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We quantify the effect of Gaussian white noise on fast-slow dynamical systems with one fast and two slow variables, which display mixed-mode oscillations owing to the presence of a folded-node singularity. The stochastic system can be described by a continuous-space, discrete-time Markov chain, recording the returns of sample paths to a Poincaré section. We provide estimates on the kernel of this Markov chain, depending on the system parameters and the noise intensity. These results yield predictions on the observed random mixed-mode oscillation patterns. Our analysis shows that there is an intricate interplay between the number of small-amplitude oscillations and the global return mechanism. In combination with a local saturation phenomenon near the folded node, this interplay can modify the number of smallamplitude oscillations after a large-amplitude oscillation. Finally, sufficient conditions are derived which determine when the noise increases the number of small-amplitude oscillations and when it decreases this number.

Introduction

Oscillation patterns with large variations in amplitude occur frequently in dynamical systems, differential equations and their applications. A class of particular interest are mixed-mode oscillations (MMOs) which are patterns consisting of alternating structures of small-amplitude and large-amplitude oscillations. Typical applications arise from chemical systems such as the Belousov-Zhabotinskii reaction [START_REF] Hudson | An experimental study of multiple peak periodic and nonperiodic oscillations in the Belousov-Zhabotinskii reaction[END_REF], the peroxidase-oxidase reaction [START_REF] Degn | Bistability, oscillation, and chaos in an enzyme reaction[END_REF] and autocatalytic reactions [START_REF] Petrov | Mixed-mode oscillations in chemical systems[END_REF] as well as from neuroscience, e.g. stellate cells [START_REF] Dickson | Oscillatory activity in entorhinal neurons and circuits: Mechanisms and function[END_REF], Hodgkin-Huxley-type neurons [START_REF] Rubin | Giant squid -hidden canard: the 3d geometry of the Hodgin-Huxley model[END_REF] and pituitary cells [START_REF] Van Goor | Dependence of pituitary hormone secretion on the pattern of spontaneous voltage-gated calcium influx[END_REF]. A remarkable number of models for these phenomena lead to differential equations with multiple timescales see e.g. [START_REF] Milik | Geometry of mixed-mode oscillations in the 3-d autocatalator[END_REF][START_REF] Desroches | The geometry of mixed-mode oscillations in the Olsen model for the perioxidase-oxidase reaction[END_REF][START_REF] Wechselberger | Bifurcations of mixed-mode oscillations in a stellate cell model[END_REF][START_REF] Guckenheimer | A geometric model for mixed-mode oscillations in a chemical system[END_REF]. Frequently, it suffices to consider two timescales and study fastslow ordinary differential equations (ODEs) which already provide many generic mechanisms leading to MMOs. For a detailed review of the topic we refer to the survey [START_REF] Desroches | Mixed-mode oscillations with multiple time scales[END_REF], the special issue [START_REF] Brons | Introduction to focus issue -mixed mode oscillations: experiment, computation, and analysis[END_REF], and references therein. The basic idea is that a local mechanism induces the small-amplitude oscillations (SAOs) while a global return mechanism leads to large-amplitude oscillations (LAOs). In this introduction, we shall just outline the main ideas; the precise development of our set-up and results starts in Section 2.

For a deterministic trajectory, we can symbolically write an MMO as a sequence

• • • L s j-1 j-1 L s j j L s j+1 j+1 • • • (1.1)
where L s j j denotes L j LAOs followed by s j SAOs, etc. For example, a periodic solution alternating between 2 SAOs and 1 LAO would be • • • 1 2 1 2 1 2 • • • or simply 1 2 with the periodicity understood. A prototypical mechanism to generate SAOs are folded-node singularities [START_REF] Brøns | Mixed mode oscillations due to the generalized canard phenomenon[END_REF] which are generic in three-dimensional ODEs with one fast and two slow variables [START_REF] Szmolyan | Canards in R 3[END_REF][START_REF] Benoît | Systèmes lents-rapides dans R 3 et leurs canards[END_REF]. For the global return mechanism, one frequently encounters a relaxationtype structure induced by a cubic (or S-shaped) fast-variable nullcline, also called the critical manifold, which was studied extensively already in the context of van der Pol-type oscillators; see e.g. [START_REF] Koper | Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram[END_REF][START_REF] Goryachev | Slow manifold structure and the emergence of mixed-mode oscillations[END_REF][START_REF] Bold | The forced van der Pol equation 2: Canards in the reduced system[END_REF][START_REF] Brøns | Mixed mode oscillations due to the generalized canard phenomenon[END_REF] and the references therein. Non-degenerate folds, foldednode singularities and S-shaped critical manifolds form the basic deterministic building blocks for the work in this paper. However, let us mention already here that the stochastic techniques we develop in this paper could potentially be adapted to other cases such as singular Hopf bifurcation and folded saddle-nodes [START_REF] Guckenheimer | Singular Hopf bifurcation in systems with two slow variables[END_REF][START_REF] Krupa | Local analysis near a folded saddle-node singularity[END_REF], bursting oscillations [START_REF] Izhikevich | Neural excitability, spiking, and bursting[END_REF][START_REF] Ermentrout | Mathematical Foundations of Neuroscience[END_REF], tourbillon structures [START_REF] Wallet | Entrée-sortie dans un tourbillon[END_REF][START_REF] Desroches | Mixed-mode oscillations with multiple time scales[END_REF], and other global return mechanisms [START_REF] Guckenheimer | A geometric model for mixed-mode oscillations in a chemical system[END_REF][START_REF] Kuehn | Loss of normal hyperbolicity of unbounded critical manifolds[END_REF]. Although it is certainly of high interest to study all these cases, it seems to us that the combination of folded singularities and relaxation oscillations is a natural first step as both components are basic elements which occur in a large variety of different models [START_REF] Desroches | Mixed-mode oscillations with multiple time scales[END_REF].

While in some experiments, remarkably clear MMO patterns have been observed [START_REF] Hauck | Mixed-mode and quasiperiodic oscillations in the peroxidaseoxidase reaction[END_REF][START_REF] Hudson | An experimental study of multiple peak periodic and nonperiodic oscillations in the Belousov-Zhabotinskii reaction[END_REF], in many other cases the SAOs in the patterns appear noisy [START_REF] Dickson | Oscillatory activity in entorhinal neurons and circuits: Mechanisms and function[END_REF][START_REF] Mikikian | Mixed-mode oscillations in complex plasma instabilities[END_REF]. Weak noise acting on a dynamical system is known to induce a variety of phenomena, ranging from small fluctuations around deterministic solutions to large excursions in phase space, as shown, e.g., in stochastic resonance [START_REF] Benzi | The mechanism of stochastic resonance[END_REF][START_REF] Gammaitoni | Stochastic resonance[END_REF][START_REF] Mcnamara | Theory of stochastic resonance[END_REF] and transitions near tipping points [START_REF] Scheffer | Early-warning signals for critical transitions[END_REF][START_REF] Kuehn | A mathematical framework for critical transitions: normal forms, variance and applications[END_REF][START_REF] Ashwin | Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system[END_REF]. In the context of oscillatory patterns, the effect of noise on MMO patterns in lowdimensional prototypical models has been studied, for instance, in [START_REF] Kosmidis | An analysis of the reliability phenomenon in the FitzHugh-Nagumo model[END_REF][START_REF] Su | Effects of noise on elliptic bursters[END_REF][START_REF] Muratov | Noise-induced mixed-mode oscillations in a relaxation oscillator near the onset of a limit cycle[END_REF][START_REF] Yu | Stochastic phase dynamics and noise-induced mixed-mode oscillations in coupled oscillators[END_REF][START_REF] Hitczenko | Bursting oscillations induced by small noise[END_REF][START_REF] Kuske | Survival of subthreshold oscillations: the interplay of noise, bifurcation structure, and return mechanism[END_REF], using numerical simulations, bifurcation theory and asymptotic descriptions of the Fokker-Planck equation.

This work concerns the effect of noise on fast-slow differential equations with one fast and two slow variables, containing a folded-node singularity and an S-shaped critical manifold responsible for the global return mechanism. The resulting stochastic differential equations (SDEs) show a subtle interplay between noise, local and global dynamics, which requires a careful analysis of the behaviour of stochastic sample paths. Our approach builds upon our earlier work [START_REF] Berglund | Hunting French ducks in a noisy environment[END_REF] which in turn was based upon a pathwise approach to fast-slow SDEs [START_REF] Berglund | Geometric singular perturbation theory for stochastic differential equations[END_REF][START_REF] Berglund | Noise-induced phenomena in slow-fast dynamical systems. A sample-paths approach[END_REF].

Our main focus is the derivation of estimates for the Poincaré (or return) map of the stochastic system, for a conveniently chosen two-dimensional section Σ. Deterministic return maps in the presence of folded-node singularities have been analyzed, e.g., in [START_REF] Guckenheimer | Return maps of folded nodes and folded saddle-nodes[END_REF][START_REF] Krupa | Mixed-mode oscillations in three time-scale systems: A prototypical example[END_REF]. Although the two-dimensional Poincaré map is invertible, the strong contraction near attracting critical manifolds implies that it is close to a one-dimensional, usually non- invertible map. Figure 1 (a) shows an example of such a one-dimensional deterministic return map z n → z n+1 . The apparent discontinuities are in fact points where the map's graph displays very narrow dips, due to the presence of so-called canard orbits. Canards are particular solutions of the system staying close to both the attracting and repelling parts of the critical manifold [START_REF] Benoît | Chasse au canards[END_REF][START_REF] Benoît | Systèmes lents-rapides dans R 3 et leurs canards[END_REF][START_REF] Benoît | Les canards de R 3[END_REF], which separate the phase space into sectors of rotation characterized by different numbers of SAOs [START_REF] Brøns | Mixed mode oscillations due to the generalized canard phenomenon[END_REF]. The concept of return maps has been extended to stochastic systems, see for instance [START_REF] Weiss | A stochastic return map for stochastic differential equations[END_REF][START_REF] Berglund | Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh-Nagumo model[END_REF][START_REF] Hitczenko | The Poincaré map of randomly perturbed periodic motion[END_REF]. This requires some care, because the rapid fluctuations of stochastic sample paths prevent one from using their very first return to Σ to define the map. Instead, one has to consider the first return after a suitably defined, sufficiently large excursion in phase space has taken place. With these precautions, successive intersections X 0 , X 1 , X 2 , . . . of sample paths with Σ define a continuous-space, discrete-time Markov chain. The distribution of X n+1 is obtained from the distribution of X n via integration with respect to a transition kernel K. Under suitable regularity assumptions [START_REF] Ben Arous | The Poisson kernel for certain degenerate elliptic operators[END_REF], the theory of harmonic measures ensures that the kernel K admits a smooth density k, so that the evolution of X n is specified by an integral equation, namely

P X n+1 ∈ A | X n = x = A k(x, y) dy =: K(x, A) (1.2)
holds for all Borel sets A ⊂ Σ; see for instance [START_REF] Berglund | On the noise-induced passage through an unstable periodic orbit II: General case[END_REF]Sections 5.2 and 5.3]. The main aim of the present work is to provide estimates on the kernel K. Part of the mathematical challenge is due to the fact that the deterministic flow is not a gradient flow, and thus the stochastic system is irreversible. Figure 1 (b)-(d) shows simulated stochastic return maps for increasing noise intensity. For each value of z n , the red points indicate the value of z n+1 for 10 different realizations of the noise. The deterministic return map is plotted in blue for comparison. Several interesting phenomena can be observed:

1. The size of fluctuations increases with the noise intensity; 2. Orbits in sectors with a small number of SAOs (inner sectors) are less affected by noise than those in sectors with a large number of SAOs (outer sectors); 3. There is a saturation effect, in the sense that for large enough SAO numbers, the typical value of the stochastic return map and its spreading become independent of the sector; 4. The saturation effect sets in earlier for larger noise intensities.

While the first phenomenon is not surprising, the other observed features are remarkable, and can lead to non-intuitive effects. In the example shown in Figure 1, the deterministic map has a stable fixed point in the 11th sector, so that the deterministic system will display a stable MMO pattern 1 11 . For sufficiently strong noise, the stochastic system will asymptotically operate in the 12th sector, with occasional transitions to neighbouring sectors such as sectors 11 and 13. Hence, the noise shifts the global return to a higher rotation sector. However, two more noise-induced effects may also affect the number of observed SAOs. First, the noise may alter the number of SAOs for orbits starting in a given sector, by causing earlier escapes away from the critical manifold. Second, it may produce fluctuations large enough to mask small oscillations. All these effects must be quantified and compared to determine which oscillatory pattern we expect to observe.

The estimates on the kernel we provide in this work yield quantitative information on the above phenomena. In particular, we obtain estimates on the typical size of fluctuations as a function of noise intensity and sector number, and on the onset of the saturation phenomenon. These results complement those already obtained in [START_REF] Berglund | Hunting French ducks in a noisy environment[END_REF] on the size of fluctuations near a folded-node singularity.

The structure of this article is the following: After introducing the deterministic setup in Section 2, we provide first estimates on noise-induced fluctuations in Section 3. Sections 4 and 5 extend the analysis to a neighbourhood of the regular fold and of the folded node, respectively. Section 6 combines all the local estimates to provide quantitative results on the kernel. The main results are:

• Theorem 6.1 (global return map) quantifies the effect of noise during the global return phase; • Theorem 6.2 (local map for inner sectors) provides estimates on noise-induced fluctuations for orbits starting near a folded node in sectors with small SAO number; together with Theorem 6.1 it yields bounds on the size of fluctuations of the Poincaré map in all inner sectors; • Theorem 6.4 (local map for outer sectors) gives similar estimates for orbits starting in sectors with a large SAO number; in particular, it proves the saturation effect.

A short discussion of the consequences of these results on the observed MMO patterns is given in Section 6.3. Finally, Section 7 illustrates these results with numerical simulations for the Koper model. The results obtained here are a first step towards the understanding of stochastic MMOs, that calls for further work. In particular, it would be desirable to obtain a more precise description of the possible MMO patterns. Let us mention two possible ways to achieve this:
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1. Singularly perturbed Markov chains: Consider the ideal case where the sectors of rotation form a Markov partition, meaning that the image of each sector is entirely contained in a sector. Then the dynamics can be described by a topological Markov chain between sectors, see Figure 2. Such a chain will in general not be irreducible, for instance, for the chain shown in Figure 2, state 3 is an absorbing state. In the presence of noise, however, new transitions between sectors appear, typically yielding an irreducible chain. In this sense, the chain for the stochastic system is a singular perturbation of its deterministic limit. For weak, non-vanishing noise, transitions between all states may become possible, but transition times diverge as the noise intensity goes to zero. Methods allowing to determine transition rates in singularly perturbed Markov chains for small positive noise have been developed, for instance, in [START_REF] Schweitzer | Perturbation theory and finite Markov chains[END_REF][START_REF] Hassin | Mean passage times and nearly uncoupled Markov chains[END_REF][START_REF] Avrachenkov | The fundamental matrix of singularly perturbed Markov chains[END_REF][START_REF] Yin | Discrete-time Markov Chains: Two-Time-Scale Methods and Applications[END_REF]. 2. Metastable transitions between periodic orbits: Consider a situation where the deterministic system admits several stable periodic orbits, each corresponding to an MMO pattern. Weak noise will induce rare transitions between these orbits. The theory of large deviations [START_REF] Freidlin | Random Perturbations of Dynamical Systems[END_REF] provides a way to estimate the exponential asymptotics of transition rates (Arrhenius' law [START_REF] Arrhenius | On the reaction velocity of the inversion of cane sugar by acids[END_REF]), via a variational problem. In the reversible case, Kramers' law [START_REF] Eyring | The activated complex in chemical reactions[END_REF][START_REF] Kramers | Brownian motion in a field of force and the diffusion model of chemical reactions[END_REF] provides a more precise expression for transition rates, which are related to exponentially small eigenvalues of the diffusion's infinitesimal generator, see for instance [START_REF] Bovier | Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times[END_REF][START_REF] Bovier | Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues[END_REF], and [START_REF] Berglund | Kramers' law: Validity, derivations and generalisations[END_REF] for a recent review. For irreversible systems, such precise expressions for transition rates are not available. However, the spectral-theoretic approach may still yield useful information, as in similar irreversible problems involving random Poincaré maps [START_REF] Berglund | Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh-Nagumo model[END_REF][START_REF] Berglund | On the noise-induced passage through an unstable periodic orbit II: General case[END_REF]. 

Notations

* f (x)/g(x) < ∞. The shorthand f (x) ≍ g(x) is used whenever f (x) = O(g(x)) and g(x) = O(f (x)) hold simultaneously. Furthermore, by f (x) ≪ g(x) we indicate that lim x→x * f (x)/g(x) = 0.
Vectors are assumed to be column vectors and v T denotes the transpose of a vector v. 2 Mixed-mode oscillations -The setup

In this section, we shall outline a typical setup for deterministic mixed-mode oscillations based upon three-dimensional fast-slow systems of the form

ǫ dx ds = ǫ ẋ = f (x, y, z; ǫ) , dy ds = ẏ = g 1 (x, y, z; ǫ) , (2.1) 
dz ds = ż = g 2 (x, y, z; ǫ) ,
where (x, y, z) ∈ R 3 and 0 < ǫ ≪ 1 is a small parameter. Throughout, we shall make the following assumption:

(A0) The functions f, g 1 , g 2 : R 4 → R are of class C 3 .
In particular, (A0) implies that on a fixed compact set there exist uniform bounds on f, g 1 , g 2 . We remark that the system (2.1) is allowed to depend smoothly upon further system parameters µ ∈ R p although we do not indicate this dependence in the notation. The critical set of (2.1) is

C 0 = {(x, y, z) ∈ R 3 : f (x, y, z; 0) = 0} . (2.2)
Motivated by several applications, such as the Hodgkin-Huxley model [START_REF] Hodgin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF][START_REF] Rubin | Giant squid -hidden canard: the 3d geometry of the Hodgin-Huxley model[END_REF], the Koper model [START_REF] Koper | Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram[END_REF][START_REF] Kuehn | On decomposing mixed-mode oscillations and their return maps[END_REF], the forced van der Pol equation [START_REF] Van Der Pol | The nonlinear theory of electric oscillations[END_REF][START_REF] Guckenheimer | Global bifurcations of periodic orbits in the forced van der Pol equation[END_REF] and the Rössler model [START_REF] Rössler | Chaos in abstract kinetics: Two prototypes[END_REF], we will assume that the geometric structure of the critical set is an S-shaped smooth manifold; see also Figure 3. More precisely, this assumption can be stated as follows:

(A1) Suppose C 0 is a smooth manifold composed of five smooth submanifolds,

C 0 = C a- 0 ∪ L -∪ C r 0 ∪ L + ∪ C a+ 0 , (2.3) 
where the two-dimensional submanifolds C a± 0 are normally hyperbolic attracting, while the two-dimensional submanifold C r 0 is normally hyperbolic repelling, i.e.,

∂f ∂x (p; 0) < 0 ∀p ∈ C a± 0 and ∂f ∂x (p; 0) > 0 ∀p ∈ C r 0 , (2.4) 
and L ± are one-dimensional smooth fold curves consisting of generic fold points

f (p; 0) = 0 , ∂f ∂x (p; 0) = 0 , ∂ 2 f ∂x 2 (p; 0) = 0 , ∂ y f (p; 0) ∂ z f (p; 0) = 0 0 ∀p ∈ L ± .
(2.5) Without loss of generality we assume from now on that ∂ y f (p; 0) = 0 for all p ∈ L ± .

Regular fold

Folded node

Σ 1 Σ ′ 1 Σ ′′ 1 Σ 2 Σ 3 Σ 4 Σ ′ 4 Σ 5 Σ 6 C a- 0 C r 0 C a+ 0 x y z Figure 3
. Sketch illustrating the definition of the different sections. The horizontal coordinate is x, the vertical one is y, and z points out of the plane.

Fenichel theory [START_REF] Fenichel | Geometric singular perturbation theory for ordinary differential equations[END_REF] shows that for ǫ > 0, the critical submanifolds C a± 0 and C r 0 perturb to invariant manifolds C a± ǫ and C r ǫ , which are ǫ-close to C a± 0 and C r 0 in points bounded away from the fold curves L ± .

Setting ǫ = 0 in (2.1) leads to the slow subsystem 0 = f (x, y, z; 0) ,

ẏ = g 1 (x, y, z; 0) , (2.6) 
ż = g 2 (x, y, z; 0) , which is solved by the so-called slow flow. Differentiating f implicitly with respect to s

yields ∂f ∂x ẋ = - ∂f ∂y ẏ - ∂f ∂z ż = - ∂f ∂y g 1 - ∂f ∂z g 2 (2.7)
for the slow flow, so that the slow subsystem (2.6) can be written as

∂f ∂x ẋ = - ∂f ∂y g 1 - ∂f ∂z g 2 , ż = g 2 , (2.8) 
where it is understood that all functions are evaluated at points (x, y, z; ǫ) = (p; 0) with p ∈ C 0 . One may use that (2.8) can locally be written as a closed system by applying the implicit-function theorem to express C 0 as a graph, e.g. y = h(x, z), near the fold as ∂f ∂y = 0. Observe that (2.8) is singular on the fold curves as ∂f ∂x = 0 on L ± . The desingularized slow subsystem is obtained by multiplying the right-hand side of (2.8) by ∂f ∂x and applying a rescaling of time. It reads

ẋ = - ∂f ∂y g 1 - ∂f ∂z g 2 , ż = ∂f ∂x g 2 .
(2.9)

We make the following further assumptions:

(A2) Suppose all fold points on L -satisfy the normal switching condition [START_REF] Mishchenko | Asymptotic Methods in Singularly Perturbed Systems[END_REF][START_REF] Szmolyan | Relaxation oscillations in R 3[END_REF] ∂f ∂y (p; 0)

∂f ∂z (p; 0) • g 1 (p; 0) g 2 (p; 0) = 0 ∀p ∈ L -. (2.10)
Furthermore, assume that the projections of L ± along the x-coordinate onto C a∓ 0 , which are also called the drop curves, are transverse to the slow flow.

(A3) Assume that the normal switching condition fails only at a unique singularity p * ∈ L + and p * is a node equilibrium point of (2.9); in this case, p * is called a folded node (or folded-node singularity) [START_REF] Benoît | Canards et enlacements[END_REF][START_REF] Szmolyan | Canards in R 3[END_REF].

Let us stress that the above geometric assumptions (A1)-(A3), as well as several further assumptions to follow, provide a convenient framework but that the deterministic and stochastic techniques we present here apply to a much wider range of multiscale systems displaying oscillatory patterns.

On the fast timescale t = s/ǫ the limit ǫ → 0 of (2.1) leads to the fast subsystem

dx dt = x ′ = f (x, y, z; 0) , dy dt = y ′ = 0 , (2.11 
)

dz dt = z ′ = 0 ,
which is solved by the fast flow. It is helpful to decompose the singular limit flows and their perturbations into several parts; see Figure 3 for an illustration. In particular, we consider the sections of the form

Σ i := {(x, y, z) ∈ R 3 : x = x i , y ∈ [y i,a , y i,b ], z ∈ [z i,a , z i,b ]} , i ∈ {2, 5} , (2.12) 
Σ i := {(x, y, z) ∈ R 3 : y = y i , x ∈ [x i,a , x i,b ], z ∈ [z i,a , z i,b ]} , i ∈ {1, 3, 4, 6} , for x i,a < x i,b , y i,a < y i,b , z i,a < z i,b
suitably chosen to capture the return map. For an appropriate choice of the constants x i and y i (see below or consider the approach in [START_REF] Kuehn | On decomposing mixed-mode oscillations and their return maps[END_REF]), there are well-defined maps from Σ i to Σ j .

(A4) The geometry of the flow-induced maps and sections is as shown in Figure 3.

In particular, Assumption (A4) implies that there is an O(1) transition time on the slow timescale from Σ 3 to Σ 4 as well as from Σ 6 to Σ 1 . (A4) incorporates that there is an O(1) spatial separation between each pair of fold/drop curves and it guarantees there is an O(1) transition time on the fast timescale from Σ 2 to Σ 3 as well as from Σ 5 to Σ 6 . Furthermore, we exclude the case of a singular Hopf bifurcation [START_REF] Guckenheimer | Singular Hopf bifurcation in systems with two slow variables[END_REF][START_REF] Guckenheimer | Bifurcation analysis of singular hopf bifurcation in R 3[END_REF], where an equilibrium of the full system (2.1) may occur in the neighbourhood of a folded node. There are four distinct important parts of the flow to analyze:

(I) the flow near the folded node Σ 1 → Σ 2 , (II) the fast segment Σ 2 → Σ 3 , (III) the slow-flow region Σ 3 → Σ 4 near C a- ǫ , and (IV) the non-degenerate fold via Σ 4 → Σ 5 . The map Σ 5 → Σ 6 can be covered by the same techniques as Σ 2 → Σ 3 , and Σ 6 → Σ 1 is similar to Σ 3 → Σ 4 .

The geometry of flow maps and the possible generation mechanisms for mixed-mode oscillations under the assumptions (A0)-(A4) are well-known; see for example [START_REF] Brøns | Mixed mode oscillations due to the generalized canard phenomenon[END_REF][START_REF] Desroches | Mixed-mode oscillations with multiple time scales[END_REF]. A main idea is that twisting of the slow manifolds C a+ ǫ and C r ǫ near a folded node generates SAOs and the global return mechanism via the S-shaped critical manifold induces the LAOs. Fixed points of a full return map, say Σ 1 → Σ 1 , correspond to MMOs with a certain pattern

• • • L s k k L s k+1 k+1 • • • L s k+l k+l L s k+1 k+1 • • • (2.13)
The main question we address in this paper is how noise influences the patterns (2.13). We are going to split the analysis into two main parts. In Section 3 we provide basic estimates and consider the global part of the return map. Sections 4-5 address local dynamics in the regions near the regular fold and the folded node.

3 The stochastic system where (W s ) s 0 is a k-dimensional standard Brownian motion on a probability space (Ω, F, P). The maps

F (x, y, z) ∈ R 1×k , G(x, y, z) = G 1 (x, y, z) G 2 (x, y, z) ∈ R 2×k (3.2)
may depend on ǫ, and are assumed to be C 1 and to satisfy the usual bounded-growth condition guaranteing existence of a unique strong solution of (3.1). We shall adopt the shorthand notation to write just (x, y, z) instead of (x, y, z; ǫ). We will assume that the diffusion coefficients satisfy the following uniform ellipticity assumption:

(A5) Let D(x, y, z) = F F T (x, y, z) F G T (x, y, z) GF T (x, y, z) GG T (x, y, z) ∈ R 3×3 (3.3)
be the diffusion matrix. There exist constants c + c -> 0 such that

c -ξ 2 ξ, D(x, y, z)ξ c + ξ 2 ∀ξ ∈ R 3 ∀(x, y, z) T ∈ R 3 . (3.4) Remark 3.1.
In fact, most of our results remain valid under a weaker hypoellipticity assumption (cf. [6, p. 175] -this weaker condition is needed for the random Poincaré map to have a smooth density). The only result that requires the lower bound in (3.4) is Theorem 6.4, which relies on the early-escape result [START_REF] Berglund | Hunting French ducks in a noisy environment[END_REF]Theorem 6.4]. See [START_REF] Höpfner | Ergodicity for a stochastic Hodgkin-Huxley model driven by Ornstein-Uhlenbeck type input[END_REF] for recent work under weaker assumptions.

Finally we make the following assumption on the noise intensities:

(A6) Assume 0 < σ = σ(ǫ) ≪ 1 and 0 < σ ′ = σ ′ (ǫ) ≪ 1.
In fact, in the course of the analysis, we will encounter more restrictive conditions of the form σ = O(ǫ α ), σ ′ = O(ǫ β ) with α, β > 0. The most stringent of these conditions will be needed for the analysis near the folded node, and requires σ, σ ′ = O(ǫ 3/4 ).

The main goal is to establish bounds on the noise-induced deviation from a deterministic solution. In [START_REF] Berglund | Noise-induced phenomena in slow-fast dynamical systems. A sample-paths approach[END_REF]Theorem 5.1.18], rather precise bounds for the deviation near normally hyperbolic critical manifolds are derived. We want to adapt these to the other phases of motion. As it turns out, the leading-order effect of noise occurs near the foldednode singularity. Therefore, it will be sufficient to determine the order of magnitude of noise-induced deviations during other phases of the dynamics, as a function of σ, σ ′ and ǫ.

We fix a deterministic reference solution (x det s , y det s , z det s ) and set

ξ s = x s -x det s , η s = y s z s - y det s z det s , ζ s = ξ s η s . (3.5) 
As initial condition we choose (ξ 0 , η 0 ) = (0, 0) as it corresponds to (x det 0 , y det 0 , z det 0 ). Substituting in (3.1) and Taylor-expanding, we obtain a system of the form

dζ s = 1 ǫ A(s)ζ s ds + σ √ ǫ F(ζ s , s) σ ′ G(ζ s , s) dW s + 1 ǫ b ξ (ζ s , s) b η (ζ s , s) ds , (3.6) 
where 

A(s) ∈ R 3×3 , F(ζ s , s), b ξ (ζ s , s) ∈ R , G(ζ s , s), b η (ζ s , s) ∈ R 2 . ( 3 
A(s) = a(s) c 1 (s) ǫc 2 (s) ǫB(s) , (3.8) 
where a(s) = ∂f ∂x (x det s , y det s , z det s ) and so on, so that in particular c 1 (s

) ∈ R 1×2 , c 2 (s) ∈ R 2×1 and B(s) ∈ R 2×2 . Let U (s, r) = U ξξ (s, r) U ξη (s, r) U ηξ (s, r) U ηη (s, r) (3.9)
denote the principal solution of the linear system ǫ ζ = A(s)ζ. Then the solution of (3.6) can be written in the form

ξ s = σ √ ǫ s 0 U ξξ (s, r)F(ζ r , r) dW r + σ ′ s 0 U ξη (s, r)G(ζ r , r) dW r + 1 ǫ s 0 U ξξ (s, r)b ξ (ζ r , r) dr + s 0 U ξη (s, r)b η (ζ r , r) dr , (3.10) 
and

η s = σ √ ǫ s 0 U ηξ (s, r)F(ζ r , r) dW r + σ ′ s 0 U ηη (s, r)G(ζ r , r) dW r + 1 ǫ s 0 U ηξ (s, r)b ξ (ζ r , r) dr + s 0 U ηη (s, r)b η (ζ r , r) dr . (3.11) 
In both equations, we expect the stochastic integrals to give the leading contribution to the fluctuations. They can be estimated by the Bernstein-type inequality Lemma A.2. The magnitude of the other integrals can then be shown to be smaller, using a direct estimate which is valid as long as the system does not exit from the region where the nonlinear terms are negligible; see e.g. [17, p. 4826] or [START_REF] Berglund | Geometric singular perturbation theory for stochastic differential equations[END_REF]Theorem 2.4].

In order to carry out this program, we need estimates on the elements of the principal solution U . Note that the ξ-components are in principle larger than the η-components, but this is compensated by the fact that x det s spends most of the time in the vicinity of stable critical manifolds. The following ODEs will play an important rôle:

ǫ ṗ1 = c 1 (s) + a(s)p 1 -ǫp 1 B(s) -ǫp 1 c 2 (s)p 1 , ǫ ṗ2 = c 2 (s) -a(s)p 2 + ǫB(s)p 2 -ǫp 2 c 1 (s)p 2 .
(3.12)

Here p 1 (s) ∈ R 1×2 and p 2 (s) ∈ R 2×1 . If a(s) is bounded away from 0, standard singular perturbation theory implies that these ODEs admit solutions p 1 (s) and p 2 (s) of order 1 (and in fact p 1 (s) close to -a(s) -1 c 1 (s)). If a(s) approaches 0 or changes sign, this need no longer be the case, but there may still be solutions such that ǫ|p 1 (s)p 2 (s)| remains small.

Lemma 3.2. Assume s -r O(1) and that the ODEs (3.12) admit solutions such that ǫ|p 1 (u)p 2 (u)| is bounded for u ∈ [r, s] by a function ρ(ǫ) satisfying lim ǫ→0 ρ(ǫ) = 0. Let α(s, r) = s r a(u) du. Then for sufficiently small ǫ, U ξξ (s, r) = e (α(s,r)+O(ǫ))/ǫ -ǫ p 1 (s)V p 2 (r

) (1 + O(ρ)) , U ξη (s, r) = -e (α(s,r)+O(ǫ))/ǫ p 1 (r) + p 1 (s)V (1 + O(ρ)) , U ηξ (s, r) = ǫ e (α(s,r)+O(ǫ))/ǫ p 2 (s) -V p 2 (r) (1 + O(ρ)) , (3.13) 
U ηη (s, r) = V -ǫ e (α(s,r)+O(ǫ))/ǫ p 2 (s)p 1 (r) (1 + O(ρ)) ,
where V = V (s, r) is the principal solution of the system

η = [B(s) + c 2 (s)p 1 (s)] η . (3.14)
Proof. Consider the matrix

S(s) = 1 p 1 (s) ǫp 2 (s) 1l . (3.15)
Then the equations (3.12) imply

ǫ Ṡ = AS -SD with D(s) = d 1 (s) 0 0 ǫD 2 (s) , (3.16) 
where the blocks d 1 (s) ∈ R and ǫD 2 (s) ∈ R 2×2 are given by The principal solution of this equation is block-diagonal, with blocks e 1 ǫ s r d 1 (u) du and V (s, r), where V is the principal solution of η = D 2 (s)η. The principal solution of the original equation is then given by

d 1 (s) = a(s) + ǫc 1 (s)p 2 (s) , ǫD 2 (s) = ǫB(s) + ǫc 2 (s)p 1 (s) . ( 3 
U (s, r) = S(s) e 1 ǫ s r d 1 (u) du 0 0 V (s, r) S(r) -1 . (3.19)
Furthermore, we have

S(s) -1 = 1 -p 1 (s) -ǫp 2 (s) 1l [1 -ǫp 1 (s)p 2 (s)] -1 0 0 [1l -ǫp 2 (s)p 1 (s)] -1 . (3.20)
Computing the matrix product in (3.19) yields the result. Note that more precise expressions for the matrix elements can be obtained if needed.

To describe the size of fluctuations, for given h, h 1 > 0 we introduce stopping times

τ ξ = inf s > 0 : |ξ s | > h , τ η = inf s > 0 : η s > h 1 . (3.21) 
Proposition 3.3. Suppose the assumptions of Lemma 3.2 are satisfied with p 1 , p 2 bounded uniformly in ǫ. Given a finite time horizon T of order 1 on the slow timescale, there exist constants κ, h 0 > 0 such that whenever h, h 1 h 0 , h 2 1 h 0 h and h 2 h 0 h 1 ,

P τ ξ ∧ τ η < s s ǫ e -κh 2 /σ 2 + e -κh 2 /(σ ′ ) 2 + e -κh 2 1 /(σ ′ ) 2 + e -κh 2 1 /(ǫσ 2 ) (3.22)
holds for all s T . Proof. Denote by ξ i s , i = 0, 1, 2, 3, the four terms on the right-hand side of (3.10). We will start by estimating ξ 0 s and ξ 1 s . Since p 1 , p 2 are assumed to be bounded, we may choose ρ(ǫ) of order ǫ in (3.13), and U ηξ is of order ǫ, while the other elements of U are of order 1 at most. By Lemma A.2 and the bounds on U ξξ and U ξη , there exists a constant M > 0 such that

P sup 0 r s |ξ 0 r | > h s ǫ e -h 2 /(M σ 2 ) and P sup 0 r s |ξ 1 r | > h s ǫ e -h 2 /(M (σ ′ ) 2 ) .
(3.23) Indeed, to estimate ξ 0 s we first use that on any short time interval s ∈ [s 1 , s 2 ] with |s 2 -s 1 | ǫ, the stochastic process ξ 0 s = U ξξ (s, s 2 )M s is close to the martingale M s , defined by

M s = σ √ ǫ s 0 U ξξ (s 2 , r)F(ζ r , r) dr , (3.24) 
since |U ξξ (s, s 2 )| remains of order 1 on these time intervals. First using (3.13) and (A0) and then our choice of ρ and Lemma A.1, we see that the martingale's variance is bounded by Furthermore, we have

σ 2 ǫ s 0 U ξξ (s 2 , r)(FF T )(ζ r , r)U T ξξ (s 2 , r) dr M σ 2 ǫ s 0 e (2α(s,r)+O(ǫ))/ǫ +ρ 2 V 2 dr (3.
|ξ 2 s | + |ξ 3 s | M ′ (h 2 + h 2 1
) for a constant M ′ > 0 and s τ ξ ∧ τ η . From this, together with Gronwall's lemma, we deduce that there exists a constant M > 0 such that

P τ ξ < s ∧ τ η s ǫ exp - [h -M ′ (h 2 + h 2 1 )] 2 M σ 2 + s ǫ e -h 2 /(M (σ ′ ) 2 ) . (3.26)
In a similar way, we find

P τ η < s ∧ τ ξ s ǫ exp - [h 1 -M ′ (h 2 + h 2 1 )] 2 M (σ ′ ) 2 + s ǫ e -h 2 1 /(M ǫσ 2 ) . (3.27) 
Choosing h 0 small enough, we can ensure that the terms M ′ (h 2 + h 2 1 ) are negligible, and the result follows by taking the sum of the last two estimates.

The size of typical fluctuations is given by the values of h, h 1 for which the probability (3.22) starts getting small, namely h ≫ σ ∨ σ ′ and h 1 ≫ σ ′ ∨ σ √ ǫ. We conclude that fluctuations have size σ + σ ′ in the fast direction, and σ ′ + σ √ ǫ in the slow direction.

Note that for simplicity we ignore the logarithmic contribution arising from the prefactor ⌈s/ǫ⌉. We now want to estimate the noise-induced spreading for the Poincaré map, starting on the section Σ 2 after the folded node, and arriving on the section Σ 1 before the folded node. As described in Section 2 we decompose the map into several maps, see Figure 3, and estimate the spreading for each map separately. This means that we fix an initial condition on each section, and estimate the deviation of the stochastic sample paths from the deterministic solution when it first hits the next section.

The fast segments

The fast segments are given by Σ 2 → Σ 3 and Σ 5 → Σ 6 . By Assumption (A4) there exists a slow time T 0 of order ǫ in which the deterministic solution starting on Σ 2 reaches a neighbourhood of order 1 of the stable critical manifold. In this neighbourhood, the linearization a(s) = ∂f ∂x (x det s , y det s , z det s ) is negative and of order 1. To reach an ǫ-neighbourhood of the critical manifold, an additional slow time T 1 of order ǫ|log ǫ| is required. By the drop-curve transversality assumption (A2) and using (A4), it takes another slow time T 2 of at most order 1 to reach the section Σ 3 . For T := T 0 + T 1 + T 2 we thus have

a(s) a 1 for all s -a 2 for c 1 ǫ s T (3.28)
for some positive constants a 1 , a 2 , c 1 . This implies that whenever T s > r 0,

α(s, r) c 2 ǫ (3.29)
for a constant c 2 , and furthermore α(s, r) is negative as soon as s is larger than a constant times ǫ.

Consider now the equations (3.12) for p 1 and p 2 . We will show that p 1 remains bounded on [0, T ] and that there exists a particular solution p 2 which also remains bounded on [0, T ]. For p 1 , we proceed in two steps:

• For 0 s c 1 ǫ, p 1 (s) can grow at most by an amount of order 1.

• For c 1 ǫ < s T , since a(s) is negative, we can use standard singular perturbation theory to show that p 1 (s) remains of order 1, and in fact approaches c 1 (s)/|a(s)|.

For p 2 (s), we change the direction of time and consider the equation

ṗ2 = -c 2 (T -s) + a(T -s)p 2 -ǫB(T -s)p 2 + ǫp 2 c 1 (T -s)p 2 . (3.30)
We know that a(T -s) is negative, bounded away from 0, except for a time interval of length c 1 ǫ near T . Thus we conclude that there exists a particular solution which remains bounded, of order 1, on the whole time interval. Therefore Lemma 3.2 shows that U ξξ , U ξη and U ηη remain bounded (in norm), of order 1, and that U ηξ remains of order ǫ for 0 r < s T . As a consequence, we can apply Proposition 3.3 as is, with the result that on the section Σ 3 ,

• the spreading in the fast direction is of order σ + σ ′ ,

• the spreading in the slow z-direction is of order σ ′ + σ √ ǫ.

The slow segments

The slow segments are given by Σ 3 → Σ 4 and Σ 6 → Σ 1 . The analysis of the previous subsection can actually be extended to these segments, because a(t) is always negative, bounded away from 0. The conclusions on typical spreading are the same:

• the spreading in the fast direction is of order σ + σ ′ ,

• the spreading in the slow z-direction is of order σ ′ + σ √ ǫ.

Note that [15, Theorem 5.1.18] provides a more precise description of the dynamics, by constructing more precise covariance tubes. The qualitative conclusion on typical spreading is the same as above. [START_REF] Ashwin | Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system[END_REF] The regular fold

Approach

The regular fold corresponds to the transition Σ 4 → Σ 5 . We again fix a deterministic solution, now starting on Σ 4 . We choose the origin of the coordinate system on the regular fold L -and the origin of time in such a way that at time s = 0, (y det 0 , z det 0 ) = (0, 0). Recall from the deterministic analysis (see e.g. [START_REF] Krupa | Extending geometric singular perturbation theory to nonhyperbolic points -fold and canard points in two dimensions[END_REF][START_REF] Mishchenko | Differential Equations with Small Parameters and Relaxation Oscillations[END_REF] for the two-dimensional and [START_REF] Szmolyan | Relaxation oscillations in R 3[END_REF][START_REF] Mishchenko | Asymptotic Methods in Singularly Perturbed Systems[END_REF] for the three-dimensional case) that, given s 0 < 0 of order 1,

• for s 0 s -ǫ 2/3 , the distance of x det s to the critical manifold grows like ǫ/|s| 1/2 ;

• there exists a c 1 > 0 such that x det s ≍ ǫ 1/3 for -ǫ 2/3 s c 1 ǫ 2/3 ;

• there exists a c 2 > 0 such that x det s reaches order 1 before time c 2 ǫ 2/3 .

In this section, we consider the transition Σ 4 → Σ ′ 4 , where Σ ′ 4 is a section on which y = c 1 ǫ 2/3 . In this region, the linearization a(s) = ∂f ∂x (x det s , y det s , z det s ) satisfies

a(s) ≍ -(|s| 1/2 + ǫ 1/3 ) . (4.1)
Lemma 4.1. There are solutions of the equations (3.12) satisfying

p 1 (s) , p 2 (s) = O 1 |a(s)| = O 1 |s| 1/2 + ǫ 1/3 for s 0 s c 1 ǫ 2/3 . (4.2)
Proof. For p 1 (s), we first consider the equation ǫ ṗ1 = a(s)p 1 + c 1 (s), whose solution we know behaves as above, see Lemma A.1 (or [15, pp. 87-88]). Regular perturbation theory allows us to extend the estimate to the full equation for p 1 . In the case of p 2 , we change the direction of time, and thus consider an equation similar to the equation for p 1 on an interval [-c 1 ǫ 2/3 , -s 0 ]. The above bound can be obtained, e.g., by scaling space by ǫ 1/3 and time by ǫ 2/3 on [-c 1 ǫ 2/3 , ǫ 2/3 ], and using integration by parts on the remaining time interval.

Corollary 4.2. For all s 0 r s c 1 ǫ 2/3 , the principal solution U (s, r) satisfies

|U ξξ (s, r)| = O e α(s,r)/ǫ + ǫ (|s| 1/2 + ǫ 1/3 )(|r| 1/2 + ǫ 1/3 ) , (4.3) 
U ξη (s, r) = O e α(s,r)/ǫ |r| 1/2 + ǫ 1/3 + 1 |s| 1/2 + ǫ 1/3 , (4.4) 
U ηξ (s, r) = O ǫ e α(s,r)/ǫ |s| 1/2 + ǫ 1/3 + 1 |r| 1/2 + ǫ 1/3 , (4.5) 
U ηη (s, r) = O(1) . (4.6) 
Proof. We can apply Lemma 3.2, since ǫ|p 1 (s)p 2 (s)| = O(ǫ 1/3 ). Recall that the matrix V occurring in (3.13) is the principal solution of η = D 2 (s)η, where

D 2 (s) = B(s) + c 2 (s)p 1 (s) = O(|a(s)| -1 ) . (4.7) It follows that d ds η s 2 = 2(η 1 η1 + η 2 η2 ) M |a(s)| η s 2 (4.8)
for some constant M > 0, so that Gronwall's Lemma implies

η s 2 η s 0 2 exp s s 0 M |a(u)| du . (4.9) 
A direct computation using (4.1) shows that for s c 1 ǫ 2/3 the integral has order 1, and thus the principal solution V has order 1 as well. Then the result follows from Lemma 3.2.

Proposition 4.3. There exist constants

κ, h 0 > 0 such that whenever h h 0 ǫ 1/3 , h 1 h 0 , h 2 h 0 h 1 and h 2 1 h 0 hǫ 1/3 , P τ ξ ∧ τ η < c 1 ǫ 2/3 1 ǫ e -κh 2 /(σ 2 ǫ -1/3 ) + e -κh 2 /((σ ′ ) 2 ǫ -2/3 ) + e -κh 2 1 /(σ ′ ) 2 + e -κh 2 1 /(ǫ|log ǫ|σ 2 ) . (4.10)
Proof. Estimate (4.3) and Lemma A.1 imply

1 ǫ s s 0 U ξξ (s, r) 2 dr = O 1 |s| 1/2 + ǫ 1/3 O ǫ -1/3 (4.11) for s 0 + O(1) s c 1 ǫ 2/3
. Indeed, the term e α(s,r)/ǫ yields a contribution of this order, while the second term in (4.3) gives a contribution of order ǫ|log ǫ|/(|s| 1/2 + ǫ 1/3 ), which is smaller. Next, we estimate

s s 0 U ξη (s, r) 2 dr = O 1 |s| + ǫ 2/3 O ǫ -2/3 , (4.12) 
where the main contribution now comes from the second term in (4.4). We also obtain

1 ǫ s s 0 U ηξ (s, r) 2 dr = O ǫ|log ǫ| , (4.13) 
where the main contribution comes from the second term in (4.5). Finally

s s 0 U ηη (s, r) 2 dr = O(1) . (4.14)
Similarly, we obtain the estimates

1 ǫ s s 0 |U ξξ (s, r)| dr = O 1 |s| 1/2 + ǫ 1/3 , s s 0 U ξη (s, r) dr = O 1 |s| 1/2 + ǫ 1/3 , 1 ǫ s s 0 U ηξ (s, r) dr = O(1) , (4.15) 
s s 0 U ηη (s, r) dr = O(1)
.

We can now adapt the proof of Proposition 3.3 to the present situation. Recall the definitions of τ ξ , τ η from (3.21). We denote again by ξ i s , i = 0, 1, 2, 3, the four terms on the right-hand side of (3.10). Let T = c 1 ǫ 2/3 . The Bernstein-type estimate Lemma A.2 and (4.11) yield

P sup s 0 r T |ξ 0 r | > h 1 ǫ e -h 2 /(M σ 2 ǫ -1/3 ) , (4.16) 
and similarly P sup

s 0 r T |ξ 1 r | > h 1 ǫ e -h 2 /(M (σ ′ ) 2 ǫ -2/3
) . (4.17)

Furthermore, using (4.15) we obtain

|ξ 2 s | + |ξ 3 s | M ′ ǫ -1/3 (h 2 + h 2 1
) for s τ ξ ∧ τ η . From this we can deduce

P τ ξ < T ∧ τ η 1 ǫ exp - [h -M ′ ǫ -1/3 (h 2 + h 2 1 )] 2 M σ 2 ǫ -1/3 + e -h 2 /(M (σ ′ ) 2 ǫ -2/3 ) . (4.18)
In a similar way, we get

P τ η < T ∧ τ ξ 1 ǫ exp - [h 1 -M ′ (h 2 + h 2 1 )] 2 M σ 2 ǫ|log ǫ| + e -h 2 1 /(M (σ ′ ) 2 ) . (4.19)
This concludes the proof.

The condition h 2 1 h 0 hǫ 1/3 together with h h 0 ǫ 1/3 imposes that we can take h 1 at most of order ǫ 1/3 . For the typical spreadings, we obtain

• in the fast direction: σ ǫ 1/6 + σ ′ ǫ 1/3 , (4.20) 
• in the slow direction:

σ ′ + σ ǫ|log ǫ| . (4.21)
For the bound (4.10) to be useful, we need the spreading in the fast direction to be small compared to ǫ 1/3 , because of the condition on h. This yields the conditions

σ ≪ ǫ 1/2 , σ ′ ≪ ǫ 2/3 . (4.22) 
The term σ/ǫ 1/6 of the x-spreading and the condition σ ≪ ǫ 1/2 are expected, because they already occur when there is no noise acting on the slow variables (see [START_REF] Berglund | Noise-induced phenomena in slow-fast dynamical systems. A sample-paths approach[END_REF]Section 3.3]).

The term σ ′ /ǫ 1/3 and the condition σ ′ ≪ ǫ 2/3 are due to the coupling with the slow variables.

Remark 4.4. By using sharper estimates on the size of the linear terms ξ 0 r and ξ 1 r (cf. Remark A.3), one can in fact show that the typical spreading in the x-direction grows like

σ |s| 1/4 + ǫ 1/6 + σ ′ |s| 1/2 + ǫ 1/3 . (4.23)

Normal form

Before analysing the behaviour during the jump, we make a preliminary transformation to normal form near the fold. Recall that t = s/ǫ denotes the fast timescale. 

dx t = y t + x 2 t + O(z t , (x t , y t ) T 3 , ǫ, σ 2 ) dt + σ F 1 (x t , y t , z t ) dW t + σ ′ √ ǫ F 2 (x t , y t , z t ) dW t , dy t = ǫĝ 1 (x t , y t , z t ; ǫ, σ ′ ) dt + σ ′ √ ǫ G 1 (x t , y t , z t ) dW t , dz t = ǫĝ 2 (x t , y t , z t ; ǫ) dt + σ ′ √ ǫ G 2 (x t , y t , z t ) dW t , (4.24) 
where ĝ1 = g 1 + O((σ ′ ) 2 ) and ĝ1 (0, 0, 0; 0, 0) = 1 , ĝ2 (0, 0, 0; 0) = 0 . (4.25)

Proof. The result is a stochastic analogue of the transformation result for deterministic systems. We extend the proof presented by Szmolyan and Wechselberger in [78, pp. 73-74] and [82, pp. 8-10] to the stochastic case. First, we may use a translation of coordinates so that the neighbourhood of L -is chosen with center (0, 0, 0) ∈ L -. From the normal switching condition Assumption (A2) we may assume without loss of generality that g 1 (0, 0, 0; 0) = 0; indeed, if g 1 (0, 0, 0; 0) = 0 then g 2 (0, 0, 0; 0) = 0 and we may exchange the names of the two slow variables. Next, define a coordinate change z =: z + γy with γ = g 2 (0, 0, 0; 0)

g 1 (0, 0, 0; 0) = 0 . (4.26)
This yields

dz t = dz t -γ dy t = ǫ g 2 (x, y, z + γy; ǫ) -γg 1 (x, y, z + γy; ǫ) dt + σ ′ √ ǫ G 1 (x, y, z + γy; ǫ) -γG 2 (x, y, z + γy; ǫ) dW t . (4.27)
Introducing new maps ḡ2 = g 2 -γg 1 and G 2 = G 1 -γG 2 and then dropping all the overbars from the notation yields a stochastic fast-slow system of the form (3.1) which now satisfies g 1 (0, 0, 0; 0) = 0 and g 2 (0, 0, 0; 0) = 0. (

The next step is to rectify the fold curve. By the implicit-function theorem there exists a parametrization of L -by (ξ(z), η(z), z) for z ∈ I ⊂ R where I is a suitable interval. The transformation (x, y, z) = (x + ξ(z), ȳ + η(z), z) (4.29)

rectifies the fold curve in new coordinates (x, ȳ, z), in the sense that f (0, 0, z) = 0. Itô's formula shows

dx t = f (x t , ȳt , zt ) + O(ǫ(σ ′ ) 2 ) dt + σF (x t , ȳt , zt ) -σ ′ √ ǫ(∂ z ξ)G 2 (x t , ȳt , zt ) dW t dȳ t = ǫḡ 1 (x t , ȳt , zt ) + O(ǫ(σ ′ ) 2 ) dt + σ ′ √ ǫ G 1 (x t , ȳt , zt ) -(∂ z η)G 2 (x t , ȳt , zt ) dW t , (4.30) 
where f (x, ȳ, z) = aȳ + bx 2 + cxȳ + dȳ 2 + O(z, (x, ȳ) T 3 ). By a scaling of x, ȳ and time, we can achieve that a = b = 1 and ḡ1 (0, 0, 0) = 1. The final step is a normal-form transformation x = x -1 2 cx 2 -dxȳ, which eliminates the terms of order xȳ and ȳ2 in the drift term of dx t . Applying again Itô's formula yields the result. Remark 4.6. It is possible to further simplify the drift term, in such a way that for ǫ = 0 and σ = 0 = σ ′ , g 1 (x, y, z) = g(z) + g 11 (x, y, z) where g 11 (0, 0, z) = 0 and g 2 (0, 0, z) = 0, see [82, pp. 9-10] and [78, p. 73]. However, this introduces a diffusion term of order σ in dy t , which we want to avoid.

Neighbourhood and escape

We determine now the size of fluctuations during the "jump phase" of sample paths starting on Σ ′ well-known deterministic asymptotics as they are going to motivate several choices in the analysis of the stochastic dynamics.

The lowest-order approximation for the deterministic dynamics near the planar fold is 

ǫ dx dy = y + x 2 , ( 4 
θ(x) = -x 2 - 1 2x + O 1 x4 as x → -∞ , (4.33) θ(x) = θ * - 1 x + O 1 x3 as x → ∞ , (4.34)
which is the extension of the attracting slow manifold through the fold region; the constant θ * is the horizontal asymptote which can be expressed as the zero of suitable Bessel functions. However, if we look at the variational equation of (4.32) around θ(x) to leading order it follows that

dξ dθ = 2 1 θ * -θ ξ, as x → ∞ (or θ → θ * ). (4.35)
The solution is given by

ξ(θ) ∼ = 1 (θ * -θ) 2 ξ(θ 0 ) . (4.36)
This growth of the linearization in the fast direction turns out to be too fast to apply directly the same method to control stochastic sample paths as in the previous cases. However, we do not need such a precise control of fluctuations in the fast direction. It is sufficient to show that sample paths are likely to stay in a tube around the deterministic solution, with some specific extension in the slow directions y and z. To do so, we will compare the random process with different deterministic solutions on successive time intervals [θ n , θ n+1 ] during which fluctuations in the fast direction remain bounded (cf. Figure 4). The expression (4.36) shows that a possible choice are geometrically accumulating θ n of the form θ n = θ * -2 -n . During the interval [θ n , θ n+1 ], the deterministic solution x(θ) moves by a distance of order ǫ 1/3 (2 n+1 -2 n ) = ǫ 1/3 2 n . For x(θ) to reach order 1, we need to choose n of order |log ǫ|.

To make the last idea rigorous, we write the system (4.24) on the timescale θ = ǫ 1/3 t = ǫ -2/3 s as where f (x, y, z) = y + x 2 + O(z, (x, y) T 3 , ǫ, σ 2 ). Given δ > 0 of order 1, there exists a δ 0 of order 1 such that by restricting the analysis to a cube of size δ 0 , we may assume that |ĝ 1 -1| < δ and

dx θ = 1 ǫ 1/3 f (x θ , y θ , z θ ) dθ + σ ǫ 1/6 F 1 (x θ , y θ , z θ ) dW θ + σ ′ ǫ 1/3 F 2 (x θ , y θ , z θ ) dW θ , dy θ = ǫ 2/3 ĝ1 (x θ , y θ , z θ ; ǫ, σ ′ ) dθ + σ ′ ǫ 1/3 G 1 (x θ , y θ , z θ ) dW θ , dz θ = ǫ 2/3 ĝ2 (x θ , y θ , z θ ; ǫ) dθ + σ ′ ǫ 1/3 G 2 (x θ , y θ , z θ ) dW θ , (4.37) 
x y z C r 0 C a- 0 Σ ′ 4 (x 0 , y 0 , z 0 ) Σ * n Σ * n+1 Σ 5 c 1 ǫ 2/3 ǫ 1/3 2 n (δ 0 , y * , z * )
|ĝ 2 | < δ. For convenience, we set Σ * 0 = {(x 0 , y 0 , z 0 )} ⊂ Σ ′ 4
, where we recall that the initial condition satisfies x 0 ≍ -ǫ 1/3 , y 0 = c 1 ǫ 2/3 for some c 1 > 0, and that we may assume |z 0 | ≪ ǫ 2/3 . For n 1 and ǫ > 0 such that ǫ 1/3 2 n < δ 0 , we introduce sets

Σ * n = (x, y, z) : x = ǫ 1/3 2 n , (y, z) ∈ D n , (4.38) 
see Figure 4. The sets D n are defined inductively as follows:

D 1 = (y 1 -c 2 ǫ 2/3 , y 1 + c 2 ǫ 2/3 ) × (-c 2 ǫ 2/3 , c 2 ǫ 2/3 ) , (4.39) 
where y 1 is such that (2ǫ 1/3 , y 1 , z 1 ) belongs to the deterministic orbit starting in (x 0 , y 0 , z 0 ), and c 2 < c 1 is a sufficiently small constant. Given D n , the next set D n+1 is chosen as the c 2 ǫ 2/3 2 -n/2 -neighbourhood of the image of D n under the deterministic Poincaré map from Σ * n to Σ * n+1 . It is not difficult to show that for sufficiently small δ and c 2 , the time needed for the deterministic flow to go from Σ * n to Σ * n+1 is of order θ = O(2 -n ). During this time, y and z vary by O(ǫ 2/3 2 -n ) at most, and thus

diam(D n+1 ) diam(D n ) + O(ǫ 2/3 2 -n/2 ) . (4.40)
The geometric decay in 2 -n/2 shows that the diameter of the D n has a uniform bound of order ǫ 2/3 . In fact, by taking δ small, we can make the extension of D n in the z-direction small. We return to the stochastic system (4.37). Fix n. For an initial condition (x n , y n , z n ) ∈ Σ * n , we denote by (x det θ , y det θ , z det θ ) and (x θ , y θ , z θ ) the deterministic and stochastic solutions starting in (x n , y n , z n ). We write P (xn,yn,zn) whenever we wish to stress the initial condition. Consider the stopping times

τ n+1 = inf{θ : (x θ , y θ , z θ ) ∈ Σ * n+1 } , τ det n+1 = τ det = inf{θ : (x det θ , y det θ , z det θ ) ∈ Σ * n+1 } , τ ξ = τ (n) ξ (h) = inf{θ : |x θ -x det θ | > h2 -n/2 } , τ η = τ (n) η (h 1 ) = inf{θ : (y θ , z θ ) -(y det θ , z det θ ) > h 1 2 -n/2 } . (4.41)
We first establish that sample paths are likely to go from Σ * n to Σ * n+1 in a time of order θ = O(2 -n ), as in the deterministic case. Lemma 4.7. There exist h 0 , c, c 2 , κ > 0, not depending on n, such that for all initial conditions (x n , y n , z n ) ∈ Σ * n and h h 0 ǫ 1/3 , h 1 c 2 ǫ 2/3 ,

P (xn,yn,zn) τ n+1 ∧ τ (n) ξ (h) ∧ τ (n) η (h 1 ) > c2 -n exp -κ 2 3n ǫ σ 2 + (σ ′ ) 2 ǫ . (4.42)
Proof. First note that τ n+1 > c2 -n implies that either x does not reach the level ǫ 1/3 2 n+1 before time c2 -n or that x does reach ǫ 1/3 2 n+1 at a stopping time τ x n+1 c2 -n while (y τ x n+1 , z τ x n+1 ) ∈ D n+1 . Let us estimate the probability that τ x n+1 > c2 -n . Note that h 0 and c 2 can be chosen sufficiently small to guarantee that f ǫ 2/3 2 2n-2 for all times θ τ ξ ∧ τ η . From the representation [START_REF] Hitczenko | Bursting oscillations induced by small noise[END_REF] we find that

x c2 -n = ǫ 1/3 2 n + 1 ǫ 1/3 c2 -n 0 f dθ + σ ǫ 1/6 c2 -n 0 F 1 dW θ + σ ′ ǫ 1/3 c2 -n 0 F 2 dW θ (4.
P{x c2 -n < ǫ 1/3 2 n+1 , τ ξ ∧ τ η > c2 -n } P σ ǫ 1/6 c2 -n 0 F 1 dW θ + σ ′ ǫ 1/3 c2 -n 0 F 2 dW θ < - 1 4 c -1 ǫ 1/3 2 n exp - ( 1 4 c -1) 2 ǫ 2/3 2 2n M c2 -n [σ 2 ǫ -1/3 + (σ ′ ) 2 ǫ 2/3 ] (4.44)
for some constant M > 0, provided c > 4. In the last line, we used the fact that if M t = t 0 F (s, •) dW t with integrand F (s, ω) bounded in absolute value by a constant K, then Novikov's condition [49, pp. 198-199] is satisfied and thus

Z t = exp γM t - γ 2 2 t 0 F (s, ω) 2 ds (4.45)
is a martingale for any γ > 0. It follows that for h > 0,

P M t > h P Z t > e γh-γ 2 K 2 t/2 e -γh+γ 2 K 2 t/2 E{Z t } = e -γh+γ 2 K 2 t/2 , (4.46) 
where we used Markov's inequality and the fact that a martingale has constant expectation.

Thus we obtained a bound on the probability of x not reaching ǫ 1/3 2 n+1 despite of ξ and η remaining small. It remains to consider the case (y

τ x n+1 , z τ x n+1 ) ∈ D n+1 for τ x n+1 c2 -n .
By (4.37), the lower bound on f and the fact that x det τ det = ǫ 1/3 2 n+1 = x τ x n+1 , we see that on the set Ω ′ = {ω ∈ Ω :

τ det ∨ τ x n+1 (ω) τ ξ (ω) ∧ τ η (ω)}, |y det τ x n+1 -y det τ det | const ǫ 2/3 |τ x n+1 -τ det | const ǫ 2/3 ǫ 1/3 2 2n-2 |x det τ x n+1 -x det τ det | O(ǫ 1/3 h2 -5n/2 ) O(h 0 ǫ 2/3 2 -5n/2 ) (4.47)
and |y τ x n+1 -y det

τ x n+1 | h 1 2 -n/2 = c 2 ǫ 2/3 2 -n/2
. Similar estimates hold for the z-coordinate.

Since (y det τ det , z det τ det ) belongs to the image of D n under the deterministic Poincaré map, we conclude that (y τ x n+1 , z τ x n+1 ) belongs to an ǫ 2/3 2 -n/2 -neighbourhood of this image. Thus τ x n+1 = τ n+1 on Ω ′ . Choosing c large enough to guarantee τ det c2 -n concludes the proof.

The next result gives a bound on fluctuations of sample paths, up to time c2 -n . Lemma 4.8. There exist M, h 0 > 0 such that for all initial conditions

(x n , y n , z n ) ∈ Σ * n and all h, h 1 > 0 satisfying h h 0 ǫ 1/3 2 5n/2 , h 1 h 0 ǫ -1/3 2 7n/2 , h 2 h 0 ǫ -1/3 2 7n/2 h 1 and h 2 1 h 0 ǫ 1/3 2 5n/2 h, P (xn,yn,zn) τ (n) ξ (h) ∧ τ (n) η (h 1 ) < c2 -n exp - h 2 M (σ 2 + (σ ′ ) 2 ǫ)ǫ -1/3 + exp - h 2 M (σ ′ ) 2 2 -2n + exp - h 2 1 M (σ 2 + (σ ′ ) 2 ǫ)ǫ2 -2n + exp - h 2 1 M (σ ′ ) 2 ǫ 2/3 . (4.48) 
Proof. The proof is similar to the proof of Proposition 4.3. First note that the linearization a(θ) = ∂ x f (x det θ , y det θ , z det θ ) has order x det θ , satisfying x det θ const ǫ 1/3 2 k+1 for θ τ det k+1 for any k. Since τ det k+1 ≍ 2 -k for all k, x det θ remains of order ǫ 1/3 2 n for all θ c2 -n . Thus a(θ) = O(ǫ 1/3 2 n ) for all θ c2 -n , which implies

α(θ, φ) = θ φ a(u) du O(τ det ǫ 1/3 2 n ) O(2 -n ǫ 1/3 2 n ) = O(ǫ 1/3 ) (4.49)
for all 0 φ θ c2 -n . Using this, one shows that the analogue of (3.12) admits solutions p 1 (θ), p 2 (θ) = O(ǫ -1/3 2 -n ), so that by Lemma 3.2,

U ξξ (θ, φ) = O(1) , U ξη (θ, φ) = O(ǫ -1/3 2 -n ) , U ηξ (θ, φ) = O(ǫ 2/3 2 -n ) , U ηη (θ, φ) = O(1) , (4.50) 
for 0 φ θ c2 -n . It follows from computations similar to those yielding (4.18) that

P τ ξ < c2 -n ∧ τ η exp - [h -M ǫ -1/3 2 -5n/2 (h 2 + h 2 1 )] 2 M (σ 2 + (σ ′ ) 2 ǫ)ǫ -1/3 + e -h 2 /(M (σ ′ ) 2 2 -2n ) . (4.51)
Since we are working on rather short time intervals, we can approximate the stochastic integral by the same Gaussian martingale on the whole time interval. Thus there is no subexponential prefactor of the type ⌈•⌉.

In a similar way, using the fact that ǫ 1/3 δ 0 2 -n , we get

P τ η < c2 -n ∧ τ ξ exp - [h 1 -M ǫ 1/3 2 -7n/2 (h 2 + h 2 1 )] 2 M (σ 2 + (σ ′ ) 2 ǫ)ǫ2 -2n + e -h 2 1 /(M (σ ′ ) 2 ǫ 2/3 ) . (4.52)
The conditions on h, h 1 guarantee that the terms in (h 2 + h 2 1 ) are negligible.

ǫ ǫ 2/3 ǫ 1/3 h 1 ǫ 1/3 h h 1 = ǫ 1/3 h 2 h = ǫ -1/3 h 2 1 Figure 5
. The shaded area is the set of (h 1 , h) satisfying the conditions given in Lemma 4.8 (if h 0 = 1 and n = 0). Lemma 4.7 requires in addition that h 1 ǫ 2/3 .

The conditions on h and h 1 are illustrated in Figure 5.

Putting the preceeding two results together, we obtain the following estimate on the spreading of sample paths when they hit Σ 5 . Proposition 4.9. Denote by (y * , z * ) the point where the deterministic solution starting in (x 0 , y 0 , z 0 ) ∈ Σ ′ 4 first hits Σ 5 = {x = δ 0 }. Then there exist C, κ, h 0 > 0 such that for any h 1 satisfying h 1 h 0 ǫ 2/3 , the stochastic sample path starting in (x 0 , y 0 , z 0 ) first hits Σ 5 at time τ = τ Σ 5 at a point (δ 0 , y τ , z τ ) such that

P { (y τ , z τ ) -(y * , z * ) > h 1 } C|log ǫ| exp - κh 2 1 σ 2 ǫ + (σ ′ ) 2 ǫ 1/3 +exp - κǫ σ 2 + (σ ′ ) 2 ǫ . (4.53)
Proof. Let N be the largest integer such that ǫ 1/3 2 N δ 0 , and

τ (n) = τ (n) ξ (h) ∧ τ (n) η (h 1 /2) for n = 1, . . . , N , where h = h 0 (ǫ 1/3 ∧ ǫ -1/6 h 2 1
) is taken as large as possible, cf. Figure 5. If τ h 1 denotes the first time the stochastic sample path leaves a tube of size h 1 around the deterministic solution, the left-hand side of (4.53) can be bounded above by P{τ

h 1 < τ Σ 5 }. Since N n=1 τ n+1 c2 -n ∧ τ (n) ⊂ τ Σ 5 N n=1 c2 -n ∧ τ h 1 , (4.54) 
we have the bound

P τ h 1 < τ Σ 5 P τ h 1 ∧ N n=1 c2 -n < τ Σ 5 N n=1 P τ n+1 > c2 -n ∧ τ (n) . (4.55)
Each term of the sum is bounded by

P{τ n+1 ∧ τ (n) > c2 -n } + P{τ (n) < c2 -n ∧ τ n+1 },
so that the result follows from the last two lemmas. By distinguishing the cases h 1 ǫ and h 1 ǫ, one checks that our choice of h implies that the terms in h 2 are negligible, compared to at least one of the two summands on the right-hand side of (4.53). This result implies that the spreading in the y-and z-directions on Σ 5 , for a given initial condition on Σ ′ 4 , is of order

σ √ ǫ + σ ′ ǫ 1/6 . (4.56)
5 The folded node

In this section we analyze the transition Σ 1 → Σ 2 of sample paths in a neighbourhood of the folded-node point p * . For convenience, we translate the origin of the coordinate system to p * . We will decompose the transition into three parts, by introducing further sections

Σ ′ 1 = {x = δ √ ǫ } and Σ ′′ 1 = {x = -δ √ ǫ },
where δ is a small constant of order 1. The

transitions Σ 1 → Σ ′ 1 , Σ ′ 1 → Σ ′′ 1
, and Σ ′′ 1 → Σ 2 are analyzed, respectively, in Subsection 5.2, in Subsections 5.3 and 5.4, and in Subsection 5.5.

Normal form

We start by making a preliminary transformation to normal form near the folded node point p * . Recall once again that t = s/ǫ denotes the fast timescale. 

dx t = f (x t , y t , z t ; ǫ, σ, σ ′ ) dt + σ F 1 (x t , y t , z t ) + σ ′ √ ǫ F 2 (x t , y t , z t ) dW t , dy t = ǫĝ 1 (x t , y t , z t ; ǫ, σ ′ ) dt + σ ′ √ ǫ G 1 (x t , y t , z t ) dW t , dz t = 1 2 ǫµ dt + σ ′ √ ǫ G 2 (x t , y t , z t ) dW t , (5.1) 
where µ ∈ (0, 1) is the ratio of weak and strong eigenvalues at the folded node (see also [17, p. 4793] or [24, p. 48]), and

f (x, y, z; ǫ, σ, σ ′ ) = y -x 2 + O( (x, y, z) T 3 , ǫ (x, y, z) T , σ 2 , (σ ′ ) 2 ǫ) , ĝ1 (x, y, z; ǫ, σ ′ ) = -(µ + 1)x -z + O(y, (x + z) 2 , ǫ, (σ ′ ) 2 ) , (5.2) 
while the diffusion matrices F 1 , F 2 , G 1 , G 2 all remain of order 1.

Proof. The result is again a stochastic analogue of the transformation result for deterministic systems, see [82, pp. 8-10], as well as [START_REF] Wechselberger | Existence and bifurcation of canards in R 3 in the case of a folded node[END_REF]. We start by translating the origin of the coordinate system to the folded-node point p * . Note that the failure of the normal-switching condition (A2) implies that the vectors ( ∂f ∂y , ∂f ∂z )(0) and g(0) are orthogonal. We may thus rotate coordinates in such a way that g 1 (0) = 0 and ∂f ∂z (0) = 0. This rotation does not change the order of magnitude of the diffusion coefficients σ ′ √ ǫ G 1 and σ ′ √ ǫ G 2 . Calculating the linearization of the desingularized slow flow (2.9) and using Assumption (A1), we see that g 2 (0) = 0, since otherwise p * = 0 would not be a node for (2.9) as required by Assumption (A3). We can thus carry out locally a random time change given by d t = g 2 (x t , y t , z t ) g 2 (0, 0, 0) dt .

(5.3) Lemma A.4 in Appendix A shows that this time change yields a system in which all drift coefficients have been multiplied by g 2 (0, 0, 0)/g 2 (x, y, z), and all diffusion coefficients have been multiplied by [g 2 (0, 0, 0)/g 2 (x, y, z)] 1/2 . We may thus assume that g 2 (x, y, z) is constant and equal to g 2 (0, 0, 0) in (3.1).

The remainder of the proof is similar to the proof of Proposition 4.5. A transformation x = x + ξ(z), y = ȳ + η(z) rectifies the fold curve, i.e. f (ξ(z), η(z), z) = 0 and ∂f ∂x (ξ(z), η(z), z) = 0 in a neighbourhood of z = 0, and thus f (x, ȳ, z) = aȳ + bx 2 + cxȳ + dȳ 2 + eȳz + kǫ + O( (x, ȳ, z) 3 , ǫz, (σ ′ ) 2 ǫ) .

(5.4)

The standard form of f and g 1 can then be achieved by combining a translation of x by O(ǫ), a scaling of space and a near-identity transformation x = x-1 2 cx 2 -dxȳ-exz (cf. [82, pp. 9-10]). These transformations do not change the order of the diffusion coefficients for y and z.

Approach

In this section, we consider solutions of the normal form (5.1), starting at a fast time s 0 ≍ -1 on Σ 1 , as long as x O( √ ǫ ). We fix a deterministic solution (x det s , y det s , z det s ) which is sufficiently close to the strong canard to display SAOs when approaching the folded-node point p * . From the deterministic analysis we know that

a(s) = ∂ x f (x det s , y det s , z det s ) = -2x det s = cs + O(s 2 ) for s 0 s - √ ǫ , (5.5) 
where c is a constant of order 1. Scaling time if necessary, we may assume that c = 1. The linearization of the deterministic system at (x det s , y det s , z det s ) has the form ǫ ζ = A(s)ζ, where

A(s) = A(s) c 1 (s) 0 0 , A(s) = 2a(s) 1 + O(s 2 ) -ǫ(1 + µ) + O(ǫs) O(ǫ) , (5.6) 
and c 1 (s) = (1 + O(s 2 ), O(ǫ)) T . We have used the fact that s 2 ǫ to simplify the expression of the error terms.

For s -√ ǫ, the eigenvalues of A(s) behave like s and ǫ/|s|. This implies that while for s ≍ -1, the variable x is faster than both y and z, ẋ and ẏ become of comparable order 1/ √ ǫ as s approaches -√ ǫ. This is the well-known effect that one may extend the normally hyperbolic theory slightly near fold points from x ≍ 1 up to a neighbourhood with x ≍ √ ǫ, see [24, pp. 48-49]. Instead of blocking y and z as in (3.5), we write

ξ s = x s y s - x det s y det s , η s = z s -z det s , ζ s = ξ s η s , (5.7) 
since ẋ and ẏ eventually become comparable. Then ζ s obeys a system of the form

dζ s = 1 ǫ A(s)ζ s ds +   σ √ ǫ F 1 (ζ s , s) + σ ′ F 2 (ζ s , s) σ ′ G 1 (ζ s , s) σ ′ G 2 (ζ s , s)   dW s +   1 ǫ b x (ζ s , s) b y (ζ s , s) 0   ds . (5.8)
The principal solution of ǫ ζ = A(s)ζ has the block structure

U (s, r) =   V (s, r) 1 ǫ r s V (s, u)c 1 (u) du 0 1   , (5.9) 
where V (s, r) denotes the principal solution of ǫ ξ = A(s)ξ.

Lemma 5.2. For s 0 r s -√ ǫ, the matrix elements of V (s, r) satisfy

V xx (s, r) = O |a(r)| 1+µ |a(s)| 1+µ e α(s,r)/ǫ , V xy (s, r) = O |a(r)| µ |a(s)| 1+µ e α(s,r)/ǫ + |a(s)| µ |a(r)| 1+µ , V yx (s, r) = O ǫ |a(r)| 1+µ |a(s)| 2+µ e α(s,r)/ǫ +ǫ |a(s)| 1+µ |a(r)| 2+µ , (5.10) 
V yy (s, r) = O |a(s)| 1+µ |a(r)| 1+µ + ǫ |a(r)| µ |a(s)| 2+µ e α(s,r)/ǫ , where α(s, r) = s r Tr A(u) du = (s 2 -r 2 ) + O((s -r)(s 2 + r 2 )) .
(5.11)

In the particular case where A(s) = 2s 1

-ǫ(1+µ) 0 , the equation ǫ ξ = A(s)ξ for ξ s = (ξ 1,s , ξ 2,s ) T is equivalent to a Weber equation

ǫ d 2 ξ 1 ds 2 -2s dξ 1 ds + (µ -1)ξ 1 = 0 , (5.12) 
and the estimates (5.10) follow directly from the asymptotics of parabolic cylinder functions [1, p. 689]; see also [77, p. 449]. In Appendix B, we provide a proof of Lemma 5.2 valid in the general case, which does not rely on these asymptotics. With the above estimates, we obtain the following result on the size of fluctuations during the approach phase.

Proposition 5.3. Define the stopping times

τ ξ,1 = inf{s > s 0 : |ξ 1,s | > h} , τ ξ,2 = inf{s > s 0 : |ξ 2,s | > h 1 } , τ η = inf{s > s 0 : |η s | > h 2 } . (5.13) 
There exist constants κ, h 0 > 0 such that for all s 0 s -√ ǫ, and all h, h 1 , h 2 > 0 satisfying

h 2 + h 2 1 + h 2 2 h 0 |s|h and h 2 + h 2 1 + h 2 2 h 0 h 1 , P τ ξ,1 ∧ τ ξ,2 ∧ τ η < s s -s 0 ǫ exp - κh 2 (σ 2 + (σ ′ ) 2 ) |s| -1 (5.14) + exp - κh 2 1 σ 2 ǫ |s| -1 + (σ ′ ) 2 |s| + exp - κh 2 2 (σ ′ ) 2 .
Proof. The proof is similar to the proof of Proposition 4.3, so we omit the details. Let us just remark that when evaluating the elements in (5.9), one encounters integrals of the form Under the condition σ, σ ′ = O(ǫ 3/4 ), we obtain the typical spreadings

ȳ Σ ′ 1 γ w (z 0 ) Σ ′′ 1 (x 0 , ȳ0 ) Σ ′ 1 Σ ′′ 1 z x (z 0 , x0 ) γ w
• (σ + σ ′ ) |s| -1/2 in the x-direction, which reaches order (σ + σ ′ )ǫ -1/4 for s ≍ - √ ǫ,
• σǫ 1/2 |s| -1/2 + σ ′ |s| 1/2 in the y-direction, which reaches order (σ + σ ′ )ǫ 1/4 for s ≍ -√ ǫ,

• and σ ′ in the z-direction.

Note carefully that the integrals in (5.15) become unbounded when s → 0 as µ ∈ (0, 1) so we cannot use the same methods to control sample paths closer to the folded node.

Neighbourhood -Deterministic dynamics

In this section we briefly describe the behaviour of solutions of the normal form (5.1) in the deterministic case σ = σ ′ = 0. Recall that standard results (see [START_REF] Szmolyan | Canards in R 3[END_REF]Section 4], [26, Theorem 2.3] and the foundational work [START_REF] Benoît | Systèmes lents-rapides dans R 3 et leurs canards[END_REF][START_REF] Benoît | Enlacements de canards[END_REF]) imply the existence of two primary canards and k µ secondary canards [START_REF] Wechselberger | Existence and bifurcation of canards in R 3 in the case of a folded node[END_REF] where

2k µ + 1 < µ -1 < 2k µ + 3 , (5.16) 
and each canard lies in C r ǫ ∩ C a+ ǫ . One strategy to prove the existence of canards, as first suggested for the planar case in [START_REF] Dumortier | Canard cycles and center manifolds[END_REF], is to look for transversal intersections of C r ǫ and C a+ ǫ by extending the manifolds via the blow-up method [START_REF] Szmolyan | Canards in R 3[END_REF] into a region near the folded node where the blow-up reduces to the scaling (or zoom-in) transformation

x = √ ǫ x , y = ǫ ȳ , z = √ ǫ z .
(5.17)

The scaling (5.17) transforms the deterministic version of the normal form (5.1) to

µ dx dz = 2ȳ -2x 2 + O( √ ǫ ) , µ dȳ dz = -2(1 + µ)x -2z + O( √ ǫ ) . (5.18)
We consider henceforth the dynamics for ǫ = 0, as results can be extended to small positive ǫ by regular perturbation theory. Note that the system is symmetric under the transformation (x, ȳ, z) → (-x, ȳ, -z) .

(5.19)

x

Σ ′′ 1 Σ ′ 1 ȳ -x2 + 1+µ 2 γ w K = K 0 P 0 P ′ P ′′ P 1 Figure 7. The map from Σ ′ 1 to Σ ′′ 1 is decomposed into three phases.
The normal form admits a particular solution γ w given by

x = -z , ȳ = z2 - µ 2 , (5.20) 
which is called the singular weak canard (there is also a singular strong canard, given by x = -z/µ, ȳ = (z/µ) 2 -1/2). Generic solutions twist a certain number of times around the weak canard, see Figure 6 for an illustration. One possibility to prove the persistence of the weak and strong canards as well as secondary canards is to analyse the zeros of the variational Weber equation as shown in [START_REF] Szmolyan | Canards in R 3[END_REF]. To also obtain estimates on individual non-canard orbits, our aim is to determine the map from an initial condition P 0 = (δ, ȳ0 , z0 ) ∈ Σ ′ 1 , close to the attracting slow manifold, to the first-hitting point

P 1 = (-δ, ȳ1 , z1 ) ∈ Σ ′′ 1 .
The key tool will be suitable coordinate transformations; we note that although the method only provides a small refinement of previous results, it has the advantage of being quite explicit so we choose to record the results here. We will proceed in three steps, see Figure 7: (S1) Estimate the coordinates of P ′ = (0, ȳ′ , z′ ), the first-hitting point of {x = 0}. 

η(x) = e 2x 2 η * + z * 2x 0 e -u 2 /2 du + O(µ) 1 + O(µ β L 2 ) , z(x) = z * + µx 1 + O(µ β ) , (5.22) 
for all x ∈ [-L, L].

Proof. For η = O(µ β ) the equations (5.21) can be rewritten in the form

dz dx = µ[1 + O(µ β )] , dη dx = a(x)η + 2z[1 + O(µ β )] , (5.23) 
where a(x

) = 4x[1 + O(µ β )].
Integrating the first equation yields the expression for z(x).

To obtain the expression for η(x), observe that exp( x 0 a(y) dy) = e 2x 2 [1 + O(µ β L 2 )] and solve the equation for η by variation of the constant.

From this result we immediately see that the map from P 0 to P ′ is given by

η ′ = e -2δ 2 η 0 [1 + O(δ 2 µ β )] -z0 2δ 0 e -u 2 /2 du + O(µ) , z′ = z0 + O(δµ) , (5.24) 
provided η 0 , z0 = O(µ β ) for some β ∈ (0, 1). Similarly, the map from P ′′ to P 1 is given by

η 1 = e 2δ 2 η ′′ -z′′ 0 -2δ e -u 2 /2 du + O(µ) [1 + O(δ 2 µ β )] , z1 = z′′ + O(δµ) , (5.25) 
provided η ′′ = O(µ α ) and z′′ = O(µ β ) for some choice of 0 < β < α 1. In addition, Lemma 5.4 shows that for sufficiently small z, the distance at x = 0 between the invariant manifolds C a+ ǫ and C r ǫ has order z. This follows from the fact that orbits in C a+ ǫ should be such that η(x) is close to 0 for large positive x, while orbits in C r ǫ should be such that η(x) is close to 0 for large negative x.

We now turn to Step (S2), estimating the map from P ′ to P ′′ . The difference u between a general solution of (5.18) and the weak canard γ w satisfies the variational equation

µ du 1 dz = 4zu 1 + 2u 2 -2u 2 1 , µ du 2 dz = -2(1 + µ)u 1 .
(5.26)

Consider the variable 5], [START_REF] Muratov | Noise-induced mixed-mode oscillations in a relaxation oscillator near the onset of a limit cycle[END_REF]Figure 2]). Although K is not a first integral for arbitrary z it turns out that the variable K is still very useful for obtaining explicit control over the oscillations near the folded node. A short computation yields

K := 1 + 2 1 + µ (u 2 -u 2 1 ) e -2u
µ dK dz = - 16z 1 + µ u 2 1 e -2u 2 /(1+µ) .
(5.28)

In [START_REF] Berglund | Hunting French ducks in a noisy environment[END_REF]Section D.2] we provided an averaging result valid in a small neighbourhood of the weak canard (for the stochastic case). The following result extends this to the larger domain {K > 0}.

Proposition 5.5

(Averaged system). Set ρ(K) = (1 -K)(1 + |log K| 3/2 ).
For z in a neighbourhood of 0 and K > 0, there exist a variable K = K + O(|z| ρ(K)), an angular variable ϕ, a function ḡ and constants c ± > 0 such that

c - 1 + |log K| 1/2 µ dϕ dz c + (1 + |log K| 1/2 ) (5.29) for K O(|z|) and dK dϕ = zḡ(K, z) + O (µ + z2 )ρ(K) , (5.30 
)

where c -(1 -K) -ḡ(K, z) c + (1 -K).
We give the proof in Appendix C. The averaged equation (5.30) is similar to the equation describing dynamic pitchfork or Hopf bifurcations, which display a bifurcation delay. Initially, i.e. when z = z′ < 0, K has a value K 0 > 0 of order z0 . As long as z < 0, K will keep increasing, and thus get so close to 1 that a time of order |z ′ | is needed, once z becomes positive, for K to decrease to the value K 0 again. We set τ = inf{z > 0 : K = K 0 } .

(5.31)

Note that the error term in (5.30) is no longer negligible when |z| is of order µ, but this only results in a shift of the delay by a quantity of order µ, which will be negligible.

Corollary 5.6. Let ρ 1 = (µ + z2 0 )|log z0 | 3/2 . We have

τ = -z ′ + O(ρ 1 ) . (5.32)
Furthermore, the change in angle is given by ϕ(τ ) -ϕ(z ′ ) = φ(z ′ )/µ, where φ is monotonically decreasing for z′ < 0 and satisfies 

2c - 1 + |log z0 | 1/2 |z ′ | + O(ρ 1 ) φ(z ′ ) 2c + (1 + |log z0 | 1/2 ) |z ′ | + O(ρ 1 ) . ( 5 
Q c + z + O Q(µ + z2 )|log z0 | 3/2 .
(5.34) Using (5.29) we obtain dQ dz

1 µ Q c 2 + z + O Q(µ + z2 )|log z0 | 3/2 1 + O(|log z0 | 1/2 ) . (5.35)
Integrating, we arrive at .36) This shows that τ -z ′ + O(ρ 1 ). Using the corresponding lower bounds, we also get τ -z ′ -O(ρ 1 ). This proves (5.32), and (5.33) follows by using (5.29) again.

Q(z) Q(z ′ ) exp c 2 + 2µ (z -z′ ) z + z′ + O(ρ 1 ) 1 + O(|log z0 | 1/2 ) . ( 5 
We can now draw consequences on the Poincaré map from the last results. If

φ(z ′ ) = 2πnµ , n ∈ N , (5.37) 
then the orbit will hit the plane {x = 0} at P ′′ = P ′ , which is on (or very near) the repelling slow manifold C r ǫ , cf. (5.24). Therefore (5.37) gives a condition on z′ (and thus on z0 ) for the orbit being a canard. If, on the other hand,

φ(z ′ ) = (2πn -θ)µ , 0 < θ < 2π , (5.38) 
the orbit will leave the set {K > K 0 } far from the repelling slow manifold C r ǫ , see Figure 7. One can then use Proposition 5.5 to estimate z′′ , which is of the form z′′ = τ + O(µθ). As θ increases from 0 to 2π, P ′′ moves downwards until it approaches the continuation of the attracting slow manifold C a+ ǫ . Once orbits have hit x = 0 at some point P ′′ below P ′ , one can use (5.25) to follow their future evolution. Note in particular that the domain {x < 0, η < 0} is positively invariant, so that once orbits have reached this domain they will stay bounded away from the repelling slow manifold.

Neighbourhood -Stochastic dynamics

We now consider the stochastic dynamics of sample paths starting on Σ ′ 1 up to the first time they hit the section Σ ′′ 1 = {x = -δ √ ǫ }. The first step is again to apply the scaling (or zoom-in)

x = √ ǫ x , y = ǫ ȳ , z = √ ǫ z , 1 2 µ √ ǫ t = θ , (5.39) 
which transforms the normal form (5.1) into

dx θ = 2 µ ȳθ -x2 θ + O( √ ǫ ) dθ + 2 µ σ F 1 (x θ , ȳθ , zθ ) + σ′ √ ǫ F 2 (x θ , ȳθ , zθ ) dW θ , dȳ θ = 2 µ -(1 + µ)x θ -zθ + O( √ ǫ ) dθ + 2 µ σ′ G 1 (x θ , ȳθ , zθ ) dW θ , dz θ = dθ + 2 µ σ′ √ ǫ G 2 (x θ , ȳθ , zθ ) dW θ , (5.40) 
where σ = ǫ -3/4 σ and σ′ = ǫ -3/4 σ ′ .

(5.41)

The deviation ζ θ from the deterministic solution (x det θ , ȳdet θ , zdet θ ), defined as in (5.7), satisfies a SDE of the form

dζ θ = 1 µ A(θ)ζ θ dθ + 1 √ µ   σF 1 (ζ θ , θ) + σ′ √ ǫ F 2 (ζ θ , θ) σ′ G 1 (ζ θ , θ) σ′ √ ǫ G 2 (ζ θ , θ)   dW θ + 1 µ   b x (ζ θ , θ) √ ǫ b y (ζ θ , θ) 0   dθ .
(5.42) The principal solution of µ ζ = A(θ)ζ has a block structure similar to (5.9). Provided we take δ sufficiently small, the upper left block A(θ) has complex conjugated eigenvalues a(θ) ± 2 i ω(θ), where

a(θ) = -2x det θ + O( √ ǫ ) , ω(θ) = 1 -(x det θ ) 2 + µ + O( √ ǫ ) . (5.43)
By [START_REF] Berglund | Hunting French ducks in a noisy environment[END_REF]Theorem 4.3], the principal solution V (θ, φ) of µ ξ = A(θ)ξ can be written in the form

V (θ, θ 0 ) = e α(θ,θ 0 )/µ S(θ) cos(φ(θ, θ 0 )/µ) sin(φ(θ, θ 0 )/µ) -sin(φ(θ, θ 0 )/µ) cos(φ(θ, θ 0 )/µ) S(θ 0 ) -1 , (5.44) 
where

S(θ) = 1 ω(θ) -θ + ω(θ) -θ -ω(θ) 1 1 + O(µ) , (5.45) 
and

α(θ, θ 0 ) = θ θ 0 a(ψ) dψ , φ(θ, θ 0 ) = θ θ 0 2ω(ψ) dψ + O(µ) . (5.46) 
The off-diagonal term in the principal solution of µ ζ = A(θ)ζ has the form

U ξη (θ, θ 0 ) = 1 µ θ θ 0 V (θ, ψ)c 1 (ψ) dψ = 1 µ θ θ 0 e α(θ,ψ)/µ cos φ(θ, ψ) µ v 1 + sin φ(θ, ψ) µ v 2 dψ (5.47)
for some vectors v 1 , v 2 . Using integration by parts and the fact that the eigenvalues a± i ω are bounded away from 0, one shows that the elements of U ξη are of order 1 at most. The next proposition then follows in the same way as before.

Proposition 5.7. Define stopping times

τ ξ = inf{θ > θ 0 : ξ θ > h} , τ η = inf{θ > θ 0 : |η θ | > h 1 } . (5.48)
There exist constants κ, h 0 > 0 such that for all θ 0 θ √ µ, and all 0 < h, h 1 √ µ,

P τ ξ ∧ τ η > θ θ -θ 0 µ exp - κ[h -µ -1/2 (h 2 + h 2 1 )] 2 (σ 2 + (σ ′ ) 2 )µ -1/2 + exp - κh 2 (σ 2 + (σ ′ ) 2 )ǫµ -1 (θ -θ 0 ) + exp - κh 2 1 (σ ′ ) 2 ǫµ -1 (θ -θ 0 ) . (5.49)
These estimates show that if the deterministic solution hits Σ ′′ 1 at a point such that z √ µ, and provided ǫ(θ -θ 0 ) √ µ and σ + σ′ ≪ µ 3/4 , the typical spreadings are ∆ȳ ≍ (σ + σ′ ) 1

µ 1/4 + ǫ 1/2 (θ -θ 0 ) 1/2 µ 1/2 and ∆z ≍ σ′ ǫ 1/2 (θ -θ 0 ) 1/2 µ 1/2 . (5.50)
In particular, if θ -θ 0 ≍ µ 1/2 , going back to original variables we find that provided σ + σ ′ ≪ (ǫµ) 3/4 , the typical spreadings on Σ ′′ 1 are of order

• (σ + σ ′ )(ǫ/µ) 1/4 in the y-direction,
• and σ ′ (ǫ/µ) 1/4 in the z-direction.

Remark 5.8. Theorem 6.2 in [START_REF] Berglund | Hunting French ducks in a noisy environment[END_REF] provides a more precise description of the dynamics, in a slightly simpler setting (in particular without noise on the z-variable): it shows that sample paths concentrate in a "covariance tube" centred in the deterministic solution.

The size of the tube is compatible with the above estimates on noise-induced spreading. Such a refined analysis is possible in the present setting as well, but it would require some more work, mainly in order to control the effect of the position-dependence of the noise term.

Remark 5.9. It is possible to extend Estimate (5.49) to slightly larger θ, at the cost of replacing µ -1/2 in the denominator by µ -1/2 e 2cθ 2 /µ for some c > 0. This is due to the exponential growth of the variance for θ > √ µ.

Escape

In this subsection, we fix an initial condition (-δ √ ǫ, y 0 , z 0 ) ∈ Σ ′′ 1 , sufficiently close to the folded-node point p * , and estimate the fluctuations of sample paths up to their first hitting of Σ 2 = {x = -δ 0 }. Proposition 5.10. Denote by (y * , z * ) the point where the deterministic solution starting in (x 0 = -δ √ ǫ, y 0 , z 0 ) ∈ Σ ′′ 1 first hits Σ 2 = {x = -δ 0 }. Assume y 0 x 2 0 -ǫ( 1+µ 2 + c 0 ) for a constant c 0 > 0, and 0 z 0 O( √ ǫ). For sufficiently small δ, δ 0 > 0, there exist C, κ, h 0 > 0 such that for all h 1 , h 2 > 0 satisfying h 1 h 0 ǫ and h 2 h 0 √ h 1 , the stochastic sample path starting in (x 0 , y 0 , z 0 ) first hits Σ 2 at time τ = τ Σ 2 in a point (-δ 0 , y τ , z τ ) such that

P (x 0 ,y 0 ,z 0 ) {|y τ -y * | > h 1 or |z τ -z * | > h 2 } C |log ǫ| exp - κh 2 1 (σ 2 + (σ ′ ) 2 ) √ ǫ + exp - κh 2 2 (σ ′ ) 2 √ ǫ + exp - κǫ 3/2 σ 2 + (σ ′ ) 2 ǫ .
(5.51)

The result remains true uniformly in initial conditions (x 0 , y, z) such that |y -

y 0 | h 1 and |z -z 0 | h 2 .
Proof. The proof is basically the same as the proof of Proposition 4.9, so we will omit its details. We introduce sections Σ

* n = {x = -δ √ ǫ 2 n , (y, z) ∈ D n }, where each D n+1
is obtained by enlarging the image of D n under the deterministic flow by order h 1 2 -n/2 in the y-direction, and by order h 2 2 -n/2 in the z-direction. Choosing D 1 as a rectangle of size 2h 1 × 2h 2 allows to deal with more general initial conditions. Let τ (n) denote the first-exit time from a block of dimensions 2h × 2h 1 × 2h 2 centred in a given deterministic solution. Then the analogue of Lemma 4.7 reads

P (xn,yn,zn) τ n+1 ∧ τ (n) > cδ2 -n µ exp - κδ 2 2 3n ǫ 3/2 σ 2 + (σ ′ ) 2 ǫ , (5.52) 
while the equivalent of Lemma 4.8 is

P (xn,yn,zn) τ (n) < cδ2 -n µ (5.53) exp - κh 2 √ ǫ δ[σ 2 + (σ ′ ) 2 2 -2n ] + exp - κh 2 1 δ √ ǫ[σ 2 δ 2 2 -2n + (σ ′ ) 2 ] + exp - κh 2 2 δ(σ ′ ) 2 √ ǫ .
The remainder of the proof is similar to the proof of Proposition 4.9, after redefining κ.

This result shows that if σ+σ ′ ≪ ǫ 3/4 , for a given initial condition on Σ ′′ 1 , the spreading in the y-and z-directions on Σ 2 is of order

(σ + σ ′ )ǫ 1/4
and σ ′ ǫ 1/4 .

(5.54)

From noisy returns to Markov chains

In this section we combine the results from the last three sections to obtain estimates on the kernel K of the random Poincaré map on Σ 1 . Table 1 summarizes the results obtained so far. For each part of the dynamics, it shows the typical size of fluctuations when starting in a point on the previous section. Deviations will not necessarily add up because of the contraction during some phases of the motion.

The global return map

The following result describes the global return map Σ 2 → Σ 1 .

Theorem 6.1 (Global return map).

Fix P 2 = (x * 2 , y * 2 , z * 2 ) ∈ Σ 2 .
Assume the deterministic orbit starting in P 2 hits Σ 1 for the first time in P 1 = (x * 1 , y * 1 , z * 1 ). Then there exist constants h 0 , κ, C > 0 such that for all h h 0 and h 2 /h 0 h 1 h, the stochastic sample path starting in P 2 hits Σ 1 for the first time in a point (x 1 , y * 1 , z 1 ) satisfying

P P 2 |x 1 -x * 1 | > h or |z 1 -z * 1 | > h 1 C ǫ exp - κh 2 σ 2 + (σ ′ ) 2 + exp - κh 2 1 σ 2 ǫ|log ǫ| + (σ ′ ) 2 + exp - κǫ σ 2 + (σ ′ ) 2 ǫ -1/3 . (6.1) 
Proof. Denote by (x * i , y * i , z * i ) the deterministic first-hitting point of section Σ i , and by (x i , y i , z i ) the corresponding random first-hitting point. We use similar notations for Σ ′ 4 . We will decompose the dynamics into three main steps, and introduce the events

Ω 1 (h, h 1 ) = |x ′ 4 -(x ′ 4 ) * | h, |z ′ 4 -(z ′ 4 ) * | h 1 , Ω 2 (H 1 ) = (y 5 , z 5 ) -(y * 5 , z * 5 ) H 1 . (6.2) 

Transition

Analysis in ∆x ∆y ∆z

Σ 2 → Σ 3 Section 3.2 σ + σ ′ σ √ ǫ + σ ′ Σ 3 → Σ 4 Section 3.3 σ + σ ′ σ √ ǫ + σ ′ Σ 4 → Σ ′ 4 Section 4.1 σ ǫ 1/6 + σ ′ ǫ 1/3 σ ǫ|log ǫ| + σ ′ Σ ′ 4 → Σ 5 Section 4.3 σ √ ǫ + σ ′ ǫ 1/6 σ √ ǫ + σ ′ ǫ 1/6 Σ 5 → Σ 6 Section 3.2 σ + σ ′ σ √ ǫ + σ ′ Σ 6 → Σ 1 Section 3.3 σ + σ ′ σ √ ǫ + σ ′ Σ 1 → Σ ′ 1 Section 5.2 (σ + σ ′ )ǫ 1/4 σ ′ Σ ′ 1 → Σ ′′ 1 Section 5.4 (σ + σ ′ )(ǫ/µ) 1/4 σ ′ (ǫ/µ) 1/4 if z = O( √ µǫ) Σ ′′ 1 → Σ 2 Section 5.5 (σ + σ ′ )ǫ 1/4 σ ′ ǫ 1/4
Table 1. Summary of results on the size of fluctuations at the time of first hitting a section Σ j , when starting from a specific point on Σ i , under the assumption σ + σ ′ ≪ ǫ 3/4 , cf. Figure 3.

• Step 1: Σ 2 → Σ 3 → Σ 4 → Σ ′ 4 . Propositions 3.
3 and 4.3 can be applied simultaneously, because they are based on the same kind of estimates of the principal solution. This directly yields the bound

P P 2 Ω 1 (h, h 1 ) c C ǫ exp - κh 2 σ 2 ǫ -1/3 + (σ ′ ) 2 ǫ -2/3 + exp - κh 2 1 σ 2 ǫ|log ǫ| + (σ ′ ) 2 (6.
3) for some C > 0, which is valid for all h, h 1 satisfying h h 0 ǫ 1/3 , h 1 h 0 , h 2 h 0 h 1 and h 2 1 h 0 hǫ 1/3 .

• Step 2: Σ ′ 4 → Σ 5 .
The difference ζ θ between two deterministic solutions starting on Σ ′ 4 satisfies a relation of the form

ζ θ = U (θ, θ 0 )ζ θ 0 + θ θ 0 U (θ, φ)b(ζ φ , φ) dφ , (6.4) 
where b(ζ, φ) is a nonlinear term. Using the estimates on the principal solution (cf. (4.50) in the proof of Lemma 4.8), one obtains that the deterministic orbit starting in (x 4 , (y ′ 4 ) * , ẑ4 ) ∈ Σ ′ 4 hits Σ 5 at a point (x * 5 , ŷ5 , ẑ5 ) satisfying

(ŷ 5 , ẑ5 ) -(y * 5 , z * 5 ) M ǫ 2/3 |x 4 -(x ′ 4 ) * | + M |ẑ 4 -(z ′ 4 ) * | (6.5)
for some constant M > 0. Proposition 4.9 yields that for H 1 h 0 ǫ 2/3 , We now choose

P P 2 Ω 1 (h, h 1 ) ∩ Ω 2 (H 1 ) c C|log ǫ| exp - κ(H 1 -M [ǫ 2/3 h + h 1 ]) 2 σ 2 ǫ + (σ ′ ) 2 ǫ 1/3 + exp - κǫ σ 2 + (σ ′ ) 2 ǫ . (6.6) 
z x + z √ ǫ µ √ ǫ kµ √ ǫ √ ǫµ (σ + σ ′ )(ǫ/µ) 1/4
h 1 = H 1 /(3M ) and h = ǫ 1/3 ∧ H 1 /(3M ǫ 2/3
). Distinguishing the cases h = ǫ 1/3 and h = H 1 /(3M ǫ 2/3 ) when using (6.3), this yields

P P 2 Ω 2 (H 1 ) c C ǫ exp - κH 2 1 σ 2 ǫ|log ǫ| + (σ ′ ) 2 + exp - κǫ σ 2 + (σ ′ ) 2 ǫ -1/3 , (6.7) 
where κ has been redefined.

• Step 3: Σ 5 → Σ 6 → Σ 1 . A similar argument as above shows that two deterministic solutions starting at distance H 1 on Σ 5 hit Σ 1 at a distance of order H 1 . The result then follows from Proposition 3.3 and (6.7), choosing H 1 = ǫ 2/3 ∧ ch 1 for a sufficiently small constant c.

This result is useful if σ ≪ √ ǫ and σ ′ ≪ ǫ 2/3 . It shows that stochastic sample paths are likely to hit Σ 1 at a distance of order σ+σ ′ in the fast directions from the deterministic solution, and at a distance of order σ ǫ|log ǫ| + σ ′ in the slow direction.

The local map

We know from the deterministic analysis (cf. (5.16)) that the section Σ 1 can be subdivided into k µ ≃ 1/(2µ) sectors of rotation. An orbit starting in the kth sector makes 2k + 1 half-turns before hitting Σ 2 . The width of the kth sector has order ǫ (1-µ)/2 , cf. [START_REF] Brøns | Mixed mode oscillations due to the generalized canard phenomenon[END_REF]. The analysis of Section 5.3 shows that the images of these sectors on Σ ′ 1 have a size of order µǫ. For the stochastic system, it will be relevant to distinguish between • inner sectors, which are sectors with k O(1/ √ µ); orbits starting in these sectors hit Σ ′′ 1 for z O( √ ǫµ);

• outer sectors, which are sectors with k > O(1/ √ µ).

Theorem 6.2 (Local return map for inner sectors). Fix P 0 = (x * 0 , y * 0 , z * 0 ) ∈ Σ 1 , and suppose that P 0 lies in an inner sector. Assume the deterministic orbit starting in P 0 hits Σ 2 for the first time in P 2 = (x * 2 , y * 2 , z * 2 ). Further assume ǫ µ. Then there exist constants h 0 , κ, C > 0 such that for all h h 0 ǫ √ µ and h 2 h 0 ( √ h 1 ∧ √ ǫµ ), the stochastic sample path starting in P 0 hits Σ 2 for the first time in a point (x * 2 , y 2 , z 2 ) satisfying

P P 0 |y 2 -y * 2 | > h 1 or |z 2 -z * 2 | > h 2 C ǫ exp - κh 2 1 √ µ (σ 2 + (σ ′ ) 2 ) √ ǫ + exp - κh 2 2 (σ ′ ) 2 + exp - κǫ 3/2 σ 2 + (σ ′ ) 2
. (6.8)

Proof. We introduce the events

Ω 1 (h 1 , h 2 ) = |y ′ 1 -(y ′ 1 ) * | h 1 , |z ′ 1 -(z ′ 1 ) * | h 2 , Ω 2 (H 1 , H 2 ) = |y ′′ 1 -(y ′′ 1 ) * | H 1 , |z ′′ 1 -(z ′′ 1 ) * | H 2 , (6.9) 
where (y ′ 1 , z ′ 1 ) and (y ′′ 1 , z ′′ 1 ) denote the first-hitting points of the stochastic path with Σ ′ 1 and Σ ′′ 1 , and the starred quantities are the corresponding deterministic hitting points. Proposition 5.3 with h of order √ ǫ implies

P P 0 (Ω 1 (h 1 , h 2 ) c ) C ǫ exp - κh 2 1 (σ 2 + (σ ′ ) 2 ) √ ǫ + exp - κh 2 2 (σ ′ ) 2 + exp - κǫ 3/2 σ 2 + (σ ′ ) 2
(6.10) for some C > 0. Using this bound with h 1 of order H 1 and h 2 of order H 1 ∧ H 2 , together with Proposition 5.7 to estimate the probability of Ω 1 ∩ Ω c 2 and the assumption ǫ µ yield

P P 0 (Ω 2 (H 1 , H 2 ) c ) C ǫ exp - κH 2 1 √ µ (σ 2 + (σ ′ ) 2 ) √ ǫ + exp - κH 2 2 (σ ′ ) 2 + exp - κǫ 3/2 σ 2 + (σ ′ ) 2 .
(6.11) The result then follows from Proposition 5.10, taking

h 1 = H 1 and h 2 = H 2 .
This result is useful if σ, σ ′ ≪ (ǫµ) 3/4 . It shows that stochastic sample paths are likely to hit Σ 2 at a distance of order (σ + σ ′ )(ǫ/µ) 1/4 in the y-direction from the deterministic solution, and at a distance of order σ ′ in the z-direction. Combining this with Theorem 6.1 on the global return map, we conclude that for initial conditions P 0 ∈ Σ 1 , starting in a inner sector, stochastic sample paths will return to Σ 1 in a neighbourhood of the deterministic solution, of width

• σ + σ ′ in the fast x-direction, • σ ǫ|log ǫ| + σ ′ in the z-direction. Remark 6.3. The limitation k O(1/ √ µ)
is due to the fact that Proposition 5.7 is formulated for θ √ µ. Using Remark 5.9, Theorem 6.2 can be extended to sectors k = a|log(σ + σ ′ )|/µ, which results in fluctuations of y of order (σ + σ ′ ) 1-ca (ǫ/µ) 1/4 . This does not affect the order of fluctuations in the z-direction as long as a is small enough.

Finally, we consider what happens to sample paths starting on Σ 1 in an outer sector. Theorem 6.4 (Local return map for outer sectors). Fix P 0 = (x * 0 , y * 0 , z * 0 ) ∈ Σ 1 , and assume P 0 lies in an outer sector k, with k k 0 / √ µ for some k 0 > 0. If k 0 is large enough, there exist constants κ, C 0 , C, γ > 0 such that the stochastic sample path starting in P 0 hits Σ 2 for the first time in a point (x * 2 , y 2 , z 2 ) satisfying

P P 0 z 2 √ ǫµ C ǫ exp - κµ 1/2 ǫ 3/2 σ 2 + (σ ′ ) 2 , (6.12) 
P P 0 z 2 z C 0 |log σ| γ exp - κ(z 2 -ǫµ) ǫµ|log(σ + σ ′ )| ∀z √ ǫµ . (6.13) 
Furthermore, there exist a constant h 0 > 0 and an interval I of size of order ǫ, independent of k k 0 / √ µ, such that

P P 0 dist(y 2 , I) > h 1 C ǫ exp - κh 2 1 (σ 2 + (σ ′ ) 2 ) √ ǫ + exp - κǫ 3/2 σ 2 + (σ ′ ) 2 ǫ (6.14)
holds for all h 1 h 0 ǫ.

Proof. We shall work in the zoomed-in coordinates (x, ȳ, z), cf. (5.17). Fix a K 0 ∈ (0, 1) and introduce a neighbourhood D of the weak canard γ w given by

D = (x, ȳ, z) : K K 0 , z √ µ = D 0 × [ √ µ, ∞) , (6.15) 
where K is the first integral introduced in (5.27) (recall that u 1 and u 2 measure the deviation of (x, ȳ) from the weak canard) -see Figure 9. The proof proceeds in four main steps:

• Step 1: Entering D. From Theorem 4.4 in [START_REF] Berglund | Hunting French ducks in a noisy environment[END_REF] describing the spacing of canards, we know that the deterministic solution starting in P 0 hits D in a point P * 0 at a distance of order e -c(2k+1) 2 µ < e -4ck 2 0 from the weak canard. Taking k 0 sufficiently large, we may assume that P * 0 is bounded away from the boundary ∂D 0 . Combining, as in the previous theorem, Proposition 5.3 and Proposition 5.7, we obtain that the stochastic sample path first hits D at a point P τz such that

P P 0 (x τz , ȳτz ) / ∈ D 0 C ǫ exp - κµ 1/2 ǫ 3/2 σ 2 + (σ ′ ) 2 . (6.16)
This proves in particular (6.12).

• Step 2: Leaving D. Theorem 6.4 in [START_REF] Berglund | Hunting French ducks in a noisy environment[END_REF] estimates the probability of sample paths not leaving a neighbourhood of the weak canard. Because we worked in polar coordinates, the result only applied to a small neighbourhood of size proportional to √ z. However by using the coordinate K instead of the distance to γ w , the same proof applies to the exit from D. It suffices to realize that the nonlinear drift term β in Equation (D.33) of [START_REF] Berglund | Hunting French ducks in a noisy environment[END_REF] is replaced by a term of order z as a consequence of Proposition 5.5. We thus conclude that the sample path leaves D at a point P τ D whose z-coordinate satisfies

P P 0 zτ D z C 0 |log σ| γ exp - κ(z 2 -µ) µ log|σ + σ′ | ∀z √ µ (6.17)
for some constants C 0 , γ > 0.

• Step 3: Transition from D to Σ ′′ 1 . Since P τ D is at distance of order 1 from the weak canard, we know that the deterministic solutions starting in P τ D will take a time of order µ to reach Σ ′′ 1 , in a point that we will denote P * 1 = (x * 1 , ȳ * 1 , z * 1 ). Let P 1 = (x * 1 , ȳ1 , z1 ) denote the point where the stochastic sample path first hits Σ ′′ 1 . Starting from System (5.40) and applying the usual procedure, we obtain the estimate

P Pτ D |ȳ 1 -ȳ * 1 | > h1 or |z 1 -z * 1 | > h2 C exp - κ[ h1 -M ( h2 1 + h2 2 )] 2 σ2 + (σ ′ ) 2 + exp - κ h2 2 (σ ′ ) 2 ǫ . (6.18) 
Note that this implies fluctuations of size σ + σ′ in the ȳ-direction, and of size σ′ √ ǫ in the z-direction. Going back to original variables, this entails fluctuations of size (σ + σ ′ )ǫ 1/4 in the y-direction, and σ ′ ǫ 1/4 in the z-direction.

We also have to take into account the fact that we do not know the (x, ȳ)-coordinates of P τ D . In fact all exit points on ∂D 0 might have a comparable probability. Hence the coordinate ȳ * 1 can vary in an interval I 1 , which is the image of ∂D 0 under the deterministic flow. It follows from (5.25) that I 1 has a size of order z * 1 in ȳcoordinates.

• Step 4: Transition from Σ ′′ 1 to Σ 2 . If P 1 satisfied y 1 x 2 1 -ǫ( 1+µ 2 +c 0 ) for some c 0 > 0, or equivalently η 1 -c 0 , we could directly apply Proposition 5.10 to estimate the fluctuations during the last transition step, which would remain of the same order as in Step 3.

The estimate (5.25) shows that P 1 is too close to the repelling slow manifold C r ǫ to apply Proposition 5.10 directly. However, using (5.40), we obtain that the variable η measuring the distance to C r ǫ satisfies an equation of the form

dη θ = 2 µ -2x θ η θ -zθ + O √ ǫ(1 + |x θ |) dθ + 2 µ σ G 1 + σ′ G 2 dW θ . (6.19)
We have used that we may assume σ, σ ′ ≪ √ ǫ to simplify the error term (for larger noise intensities, the main results of the theorem become meaningless). Using the same approach as in [START_REF] Berglund | Noise-induced phenomena in slow-fast dynamical systems. A sample-paths approach[END_REF]Section 3.2] or [17, Section D], one can show that η θ is likely to leave [-c 0 , c 0 ] in a time θ of order µ |log(σ + σ′ )|. During this time interval, xθ decreases by an amount of order |log(σ + σ′ )|. Either this exit takes place in the direction of negative η, and we can apply again Proposition 5.10. Or it takes place in the direction of positive η, and the sample path makes one more excursion towards C a+ ǫ (backward canard). In this case we have to use one more time the analysis of Step 3 before applying again Proposition 5.10. Finally, one can check that the deterministic flow maps the set of points where paths escape {-c 0 η c 0 } to points in Σ 2 with a y-coordinate in an interval I of size O(ǫ).

The important point of Theorem 6.4 is that the bounds on the distribution of (y 2 , z 2 ) are independent of the starting sector number k, as soon as k > k 0 / √ µ. Thus we observe a saturation effect, in the sense that the stochastic Poincaré map becomes independent of the initial condition -see Figure 1. Combining the local result with Theorem 6.1, we see in particular that the size of fluctuations in the z-direction is at most of order

ǫµ|log(σ + σ ′ )| + σ ǫ|log ǫ| + σ ′ . (6.20) 
Disregarding logarithms, we observe that unless µ < σ 2 ∧ ((σ ′ ) 2 /ǫ), the first term will be the dominating one. We conclude that in this regime, the noise-induced fluctuations in the z-direction are at most of order ǫµ|log(σ + σ ′ )|. However this bound is certainly not sharp, since it uses z = √ ǫµ as lower bound of typical exits from a neighbourhood of the weak canard, which may underestimate typical exit times if the noise is weak.

Consequences for the MMO patterns

As mentioned in the introduction, which MMO patterns will be observed depends on the following factors:

1. in which rotation sector, if any, the Poincaré map admits a fixed point; 2. how many SAOs the stochastic system performs when starting at that fixed point; 3. whether or not stochastic fluctuations mask the smallest oscillations. Figure 10 gives a schematic view of the situation. Assume that the deterministic Poincaré map on the section Σ 1 is such that z n+1 is a decreasing function of z n on average (that is, disregarding the dips caused by canards), as indicated by the blue dashed line.

Here we assume that the z-axis is oriented in such a way that larger values of z n lead to more SAOs. When z n belongs to an inner sector, Theorems 6.1 and 6.2 apply, and show that stochastic sample paths are likely to return to Σ 1 in the green shaded set, that is, at a distance of order σ ǫ|log ǫ| + σ ′ from the deterministic orbit. When z n belongs to an outer sector, however, the saturation effect sets in, meaning that stochastic sample paths tend to return to Σ 1 in the red shaded set, at a coordinate z n+1 that no longer depends on the starting point. In order to quantify Point 1 listed above, we may consider that the average map z n → z n+1 induces a map k n → k n+1 between sectors of rotation given approximately by

σ ǫ|log ǫ| + σ ′ z n z n+1 Π -1 1 ( √ ǫµ ) Π -1 1 ( ǫµ|log(σ + σ ′ )| )
Π(k) = Π det (k) if k < k * Π det (k * ) if k k * ,
where Π det is the deterministic map, and k * is the number of the sector in which the saturation effect sets in. According to the discussion in the previous section (see in particular Remark 6.3), we have

O(1/ √ µ ) k * (µ, σ, σ ′ ) O( |log(σ + σ ′ )|/µ ) .
Assume that Π det is decreasing, and admits a unique fixed point k det . Then the map Π admits a fixed point in the sector max{k det , Π det (k * )} .

Consider now Point 2, i.e., determine the number n stoch of SAOs associated with the fixed point. Recall that in the deterministic case, the system performs n det = k det SAOs (this being the rounded value of the 2k det + 1 half-turns). If k det < k * , we have n stoch = n det = k det . Otherwise, the number of SAOs will be given by

n stoch = 1 2 Π det (k * ) + k *
because the system starts in the sector Π det (k * ), performs Π det (k * ) half-turns for z < 0, and only k * half-turns for z > 0 before escaping. Using the fact that Π det (k det ) = k det , it is easy to see that

n stoch > n det ⇔ Π det (k * ) + k * > Π det (k det ) + k det . (6.21)
In other words, the number of SAOs may increase in the presence of noise provided the map k → Π det (k) + k is decreasing. Consider finally Point 3, namely whether the amplitude of SAOs may become so small as to be indistinguishable from random fluctuations due to the noise. In fact, this phenomenon has been analysed in [START_REF] Berglund | Hunting French ducks in a noisy environment[END_REF]Section 6.3]. The results obtained there show that for orbits starting in the sector k, fluctuations start dominating the small oscillations near z = 0 if

k 2 µ log µ 1/4 ǫ 3/4 σ , (6.22) 
where we have already incorporated the zoom-out transformation, cf (5.41). First note that owing to our assumption σ ≪ (ǫµ) 3/4 , the right-hand side of (6.22) will always be larger than 1. In the saturated regime, the left-hand side is bounded below by (k * ) 2 µ, and thus at least of order 1. However, (k * ) 2 µ can be as large as order |log(σ + σ ′ )| = log(1/(σ + σ ′ )). Thus whether or not the SAOs are masked by fluctutations depends crucially on where k lies in the window of possible values: the SAOs will still be visible as long as k is sufficiently close to 1/ √ µ.

It is important to note that one key component in the previous analysis is the "dynamical skeleton" provided by the global return map for the deterministic system. For example, if the global deterministic return map already generates a highly complicated multi-stable scenario with several possible MMO patterns, then the noise-induced effects can become even more complicated.

An example -The Koper model

In order to illustrate some of our results numerically, we consider the example of the Koper model [START_REF] Koper | Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram[END_REF]. Its deterministic version [START_REF] Kuehn | On decomposing mixed-mode oscillations and their return maps[END_REF] is given by

ǫ 1 ẋ = y -x 3 + 3x , ẏ = kx -2(y + λ) + z , (7.1) ż = ǫ 2 (λ + y -z) ,
with parameters k, λ, ǫ 1 , ǫ 2 . Note that there is a symmetry

(x, y, z, λ, k) → (-x, -y -z, -λ, k) (7.2) 
so that we can restrict the parameter space. We shall assume that 0 < ǫ 1 =: ǫ ≪ 1 and ǫ 2 = 1 so that (7.1) has the structure (2.1) and Assumption (A0) obviously holds. For a detailed bifurcation analysis we refer to [START_REF] Desroches | Mixed-mode oscillations with multiple time scales[END_REF][START_REF] Kuehn | On decomposing mixed-mode oscillations and their return maps[END_REF]. Of course, if 0 < ǫ 2 ≪ 1 one may still simulate the three-scale system numerically, and it is even known via explicit asymptotic analysis which MMO patterns one expects to observe in certain classes of three-scale systems [START_REF] Krupa | Mixed-mode oscillations in three time-scale systems: A prototypical example[END_REF]. The first variant of the Koper model was a planar system due to Boissonade and De Kepper [START_REF] Boissonade | Transitions from bistability to limit cycle oscillations. Theoretical analysis and experimental evidence in an open chemical system[END_REF]. Koper [START_REF] Koper | Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram[END_REF] introduced the third variable and studied MMOs via numerical continuation. In fact, the system (7.1) has been suggested independently by various other research groups as a standard model for MMOs [START_REF] Brøns | Mixed mode oscillations due to the generalized canard phenomenon[END_REF][START_REF] Guckenheimer | Singular Hopf bifurcation in systems with two slow variables[END_REF][START_REF] Kawczynski | Period adding and broken Farey tree sequences of bifurcations for mixed-mode oscillations and chaos in the simplest three-variable nonlinear system[END_REF]. Therefore it certainly provides an excellent test case.

The critical manifold of (7.1) is given by C 0 = {(x, y, z) ∈ R 3 : y = c(x)} with c(x) := x 3 -3x, and the two fold curves are L ± = {(x, y, z) ∈ R 3 : x = ±1, y = ∓2}. This yields a decomposition where

C 0 = C a- 0 ∪ L -∪ C r 0 ∪ L + ∪ C a+ 0 , (7.3) 
C a- 0 = C 0 ∩ {x < -1}, C r = C 0 ∩ {-1 < x < 1} and C a+ 0 = C 0 ∩ {1 < x} are normally hyperbolic. It is easy to verify that Assumption (A1) is satisfied.
The desingularized slow subsystem is of the form

ẋ = kx -2(c(x) + λ) + z , ż = (3x 2 -3)(λ + c(x) -z) . (7.4) 
Note that in (7.4) the direction of time is reversed on C r 0 . The only folded equilibria are (x, z) = (1, 2λ -4 -k) ∈ L + and (x, z) = (-1, 2λ + 4 + k) ∈ L -. From the linearization of the slow subsystem

A ± = k 1 6(2 + k ∓ λ) 0 (7.5)
at the folded singularities one may determine the parameter values for which we have a folded node on L + . It turns out that there exist parameter regimes where this is the case, and the only passages of deterministically stable MMO orbits near L -are via nondegenerate folds [START_REF] Desroches | Mixed-mode oscillations with multiple time scales[END_REF][START_REF] Kuehn | On decomposing mixed-mode oscillations and their return maps[END_REF]. Furthermore, the fast flow is transverse to the relevant drop curves in such a regime [START_REF] Desroches | Mixed-mode oscillations with multiple time scales[END_REF][START_REF] Kuehn | On decomposing mixed-mode oscillations and their return maps[END_REF]. From now on, we shall restrict our attention to this parameter regime so that Assumptions (A2)-(A4) are satisfied in a suitable compact absorbing set in phase space. Since (7.1) is a phenomenological model, it is not immediate how to derive noise terms so we will just choose correlated additive noise as a first benchmark, setting

dx s = 1 ǫ (y s -x 3 s + 3x s ) ds + σ √ ǫ F dW s , dy s = (kx s -2(y s + λ) + z s ) ds + σ ′ G 1 dW s , (7.6 
)

dz s = ǫ 2 (λ + y s -z s ) ds + σ ′ G 2 dW s ,
where the Brownian motion (W s ) s is assumed to be three-dimensional, and σ √ ǫ F , σ ′ G 1 , σ ′ G 2 may be viewed as rows of a constant matrix M ∈ R 3×3 . Figure 11 shows the basic geometry of the Koper model including two orbits computed for (ǫ, k, λ) = (0.01, -10, -7). One of these orbits is deterministic (σ = 0 = σ ′ ) and the other one shows a realization of a stochastic sample path computed for σ = 0.01 = σ ′ and

M =   F G 1 G 2   =   1.0 0.5 0.2 0.5 1.0 0.3 0.2 0.3 1.0   . (7.7)
Note that the deterministic orbit exhibits an MMO of type 1 1 1 2 while the stochastic sample path shows combinations of patterns of the form 1 0 , 1 1 and 1 2 . Since we proved results about separate phases of the flow we investigate the estimates for each phase as summarized in Table 1. To investigate the scaling results further, we computed sample paths going from Σ 2 to Σ 3 numerically for a much wider range of noise values as shown in Figure 13(a). For the hitting point on Σ 3 we plotted the standard deviation of the hitting point's distance to its deterministic counterpart for the (x, z)-coordinates in a log-log plot for different noise levels with σ = σ ′ . The slope of 1 for both coordinates in Figure 13(a)-(b) is expected from the upper bounds in Table 1. However, the overall spreading is smaller than expected since we have started the orbits in the vicinity of an attracting deterministic periodic orbit, cf. Figure 11. Therefore, contraction transverse to the periodic orbit shrinks the stochastic neighbourhood more than the general upper-bound estimates predict. Similarly, we may also study the remaining phases of the flow which are analyzed in Figure 13(b)-(d). We observe not only the correct asymptotic decrease in size of the stochastic neighbourhood as σ → 0, but also a larger spreading of sample paths near the folded node, see Figure 13(d). This is related to the mechanism that sample paths may jump only with high probability during certain parts of the SAOs after the folded node; this effect has already been discussed in detail in [START_REF] Berglund | Hunting French ducks in a noisy environment[END_REF] with associated numerics in [17, Section 7] so we shall not detail it here. Figure 14. Dependence of the standard deviation of the distance between the stochastic and the deterministic transition maps on ǫ for an attracting deterministic periodic MMO during various phases of the flow. We have always fixed σ = 0.01 = σ ′ and viewed ǫ as a parameter. Otherwise, the same conventions as in Figure 13 apply.

Via the same strategy as in Figure 13 one may also numerically investigate the dependence upon ǫ. Figure 14 shows the results for this computation. Again, the results are consistent with the derived upper bounds. Figure 14 are dominated by σ, σ ′ if the noise level is fixed. For the map Σ 4 → Σ 5 analyzed in Figure 14(c) we expect from Table 1 that the spreading is dominated by a scaling O(ǫ 1/6 ) since we have fixed σ = 0.01 = σ ′ and ǫ 1/2 ≪ ǫ 1/6 as ǫ → 0. Inspection of Figure 14(c) shows indeed a corresponding slope of approximately 1/6. Figure 14(d) is also consistent with the expected scaling O(ǫ 1/4 ) near the folded node for noise level and µ fixed. These results provide very good evidence that our theoretical estimates may also form a practical guideline to analyze the spreading due to noise. Of course, one may also consider the influence of noise on sample paths for global returns. Figure 1 shows the global return map Σ 1 → Σ 1 . For this computation, in contrast to the previous computations in this section, we have chosen a regime with many secondary canards [START_REF] Berglund | Hunting French ducks in a noisy environment[END_REF][START_REF] Wechselberger | Existence and bifurcation of canards in R 3 in the case of a folded node[END_REF]. Indeed, the parameter values have been fixed to k = -10, λ = -7.6 so that the folded node on L + is given by (x, z) = (1, -9.2) with eigenvalues of the matrix A from (7.5) given by ρ s < -1 < ρ w < 0. The eigenvalue ratio µ := ρ w /ρ s is approximately given by µ ≈ 0.0252 so that [26, Thm. 2.3] implies that there are two primary and 19 secondary canards. The deterministic return map has been analyzed numerically in [START_REF] Guckenheimer | Return maps of folded nodes and folded saddle-nodes[END_REF][START_REF] Kuehn | On decomposing mixed-mode oscillations and their return maps[END_REF], and the structure of the different rotational sectors separated by canard orbits is well understood; see also [START_REF] Guckenheimer | A geometric model for mixed-mode oscillations in a chemical system[END_REF]. However, Figure 1 shows that the attracting deterministic periodic orbit corresponding to a fixed point of the return map, can shift due to noise, even to a higher sector of rotation. This effect can be seen directly from Theorem 6.4 above.

In summary, we may conclude that there is a highly non-trivial interplay between the number of SAOs, the global return map and the noise level (cf. also [START_REF] Berglund | Hunting French ducks in a noisy environment[END_REF]Cor. 6.3]). As discussed already in Section 1, the natural next step is to consider the analysis of the discrete-time Markov chain on a finite state space of MMO patterns. The results in this paper and in [START_REF] Berglund | Hunting French ducks in a noisy environment[END_REF] provide the necessary estimates for the kernel of the Markov chain and may form the starting point for future work. The result follows by evaluating the matrix products in (B.13).

A Technical lemmas

C Proof of Proposition 5.5

We shall use a parametrization of the level curves of K for K > 0 which was introduced in [START_REF] Berglund | Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh-Nagumo model[END_REF]. It is given by • f (t) = 2t + O(t 2 ) near t = 0;

u 1 = 1 + µ 2 |log K| sin ϕ , u 2 = u 2 1 + 1 + µ 2 f
• -1 + e -1-2t 2 f (t) -1 + e -1-2t 2 +O((e -1-2t 2 ) 2 ) for t 0;

• f (t) 2t Proof. The first equation is a direct consequence of (5.28), using the fact that e -f (X) = K cos 2 ϕ /[1+f (X)]. The second one is obtained by differentiating the first equation in (C.1) and solving for µ dϕ/ dz.

The first term on the right-hand side of µ dϕ/ dz is of order f (X)/X, which varies between 1/|X| and 2|X|. As for the second term, it is easy to see that it is negligible for X 0. For X < 0, setting u = sin ϕ, we have 1 + f (X) = K 1-u 2 . The function u → u 3 K u 2 -1 has a maximal value 1/(K|log K| 3/2 ), reached when u 2 = 3/(2|log K|). This allows to bound the second term for X < 0 and proves (5.29).

It follows immediately from (C.3) that we can write Recalling that dK/ dϕ has order zg and dz/ dϕ has order µ|log K| 1/2 , together with (C.6) allows to bound the last two terms. Finally, we show that c -(1 -K) -ḡ c + (1 -K) for K cz. The result will then follow by expressing K in terms of K (note that 1 -K and 1 -K are comparable for K cz). 
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 1 Figure 1. z-coordinate of the first-return map on the section Σ 1 for the Koper model (7.1). Parameter values are k = -10, λ = -7.6, ǫ 2 = 0.7, ǫ 1 = 0.01, with noise intensities (a) σ = σ ′ = 0, (b) σ = σ ′ = 2 • 10 -7 , (c) σ = σ ′ = 2 • 10 -5 , and (d) σ = σ ′ = 2 • 10 -3 . The horizontal and vertical lines mark the location of canards.
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 2 Figure 2. A singularly perturbed Markov chain.
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  We write |•| to denote the absolute value and • for the Euclidean norm. For x ∈ R we write ⌈x⌉ for the smallest integer not less than x. Furthermore, for a, b ∈ R we use a∧ b := min{a, b} and a∨ b := max{a, b}. Regarding asymptotics, we use O(•) in the usual way, i.e., we write f (x) = O(g(x)) as x → x * if and only if lim sup x→x

. 7 )

 7 The nonlinear terms b ξ and b η satisfy b • (ζ s , s) = O( ζ 2 ) as ζ → 0. The matrix A(s) of the system linearized around the deterministic solution has the structure

. 17 )

 17 Consider now the variableζ 1 = S(s) -1 ζ. If ǫ ζ = A(s)ζ, then (3.16) implies ǫ ζ1 = D(s)ζ 1 .(3.18)

  [START_REF] Degn | Bistability, oscillation, and chaos in an enzyme reaction[END_REF] for some positive constant M . Thus the variance is at most of order σ 2 for all s ∈ [s 1 , s 2 ]. Now the first inequality in(3.23) follows immediately from the Bernstein-type estimate Lemma A.2. The prefactor in (3.23) simply counts the number of intervals [s 1 , s 2 ] needed to cover [0, s], see e.g. [15, Proposition 3.15] for a detailed proof in a simpler, onedimensional setting. The second inequality in (3.23) is shown similarly.
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 45 Near a regular fold on L -satisfying the assumptions (A1)-(A2) there exists a smooth change of coordinates such that (3.1) is locally given by

Figure 4 .

 4 Figure 4. Geometry of sections near the regular fold.
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 51 Near a folded-node point p * ∈ L + satisfying the assumptions (A1) and (A3), there exist a smooth change of coordinates and a random time change such that (3.1) is locally given by

y µ µ = |log y| 1 -

 1 e -µ|log y| µ |log y| (5.15) where y = |s| / |s 0 |. The fraction on the right-hand side being bounded, the integral is bounded by a constant times |log(|s| / |s 0 |)|.
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 6 Figure 6. Sketch of the geometry of the orbits near the folded-node singularity.
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 54 S2) Use an averaging-type transformation to describe the rotations of this orbit around the weak canard, until the last-hitting point P ′′ = (0, ȳ′′ , z′′ ) of {x = 0}. (S3) Determine the map from P ′′ to P 1 . For Steps (S1) and (S3), it is useful to introduce the rectified coordinate η = ȳ -x2 + (1 + µ)/2. The normal form (with ǫ = 0) in rectified coordinates then reads µ dx dz = 2η -(1 + µ) , µ dη dz = -4xη -2z . (5.21) Fix constants 0 < β < α 1 and 0 < L (α -β)|log µ|/2. Then for µ > 0 small enough the orbit of (5.21) passing through a point (x, η, z) = (0, η * , z * ) with |η * | µ α and |z * | µ β is given by
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 33 Proof. Set Q = 1 -K. As long as z τ , we can bound |log K| by |log z0 | and write dQ dϕ

Figure 8 .

 8 Figure 8. Inner (blue) and outer (green) canards. The shaded sets indicate the extension of typical fluctuations.

Figure 9 .

 9 Figure 9. Escape of sample paths starting in an outer sector from a neighbourhood of the weak canard γ w .

Figure 10 .

 10 Figure 10. Sketch of the Poincaré map z n → z n+1 on the section Σ 1 . The dashed blue line indicates the position of the deterministic map, disregarding the canards. Π 1 denotes the z-component of the map Σ 1 → Σ 2 . The saturation effect sets in when Π 1 (z n ) reaches √ ǫµ.
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 11 Figure 11. Basic structure of the dynamics for the Koper model (7.6). (a) Phase space with deterministic critical manifold C 0 (grey) and the two fold lines L ± (blue). Two orbits are also shown, one for the deterministic system (σ = 0 = σ ′ , green) and one for the stochastic system (σ = 0.01 = σ ′ , black). For both, the parameter values are ǫ = 0.01, k = -10, λ = -7, and M is given by (7.7). (b) Projection of the full system onto the (x, z)-plane. (c) Time series for the two orbits.

Figure 12 .

 12 Figure 12. Computation of the transition map Σ 2 → Σ 3 where the sections (blue) have been defined by the conditions x = 0.5 and y = -1.8 respectively. All paths have been started at (x, y, z) = (0.5, -2.1, -8). There is one deterministic path (green) and 300 different realizations (black) for the stochastic case with M given by (7.7) and σ = 0.1 = σ ′ . The relevant part of the critical manifold C a+ 0 (grey) is shown as well. (a) Phase space. (b) View of the landing points on the section Σ 3 where the landing point of the deterministic path is in the center of the green circle.

Figure 13 .

 13 Figure 13. Dependence of the standard deviation of the distance between the stochastic and the deterministic transition maps on the noise intensity for an attracting deterministic periodic MMO during various phases of the flow. We have always fixed the matrix M by (7.7), ǫ = 0.01 and σ = σ ′ . The results are shown on a log-log scale with two directions out of x (red), y (blue) and z (black). The standard deviation std has been computed from 100 realizations of sample paths and the domain for the noise level was subdivided into 40 points. (a) Transition map from Σ 2 → Σ 3 with Σ 2 = {x = 0.5}, Σ 3 = {y = -1.8} and (x 0 , y 0 , z 0 ) = (0.5, -2.1, -8). (b) Transition map from Σ 3 → Σ 4 with Σ 4 = {y = 1.8} and (x 0 , y 0 , z 0 ) = (-2, -1.8, -8). (c) Transition map from Σ 4 → Σ 5 with Σ 5 = {x = -0.5} and (x 0 , y 0 , z 0 ) = (-1.3, 1.8, -7.8). (d) Transition map from Σ 1 → Σ 2 with Σ 1 = {y = -1.8} and (x 0 , y 0 , z 0 ) = (1.3, -1.8, -7.7).

Figure 12 illustrates the map Σ 2 →

 2 Figure 12 illustrates the map Σ 2 → Σ 3 which describes the fast flow towards the critical manifold C a- 0 . Several stochastic sample paths are compared with the deterministic solution. In Section 3.2 we derived the typical spreading of stochastic sample paths around their deterministic counterpart. It was shown that the typical spreading has an upper bound O(σ + σ ′ ) in the x-coordinate and O(σ ′ + σ √ ǫ) in the z-coordinate. Since the typical spreading can be understood as standard deviation, cf. [15, Prop. 3.1.13], Figure 12(b) confirms that the theoretical results indeed provide upper bounds (note the scaling on the axes and that σ = 0.01 = σ ′ ).To investigate the scaling results further, we computed sample paths going from Σ 2 to Σ 3 numerically for a much wider range of noise values as shown in Figure13(a). For the hitting point on Σ 3 we plotted the standard deviation of the hitting point's distance to its deterministic counterpart for the (x, z)-coordinates in a log-log plot for different noise

  (a)-(b) verifies that for the maps Σ 2 → Σ 3 and Σ 3 → Σ 4 the stochastic spreadings of order O(σ + σ ′ ) and O(σ √ ǫ + σ ′ )
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 10012222334411214 Scaling behaviour). Assume a(s) ≍ -(|s| 1/2 + ǫ 1/3 ) for -1 s ǫ 2/3 , and define α(s, r) = s r a(u) du. Then for any ν -1, s s 0 e α(s,r)/ǫ |a(r)| ν dr ≍ ǫ|a(s)| 2ν-1 (A.1)holds for -1 s 0 s 0 + O(ǫ|log ǫ|) s ǫ 2/3 . Lemma A.2 (Bernstein-type inequality). Let W standard Brownian motions, and let X t be adapted to the filtration generated by the W (j) t . For measurable functions g ij and deterministic bounds G i satisfying almost surely k j=1g ij (X s , s) 2 G i (s) 2 , V i (t) = t i (s) 2 ds < ∞ , ij (X s , s) dW (j) s , i = 1, . . . , n . (A.3) B Proof of Lemma 5.2We would like to estimate the principal solution of ǫ ξ = A(s)ξ for times s -√ ǫ, whereA(s) = a 0 (s) d(s) c(s) ǫa 1 (s) = s + O(s 2 ) 1 + O(s 2 ) -ǫ(1 + µ) + O(ǫs) ǫO(1) . (B.1)By changing s into -s and ξ 2 into -ξ 2 , we can restrict the analysis to positive s. The proof of the lemma is close in spirit to the proof of[START_REF] Berglund | Hunting French ducks in a noisy environment[END_REF] Theorem 4.3], and consists in a number of changes of variables bringing the system into diagonal form. A first transformation ξ Tr A(u) du ξ 1 =: e α(s)/2ǫ ξ 1 (B.2)yields the system ǫ ξ1 = A 1 (s)ξ 1 , whereA 1 (s) = 1 2 a(s) d(s) c(s) -1 2 a(s) , a(s) = a 0 (s) -ǫa 1 (s) = s + O(s 2 ) . (B.3) Next we set ξ 1 = S 1 (s)ξ 2 , where O(ǫs) . (B.6)Note that this system is equivalent to ǫ 2 ξ2,1 = h(s)ξ 2,1 , which reduces to Weber's equation in the particular case a(s) = s. The next step is to set ξ 2 = S 2 (s)ξ 3 , where S is diagonal. This yields ǫ ξ3 = A 3 (s)ξ 3 , with S 3 (s)ξ 4 makes the system diagonal. This final transformation is given byS 3 (s) = 1 p 2 (s) p 1 (s) 1 , (B.9)where p 1 and p 2 satisfy the ODEs ǫ ṗ1 = -2h(s) 1/2 p 1 + ǫ that these ODEs admit solutions of order ǫ/s 2 . The resulting system has the form ǫ ξ4 = A 4 (s)ξ 4 , where solution is thus of the form V (s, r) = V (s)V (r) -1 , where V (s) = e α(s)/2ǫ S 1 (s)S 2 (s)S 3 (s) e α + (s)/ǫ 0 0 e α -(s)/ǫ (B.13) with α ± (s) = ± s Expanding h(s) 1/2 and using the fact that ȧ(s) = 1 + O(s), one obtains e α ± (s)/ǫ ≍ a(s) ∓(1/2+µ) e ±α(s)/2ǫ . (B.15)

X sin 2 ϕ √ 1 + 1 , (C. 5 )

 115 µf (X) -4zR sin ϕ sin 2 ϕ (1+f (X))and we have set R = |log K|/2. Note that µ dK/ dz has order (1 -K) near K = 1, and order |log K| near K = 0, because 1 + f (X) e -1 K. This shows that|g(K, ϕ, z)| O((1 -K)(1 + |log K|) 3/2 ) =: O(ρ(K)) . (C.6)We now perform the averaging transformationK = K + zw(K, ϕ, z) , (C.7)where ∂ ∂ϕ w(K, ϕ, z) = -g(K, ϕ, z) + ḡ(K, z) ,

u 2 e 3 KR 2 e -u 2 1 +

 23221 It will be sufficient to consider the behaviour of ḡ near K = 1 and near K = 0. Near K = 1 we haveg(K, ϕ, z) = -4(1 -K) √ 1 + µ 1 + O(1 -K) + O(z) sin 2 ϕ , (C.10)and sin 2 ϕ averages to 1/2. Near K = 0, the integral defining ḡ is dominated by ϕ near π. Performing the change of variables u = 2R sin ϕ, we obtain -u 2 /2 1 + O(K e u 2 /2 ) + O zu O(K|log K|) + O(z/(K|log K|)) , (C.11) while the integral over [-π/2, π/2] has order K|log K|.
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  (x s , y s , z s ) ds + σ ′ G 2 (x s , y s , z s ) dW s ,

	3.1 Estimating stochastic deviations		
	As a stochastic extension to (2.1) we consider the fast-slow SDE
	dx s =	1 ǫ	f (x s , y s , z s ) ds +	σ √ ǫ	F (x s , y s , z s ) dW s ,
	dy s = g 1 (x s , y s , z s ) ds + σ ′ G 1 (x s , y s , z s ) dW s ,	(3.1)
	dz s = g 2		

  which is a first integral of the system when z = 0. In fact, K is just a version of the classical first integral near planar degenerate folded singularities (cf.[START_REF] Krupa | Extending slow manifolds near transcritical and pitchfork singularities[END_REF] Lemma 3.3; Figure 3.2], [54, Figure

2 /(1+µ) ,

(5.27) 

  (t) = sign t. It is easy to check (see [63, Section 5.2.1]) that

	X ,	X :=	|log K| 2	cos ϕ ,	(C.1)
	where f (t) is the solution of				
	log(1 + f (t)) = f (t) -2t 2		(C.2)
	satisfying sign f				

  Lemma C.1. The variational equations (5.26) are equivalent to

	µ	dK dz	= -8z	K|log K| 1 + f (X)	sin 2 ϕ ,				
	µ	dϕ dz	=	1 X	1 + µf (X) -4z	|log K| 2	sin ϕ	sin 2 ϕ 1 + f (X)	-1	.	(C.3)

2 

+ O(t) for all t 0.

, until they hit the section Σ

which is located at a distance of order 1 in the x-direction from the fold. Before giving a rigorous estimate, we briefly recall some

Then for any h > 0 and any choice of γ 1 , . . . , γ n ∈ [0, 1] such that γ 1 + • • • + γ n = 1, one has

Proof. The left-hand side of (A.4) is bounded above by

Each term in this sum is bounded by 2 e -γ i h 2 /(2V i (t)) , cf. [START_REF] Berglund | Hunting French ducks in a noisy environment[END_REF]Lemma D.8].

Remark A.3. It is possible to obtain sharper estimates of the form

for any κ < 1, using a decomposition of [0, t] in small intervals (see [15, Section 5.1.2]).

Lemma A.4 (Random time change). Consider an R n -valued diffusion (Y t ) t 0 given by

where f : R n → R n is such that the nth component f n of f satisfies f n (y) > 0 for all y.

We further assume that g : R n → R n×k , and that (W t ) t 0 is a k-dimensional standard Brownian motion. Fix γ > 0 and let

Then (Y β -1 (t) ) t 0 is equal in distribution to (X t ) t 0 , where X t satisfies X 0 = Y 0 and

If the condition f n (y) > 0 is only satisfied in a subset D of R n , then the result remains true for 0 t τ D = inf{s 0 : Y s ∈ D}.

Proof. Write dX t = f (X t ) dt + g(X t ) dW t for the SDE (A.9). The stochastic process