
the deformed configuration, the position of a material pointM is given by:

OM = OG+GM , (1)

whereG is the point of the cross-section attached to the rod line.
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For simplicity, we restricted our study to the plane case: the motion of the rod line is restrained to the
plane(O,e1,e3) and the cross-section curve, initially symmetric with respect to this plane, is assumed to
remain symmetric in any deformed configuration. Thus the cross-section position is given by:

OG = [s1+u1 (s1, t)] e1 +u3(s1, t) e3 , (2)

whereu1 (s1, t) andu3 (s1, t) are the translations of the material pointG.

The proposed rod model kinematics relies on three assumptions:

(i) the cross-section curve remains in a plane after deformation,
(ii) the section plane is orthogonal to the tangent vector ofthe rod line in the deformed configuration,
(iii) the cross-section curve is considered inextensible.

The two first assumptions are classical hypotheses of Euler-Bernoulli beam theory. Assumption (i)
makes it possible to introduce a rotated frame

(

G,er
1,e

r
2,e

r
3

)

, image of the frame(G,e1,e2,e3) through
the rotation of angleθ(s1, t) around the axise2 ( er

1 is a unit vector orthogonal to the section plane in the
deformed configuration,er

2 is set toe2 ander
3 = er

1×er
2 ). Whereas assumption (ii) implies that the vector

er
1 is colinear to the natural rod line tangent vectorar

1.

The coordinates of the material pointM in the local frame
(

G,er
2,e

r
3

)

are given byy(s1,s2, t) and
z(s1,s2, t). Thus assumption (iii), which amounts to introducing anelasticato describe the kinematics
of the cross-section curve, leads to the following relation:

(GM),2 · (GM),2 = (y,2)
2+(z,2)

2 = (y0,2)
2+(z0,2)

2 = 1, (3)

whereX,i stands for the partial derivative ofX with respect tosi . By introducing the angleβ(s1,s2, t)
between the tangent to the cross-section curve and the vector er

2 (see Figure 2), we get:

y,2 = cosβ and z,2 = sinβ . (4)

When making assumption (iii), we suppose that the most important effect governing the changes in
the cross-section shape is the adjustment of the overall bending inertia of the rod in order to minimize
its elastic energy: the flattening of the cross-section concentrates the bending deformation and makes the
formation of localized folds possible. In doing so we also suppose that transverse strains can be neglected
and that the inextensibility assumption is enough to describe the overall shape of the cross-section curve.
It is thus possible to use only one kinematic parameterβ(s1,s2, t) to describe the behavior of the cross-
section for large displacements and large rotations. This way to parametrize the cross-section curve is
clearly inspired by theElasticatheory [2] [4].

Moreover, we suppose that the cross-section curve stays circular. Therefore the curvature radius can
be written as a linear function ofs2:

β(s1,s2, t) =
2s2

a
βe(s1, t) , (5)

whereβe(s1, t) = β
(

s1,s2 =
a
2
, t
)

.

This expression ofβ makes it possible to go back from the expressions ofy,2 and z,2 to the local
coordinatesy andz:

y(s1,s2, t) =
∫ s2

0
y,2 (s1,s2, t)dξ =

∫ s2

0
cosβ(s1,ξ, t)dξ =

a
2βe sin

(

2βes2

a

)

,

z(s1,s2, t) =
∫ s2

0
z,2 (s1,s2, t)dξ =

∫ s2

0
sinβ(s1,ξ, t)dξ =

a
2βe

(

1−cos
(

2βes2

a

))

.

(6)
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Finally the tape spring kinemtatics is totally described byonly four kinematic parameters attached to
the rod line and functions ofs1, s2 andt:

(i) the translationsu1 andu3 of the cross-section,
(ii) the rotationθ of the cross-section arounde2,
(iii) and the angleβ characterizing the shape of the cross-section.

The approach presented herein for a cross-section shape anda kinematics relatively simple may be
generalized to more complex shapes or kinematics by choosing an appropriate discretization (e.g. Ritz,
FE, etc.) of the angleβ(s1,s2, t) with respect to the transverse coordinates2 and by adding some
kinematic parameters. At this time we are working on generalizing our approach to non-symmetric
displacements including out-of-plane bending and torsion.

2.2 Strains measures and strain energy

The tape spring is first regarded as a thin shell. The strain energy is thus calculated using the membrane
eαβ and bendingkαβ strains defined respectively by the Green-Lagrange tensor and by the difference
between the initial and actual curvature tensors of the shell. All tensors are expressed thanks to the
kinematic parametersu1, u3, θ andβ.

The strain energy is therefore set to its usual expression for a shell:

Ue(u1,u3,θ,β) =
∫ L

0

∫ a/2

−a/2

1
2

(

eαβ Nαβ +kαβ Mαβ
)

ds2 ds1. (7)

whereNαβ andMαβ are respectively the membrane stresses and bending moments.

Since the shell widtha is small compared to the tape spring lengthL, we suppose that
N22 = N12 = 0 according to classical beam theory assumptions. Moreoverthe shell is considered elastic
and orthotropic without any membrane-bending coupling. Thus the constitutive equations of the shell
are written:

N11 = Ae11 M11 = D1k11+D3k22 M22 = D3k11+D2k22 M12 = D4 (2k12)

with A, D1, D2, D3 andD4 the elastic constants of the shell.

The shell thickness is also very small compared to the lengthof the cross-section curve. Thus local
and global buckling will prevent large strains to occur, making the assumption of small membrane strains
possible. Moreover only the tensile membrane straine11 is needed due to the previous assumptions on
N12 andN22. The simplified expressions for the membrane strains and bending curvatures are then:

e11 = er +zkr +es

k11 =−kr cosβ+ks
11

k22 = ks
22

k12 = ks
12

(8)

where

{

er = u1,1+
1
2

(

u2
1,1+u2

3,1

)

kr = θ,1
and



















es =
1
2

(

y2
,1+z2

,1

)

ks
11 = z,11cosβ−y,11sinβ

ks
22 = β,2−β0,2

ks
12 = β,1

Expression 8 shows strains (exponentr) induced by the global rod kinematics - usual tensile strainer

and bending curvaturekr for large displacements and large rotations - and strains (exponents) induced
by the cross-section evolution -es andks

αβ only depending on the angleβ - which constitute the model
originality.
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Finally, the strain energy can be split into three parts leading toUe =U r
e +Us

e+U rs
e , with:
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U r
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∫ L

0

1
2

(

Aa(er)2+
(

A z2+D1 cos2(β)
)

(kr)2+2A zer kr
)

ds1

Us
e =

∫ L

0

1
2

(

A ¯
(es)2+D1(ks

11)
2+D2(ks

22)
2+2D3ks

11ks
22+4D4(ks

12)
2
)

ds1

U rs
e =

∫ L

0

(

Aer es+Akr zes
−kr

(

D1cos(β) ks
11+D3cos(β) ks

22

))

ds1

(9)

where the overline denotes an integration with respect tos2: X (s1, t) =
∫ a/2

−a/2
X (s1,s2, t) ds2.

In the model presented in Section 2 all these integrals can becalculated analytically, leading to an
explicit expression of the strain energy density dependingon the kinematic parameters and geometric
characterisitcs of the tape spring. The first termU r

e corresponds to the classical strain energy of a rod
with a coupling between axial streching and bending which appears because the rod line does not pass
through the cross-section centroid. The second termUs

e only depends on the variableβ and represents the
strain energy due to the variation of the cross-section shape, independently of the overall rod behavior.
The last termU rs

e introduces a coupling between the overall rod behavior and the variation of the cross-
section shape.

2.3 Kinetic energy

Starting from the kinetic energy of the initial shell model in which the rotation inertia is neglected and
introducing the chosen kinematics, we find the following expression for the kinetic energy:

T (u1,u3,θ,β) = Tr +Ts+Trs with











































Tr =

∫ L

0

1
2

(

ρsa
(

u̇2
1+ u̇2

3

)

+ρsz2 θ̇2
)

ds1

Ts =
∫ L

0

1
2

ρs
(

ẏ2+ ż2
)

ds1

Trs =
∫ L

0
ρs
(

−u̇1
˙̂

(zsinθ)+ u̇3
˙̂

(zcosθ)
)

ds1

(10)

where the notatioṅX stands for the time derivative ofX.

3 Numerical implementation

For the numerical simulations we used the FE software COMSOLto solve the weak formulation
of the elastodynamic problem obtained from our 1D model applying the Hamilton principle. Indeed,
COMSOL offers the possibility to introduce directly the weak form of the expressions for the elastic and
kinetic energy densities and is able to proceed to an analytical differentiation of these expressions. Only
the kinetic energyT has required an explicit calculus of variations because an integration by parts with
respect to time was needed to obtain its weak form. A Lagrangemultiplier (5th degree of freedom) is
used to constrain the relation between the translationsu1 andu3 and the rotationθ. And a finite element
discretisation of the rod line is done before solving this constraint problem for the stationnary points of
the Hamiltonian.

4 Numerical results

In the following, three tests are presented to illustrate the model ability to account for complex
scenarios of folding, coiling and deployment, in statics and dynamics. The geometrical and material
properties used for these tests are given in Tables 1 and 2.
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Table 1: Geometrical properties of the tape spring.

LengthL Width a Thicknessh Initial angleβe
0

1170 mm 60 mm 0.15 mm 0.6 rad

Table 2: Material properties of the tape spring.

Young’s modulusE Poisson’s ratioν Densityρ
210 000 MPa 0.3 7800 kg.m−3

For all the following results, the mesh of the rod line was made of 60 Hermite quintic finite elements
(1210 degrees of freedom) and the default implicit time-dependent solver of COMSOL (BDF solver) was
used with a variable time-step and a numerical damping handled automatically. The three-dimensional
deformed shapes presented hereafter are reconstructed using the kinematics exposed at Section 2.1 from
the results ofu1(s1), u3(s1), θ(s1) andβe(s1) obtained with the 1D extended rod model. And the color
plots, which illustrate the curvature of the cross-sectioncurve, are those of angleβ.

4.1 Coiling of a tape spring

This first test illustrates the model simplicity in terms of simulation driving. Indeed, with this model
it becomes very intuitive to drive the opening and the rotation of a cross-section. Direct access to the
variableβe in COMSOL allows localized openings as well as various driving scenarios for cross-section
rotation through direct application of an appropriate loading relative to this variable. The easiness in
driving the cross-section opening and rotation makes it possible to reach many folded configurations.
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Figure 3: Coiling of a tape spring.

It is thus very simple to simulate the coiling of a tape springin statics as shown in Figure 3. We only
need to flatten and maintain flattened one of the tape spring extremities, before imposing a rotation on
the associated cross-section. Figure 3 (b) shows that the spring rolls up with a constant and uniform
radius. Curve4 of Figure 3 (a) shows that when the coiled part arrives near the free extremity, the left
end cross-section tends to open. If we carry on the test, immediate slackening of the applied load entails
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a rough deployment of the tape spring. It is thus necessary totake into account the inertial effects within
the framework of dynamics. Therefore the 3rd test presentedin this paper will illustrate the dynamic
aspect of the model.

4.2 Compressive buckling of a simply supported tape spring

In this second test, the tape spring is submitted to static compressive buckling with both ends free in
rotation. The two translational degrees of freedom are constrained at one end whereas the other end is
submitted to an horizontal displacement while the verticaldisplacement is set to zero. The transverse
curvature is constrained at both extremities, thus the tapespring is not free to flatten at the ends. To
enable the buckling initiation, it is necessary to impose a pre-existing defect. In our case a vertical force
of intensity 10−4 N is applied at the center of the spring.

Figure 4 (a) illustrates the model ability to account for thesnap-through phenomena that occur for
this kind of loading [10]. On Figure 4 (b) we compare the shapeof βe along the tape spring just before
the appearance of the snap-through phenomenon for bucklingby flexion and by compression. This
comparison places emphasis on the difference between thosetwo kind of snap-through phenomena. In
the case of compressive buckling, we notice a localization of the cross-section opening at the center of
the tape spring whereas the cross-section keeps its initialdegree of closure near the extremities.
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Figure 4: Compressive buckling with both ends free in rotation.

4.3 Deployment of a tape spring with a small folded part

This last example brings to light the effects of inertia and gravity on the deployment of a tape spring
in dynamics. The tape, subjected to gravity, is vertical andclamped at the bottom end whereas the other
end is folded on a small length (see Figure 5). The folded end is released instantaneously without inital
speed. During the first step of deployment, the fold moves down along the tape whereas the free end
straigthens up progressively. When the tape goes through the vertical position, the inertial effects cause
the formation of a new fold of opposite curvature in the fold area before its complete disappearance. This
new fold is also going to move along the tape before it recovers its undeformed shape after a snap-through
and a few oscillations around its final position.

7



Figure 5: Deployment of a tape spring with a folded part.

We also observe compressive stresses in the vertical arm dueto the undulations it undergoes during the
second step of deployement. These compressive stresses result in oscillations of the value ofβe near the
clamped end (see Figure 6 (a)). It is the tape spring inertia which provokes thoses compressive stresses
when the free arm goes through the vertical position and causes as explained before the creation of a
new fold. Shortly before going through the vertical position, we also notice a closing of the tape spring
cross-sections in the fold area (see Figure 6 (a) curve6 ) where the fold of opposite curvature is going
to appear.
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Figure 6: Evolution ofβe during the deployment test.

5 Conclusion

A planar rod model with highly deformable cross-section hasbeen suggested in this paper. This
model is suitable for thin-walled and curved cross-sections and accounts for large displacements, large
rotations and dynamics. The equations and results presented herein are for the limiting case of in-plane
motions but the case of three-dimensional motions including out-of-plane bending and torsion is
currently being studied. In both case the approach used is the same. Starting from an energetic
approach of a classical nonlinear shell model, anelasticakinematics is introduced to account for large
changes of the cross-section shape with appropriate shape functions. Moreover beam-like
assumptions are done, e.g. by neglecting the transverse membrane stresses with respect to the axial
membrane stresses, when expressing the tape spring energy densities. Finally the elastic and kinetic
energies are derived, the model is implemented in the FE software COMSOL and the Hamilton principle
is used to solve the elastodynamic problem.

The obtained 1D model, which has only four kinematic parameters (for the limiting case of
in-plane motions), has been applied to a tape spring and has been used to simulate several sequences of
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folding, coiling and deployment. Through these simulations, it has proved its ability to account for
several phenomena such as the sudden creation of a fold, the splitting of a fold into two, the inertial
or pendulum effects, etc. The generalization of the model tothe out-of-plane case, on which we are
currently working, should allow to treat more complex folding, coiling and deployment scenarios as well
as the planar equal sens folding which requires the consideration of twisting. An extended model may
also be used to study the deployment and the stability of morecomplex structures, made for example of
an assembly of tape springs.
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